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General Preface

The nine volumes of the series ‘Basic Course: Theoretical Physics’ are thought
to be textbook material for the study of university-level physics. They are aimed
to impart, in a compact form, the most important skills of theoretical physics
which can be used as basis for handling more sophisticated topics and problems
in the advanced study of physics as well as in the subsequent physics research.
The conceptual design of the presentation is organized in such a way that

Classical Mechanics (volume 1)
Analytical Mechanics (volume 2)

Electrodynamics (volume 3)
Special Theory of Relativity (volume 4)

Thermodynamics (volume 5)

are considered as the theory part of an ‘integrated course’ of experimental and
theoretical physics as is being offered at many universities starting from the first
semester. Therefore, the presentation is consciously chosen to be very elaborate
and self-contained, sometimes surely at the cost of certain elegance, so that
the course is suitable even for self-study, at first without any need of secondary
literature. At any stage, no material is used which has not been dealt with earlier
in the text. This holds in particular for the mathematical tools, which have
been comprehensively developed starting from the school level, of course more
or less in the form of recipes, such that right from the beginning of the study,
one can solve problems in theoretical physics. The mathematical insertions are
always then plugged in when they become indispensable to proceed further in
the program of theoretical physics. It goes without saying that in such a context,
not all the mathematical statements can be proved and derived with absolute
rigor. Instead, sometimes a reference must be made to an appropriate course in
mathematics or to an advanced textbook in mathematics. Nevertheless, I have
tried for a reasonably balanced representation so that the mathematical tools
are not only applicable but also appear at least ‘plausible’.

The mathematical interludes are of course necessary only in the first vol-
umes of this series, which incorporate more or less the material of a bachelor
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VI GENERAL PREFACE

program. In the second part of the series which comprises the modern aspects
of Theoretical Physics,

Quantum Mechanics: Basics (volume 6)
Quantum Mechanics: Methods and Applications (volume 7)

Statistical Physics (volume 8)
Many-Body Theory (volume 9),

mathematical insertions are no longer necessary. This is partly because, by the
time one comes to this stage, the obligatory mathematics courses one has to take
in order to study physics would have provided the required tools. The fact that
training in theory has already started in the first semester itself permits inclusion
of parts of quantum mechanics and statistical physics in the bachelor program
itself. It is clear that the content of the last three volumes cannot be part of an
‘integrated course’ but rather the subject matter of pure theory lectures. This
holds in particular for ‘Many-Body Theory’ which is offered, sometimes under
different names as, e.g., ‘Advanced Quantum Mechanics’, in the eighth or so
semester of study. In this part new methods and concepts beyond basic studies
are introduced and discussed which are developed in particular for correlated
many particle systems which in the meantime have become indispensable for a
student pursuing master’s or a higher degree and for being able to read current
research literature.

In all the volumes of the series ‘Basic Course: Theoretical Physics’ numerous
exercises are included to deepen the understanding and to help correctly apply
the abstractly acquired knowledge. It is obligatory for a student to attempt
on his own to adapt and apply the abstract concepts of theoretical physics to
solve realistic problems. Detailed solutions to the exercises are given at the
end of each volume. The idea is to help a student to overcome any difficulty
at a particular step of the solution or to check one’s own effort. Importantly
these solutions should not seduce the student to follow the ‘easy way out’ as a
substitute for his own effort. At the end of each bigger chapter I have added
self-examination questions which shall serve as a self-test and may be useful
while preparing for examinations.

I should not forget to thank all the people who have contributed in one way or
another to the success of the book series. The single volumes arose mainly from
lectures which I gave at the universities of Muenster, Wuerzburg, Osnabrueck,
and Berlin (Germany), Valladolid (Spain), and Warangal (India). The interest
and constructive criticism of the students provided me the decisive motivation
for preparing the rather extensive manuscripts. After the publication of the
German version I received a lot of suggestions from numerous colleagues for
improvement and this helped to further develop and enhance the concept and
the performance of the series. In particular I appreciate very much the support
by Prof. Dr. A. Ramakanth, a long-standing scientific partner and friend, who
helped me in many respects, e.g., what concerns the checking of the translation
of the German text into the present English version.
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Special thanks are due to the Springer company, in particular to Dr. Th.
Schneider and his team. I remember many useful motivations and stimulations.
I have the feeling that my books are well taken care of.

Berlin, Germany Wolfgang Nolting
May 2017



Preface to Volume 7

In the prefaces of the preceding volumes, especially in that of volume 6 (Quan-
tum Mechanics: Basics), which is the first part of Quantum Mechanics, I have
already set out the goal of the basic course in Theoretical Physics. This goal
remains of course unchanged for the second part Quantum Mechanics: Methods
and Applications (volume 7) as well. The vast mass of matter to be presented
makes it imperative that the material has to be divided into two parts. Needless
to say that both parts have to be viewed as a unity. Formal sign for that is the
consecutive numbering of the chapters over both volumes.

The first part deals with the basics and some first applications to rela-
tively simple (one-dimensional) potential problems. We now begin the second
part with the detailed discussion of the important quantum-mechanical observ-
able angular momentum. We will call any vector operator an angular momen-
tum, whose Hermitian components fulfill a certain set of commutation relations
(Sect. 5.1). To this class of operators, there belongs, besides the orbital angu-
lar momentum known from Classical Mechanics, which we can transplant into
Quantum Mechanics by the use of the principle of correspondence, the classi-
cally not understandable spin, for which such an analogy consideration is not
possible. One could be content with postulating the spin, in a certain sense, as
an empirical necessity, and analyzing the properties and consequences resulting
from this postulate (Sect. 5.2). Since spin, magnetic moment of the spin, and
spin-orbit interaction turn out to be properties, which are justifiable only rel-
ativistically, they therefore need the relativistic Dirac theory (Sect. 5.3) for the
rigorous derivation. Furthermore, the spin-orbit interaction gives us the moti-
vation to think about the rules for the addition of angular momenta (Sect. 5.4).

With the discussion of the angular momentum, the essential pillars of the
abstract theoretical framework of Quantum Mechanics are now introduced so
that we can turn in the next chapters toward somewhat more application-
oriented problems. This starts in Chap. 6 with the important central potentials.
For the historical development of Quantum Mechanics, in particular, the theory
of the hydrogen atom has played a decisive role. The orbital electron moves
in the Coulomb field of the positively charged hydrogen nucleus (proton), and
underlies therewith the influence of a special central potential, to which, espe-
cially because of its historical importance, a rather broad space is devoted in
this volume.

IX



X PREFACE TO VOLUME 7

Only very few (realistic) problems of Theoretical Physics can be mathe-
matically rigorously solved. A ‘reasonable’ approximation to a not exactly
solvable problem poses, according to experience, a non-trivial difficulty to the
learner. We therefore discuss in Chap. 7 a series of well-established, but con-
ceptually rather different methods: the variational method (Sect. 7.1), the dif-
ferent versions of perturbation theory (Sects. 7.2 and 7.3), and the semi-classical
WKB-method (phase integral method) (Sect. 7.4). In current scientific research,
one is frequently confronted with the task to develop one’s own methods of
approximation, which are specific just to the problem at hand. Also in such a
case, the subtle understanding of the standard methods and the exact knowledge
of their regions of validity may guide the way.

The Quantum Theory so far presented and discussed is, strictly speaking,
a one-particle theory, whereas the real world is built up of interacting many-
particle systems. Therefore we have to investigate (Chap. 8) what is additionally
to be taken into account when treating many-particle systems. The demarcation
between distinguishable particles and the so-called identical particles will turn
out to be decisively important and will lead to the principle of indistinguisha-
bility of identical particles, which has no analog in Classical Physics. The Pauli
principle (exclusion principle) is surely its weightiest consequence, by which the
total composition of matter is regulated. For the description of many-particle
systems, the formalism of second quantization has proven to be not only very
elegant but also very often rather advantageous. The modern research literature
is hardly readable without the knowledge of second quantization. In particular,
in volume 9 of this basic course in Theoretical Physics, the formalism will be
used almost exclusively. It therefore appears to be reasonable to present this
method in some detail.

The final chapter deals with the scattering theory, which represents an impor-
tant region of application of Quantum Mechanics. Via microscopic scattering
(collision) processes, far-reaching information can be found about elementary
interaction potentials, provided the theory succeeds in constructing connections
between these potentials and the experimentally accessible cross sections.

This volume on Quantum Mechanics arose from lectures I gave at the Ger-
man Universities in Würzburg, Münster, and Berlin. The animating interest
of the students in my lecture notes has induced me to prepare the text with
special care. The present one as well as the other volumes are thought to be
the textbook material for the study of basic physics, primarily intended for the
students rather than for the teachers.

I am thankful to the Springer company, especially to Dr. Th. Schneider, for
accepting and supporting the concept of my proposal. The collaboration was
always delightful and very professional. A decisive contribution to the book was
provided by Prof. Dr. A. Ramakanth from the Kakatiya University of Warangal
(India), a long-standing scientific partner and friend, who helped me in many
respects. Many thanks for it!

Berlin, Germany Wolfgang Nolting
May 2017
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Chapter 5

Quantum Theory
of the Angular Momentum

This chapter is devoted to the important quantum-mechanical observable angu-
lar momentum. We already know this quantity from Classical Mechanics, and
we will therefore introduce the corresponding quantum-mechanical operator, at
first (Sect. 5.1), by the use of the principle of correspondence. It will turn
out, though, to be necessary to refer to the so defined observable in a somewhat
more special manner as orbital angular momentum, since we will get to know
other realizations of the angular momentum.

Starting at the classical Poisson brackets between the components of the clas-
sical angular momentum, we are led to a set of commutation relations, which
will turn out to be so general that, from this moment on, we will call every
vector operator, which fulfills these relations, an angular momentum. We will
derive a basic relation between the rotation operator and the angular momen-
tum, which will help us to recognize the deep physical relationships, which
manifest themselves in the mentioned commutation relations.

It will then be possible to discuss the actual eigen-value problem of the
angular momentum completely detached from the particular definition of the
orbital angular momentum. The general result will be that the square of an
angular momentum operator J2 will have eigen-values of the form �

2j(j + 1),
where the quantum number j can assume integral or half-integral values. The
z-component Jz of the operator of the angular momentum possesses, together
with J2, common eigen-states with the eigen-values �mj , where the magnetic
quantum number mj runs through the values mj = −j, −j + 1, · · · ,+j. In the
special case of the orbital angular momentum, j, and therewith also mj , is an
integer.

We know that not all quantum-mechanical observables possess a classical
analog. A prominent example is the spin (Sect. 5.2), which is an angular momen-

© Springer International Publishing AG 2017
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2 CHAPTER 5. QUANTUM THEORY OF THE ANGULAR MOMENTUM

tum, which can assume integral as well as half-integral quantum numbers. We
are going to introduce, at first ‘correspondence-like’, the observable magnetic
moment. This is coupled, in the Hamilton operator, linearly to the external
magnetic field B. The comparison between theory and experiment, for exam-
ple in the case of the energy levels of an atom, leads to serious discrepancies,
which make the incorporation of the spin as intrinsic angular momentum
into Quantum Mechanics undoubtedly necessary. One can discuss the proper-
ties and the consequences of the, in such a way, empirically introduced spin,
without referring to a strict justification of this term.

We postpone the convincing justification of the spin to Sect. 5.3 using the
relativistic Dirac-theory of the electron. Spin, spin magnetic moment and
the spin-orbit interaction turn out to be the particle properties, which can
only be relativistically understandable. The spin-orbit interaction will finally
provide us the motivation to think in Sect. 5.4 in detail about the rules which
are to be obeyed for the addition of angular momenta.

5.1 Orbital Angular Momentum

5.1.1 Angular Momentum and Principle
of Correspondence

When we recall Classical Mechanics (Vol. 1), we realize that for one important
classical dynamic variable, we so far did not get to know the corresponding
quantum-mechanical observable, namely for the angular momentum. For Clas-
sical Physics, we defined this quantity in Sect. 2.4.3 in Vol. 1 as follows: When
a particle of the mass m with the momentum p passes a certain point of the
space, which has, with respect to an arbitrary but fixed origin of coordinates,
the position vector r, then one denotes

L = r× p (5.1)

as the angular momentum of this particle with the components:

Lx = y pz − z py ,

Ly = z px − x pz ,

Lz = x py − y px . (5.2)

The definition reveals that L is not a genuine property of the particle since it
also depends on the choice of the point of reference. As to the notation of the
components of the angular momentum, we will use, according to expedience,
one of the index triples (x, y, z) or (1, 2, 3) as we already practiced with other
vectorial quantities also (Lx = L1, Ly = L2, Lz = L3). The three equations in
(5.2), e.g., can be combined in the (1, 2, 3)-notation to:

Li =
∑

m,n

εimn xm pn . (5.3)
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Here εimn is the fully antisymmetric unit tensor of third rank ((1.193), Vol. 1):

εimn =

⎧
⎪⎨

⎪⎩

+1 , if (i,m, n) cyclic permutation of (1, 2, 3) ,

−1 , if (i,m, n) anticyclic permutation of (1, 2, 3) ,

0 , if two indexes are equal .

(5.4)

As Exercise 3.5.1 (Vol. 6) we have shown that each component of the angu-
lar momentum can be written as a Poisson bracket between the two other
components:

{Li, Lj} =
∑

k

εijk Lk . (5.5)

This relation will still turn out to be rather far-reaching. The same holds for
the bracket between the square of the angular momentum,

L2 = L2
x + L2

y + L2
z =

3∑

i=1

L2
i , (5.6)

and the components Li:

{Li, L
2} = 0 . (5.7)

Further Poisson brackets, also derived in Exercise 3.5.1 (Vol. 6), link the angular
momentum with the position and the momentum of the particle:

{Li, r
2} = {Li, p

2} = 0 ∀i , (5.8)

{Li, xj} =
∑

k

εijk xk ∀i, j , (5.9)

{Li, pj} =
∑

k

εijk pk ∀i, j . (5.10)

By using the principle of correspondence, formulated in Sect. 3.5 (Vol. 6), we
now introduce the quantum-mechanical

orbital angular momentum

by the prescription to replace position and momentum in the classical definition
of L (5.1), (5.3) by the corresponding Hermitian operators (observables):

L̂ = r̂× p̂ , (5.11)

L̂i =
∑

m,n

εimn x̂m p̂n . (5.12)

The non-commutability of position andmomentum normally requires, for such a
‘correspondence-like’ transition from classical variables to quantum-mechanical
operators, a symmetrization, such as we discussed in Sect. 2.3.3 (Vol. 6). This
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we can disregard here, though, because x̂m and p̂n do not commute only for
m = n. But then εimn is equal to zero.

We call, intentionally, L̂ orbital angular momentum, although for the classi-
cal analog we have always used only the term angular momentum. The reason
is, in the next chapter we will get to know the spin, another angular momen-
tum, which does not have such a classical analog, and can therefore not be
represented by (5.11). Most of the properties, which we are now going to derive
for the particular case of the orbital angular momentum, are, however, valid for
every type of angular momentum. That means, they are also valid for the still
to be introduced spin, or for the total angular momentum, which is an addi-
tive combination of the spin and the orbital angular momenta, or also for the
resulting angular momentum of a multi-particle system.

To simplify the notation, we will again omit, as of now, the ‘hat’ -symbol
for marking quantum-mechanical operators, because our brief reminiscence of
Classical Mechanics is already over, a mix-up with classical variables is not to
be feared any longer.

It can be proved easily (Exercise 5.1.3), but nevertheless it is an important
statement that the novel physical quantity, the ‘orbital angular momentum’,
introduced in (5.11), is indeed an observable, i.e., it is a Hermitian operator:

L = L+ . (5.13)

According to the principle of correspondence (3.229) (Vol. 6), the Poisson brack-
ets between classical variables correspond, except for the trivial factor i �, to
commutators between corresponding quantum-mechanical observables. So we
directly take from (5.5) the important commutation relation:

[Li, Lj ]− = i �
∑

k

εijk Lk ∀i, j . (5.14)

The various components of the orbital angular momentum thus do not commute
with each other. It is therefore impossible to precisely measure any two compo-
nents at the same time. Because of the formal similarity of (5.14) and the vector
product ((1.195), Vol. 1), one sometimes expresses the full set of commutation
relations in the compact form

L× L = i �L . (5.15)

One has to read this equation of course as an operator-vector product, since for
normal vectors the left-hand side would be zero:

L× L =

⎛

⎝
Ly Lz − Lz Ly

Lz Lx − Lx Lz

Lx Ly − Ly Lx

⎞

⎠ =

⎛

⎝
[Ly, Lz]−
[Lz, Lx]−
[Lx, Ly]−

⎞

⎠ = i �

⎛

⎝
Lx

Ly

Lz

⎞

⎠ .

The representation (5.15), though, is without big practical benefit, being more or
less a ‘playing around’. The statement, which we derive from (5.7), namely that
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the square of the orbital angular momentum L2 commutes with each component
of L, is much more important:

[
L2, Li

]
− = 0 ∀i . (5.16)

L2 and one component of L thus build a system of simultaneously precisely
measurable observables. For these operators—it is common to take L2 and
Lz = L3—there must therefore exist a common set of eigen-states. We will deal
with their explicit derivation in the section after the next.

Non-commutability of observables and uncertainty principle are rather
closely coupled quantum-mechanical phenomena. Because of (5.14), the com-
ponents of the orbital angular momentum are, according to ((3.155), Vol. 6),
subject to the following generalized uncertainty relations:

ΔLxΔLy ≥ �

2
|〈Lz〉| ,

ΔLy ΔLz ≥ �

2
|〈Lx〉| , (5.17)

ΔLz ΔLx ≥ �

2
|〈Ly〉| .

We have been able to take the commutators (5.14) and (5.16) here directly, by
the use of the principle of correspondence ((3.229), Vol. 6), from the previously
calculated Poisson brackets. Of course, one could have derived them directly
from the definition (5.11) of the orbital angular momentum by means of the
fundamental position-momentum commutator

[xi, pj]− = i � δij .

We recommend this direct calculation as Exercise 5.1.4, together with the veri-
fication of the following relations, which are related to the Poisson brackets in
(5.8), (5.9), (5.10):

[Li, r
2]− = [Li, p

2]− = 0 ∀i , (5.18)

[Li, xj ]− = i �
∑

k

εijk xk ∀i, j , (5.19)

[Li, pj ]− = i �
∑

k

εijk pk ∀i, j . (5.20)

We want to introduce, finally, two further operator combinations which will turn
out as rather useful for the following argumentations:

L+ = Lx + i Ly ; L− = Lx − i Ly . (5.21)

Sometimes they are called ladder operators or steps operators. In Sect. 5.1.4 they
will remind us, in their properties and applications, of the creation operator and
annihilation operator used for the harmonic oscillator (Sect. 4.4, Vol. 6). These
are adjoint to each other and are non-Hermitian. Later we will frequently use
the following commutators, built with L±:

[L+, L−]− = 2�Lz . (5.22)
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Proof:

[L+, L−]− = [Lx + i Ly, Lx − i Ly]− = −i[Lx, Ly]− + i[Ly, Lx]−
= �Lz + �Lz = 2�Lz q.e.d. ,

[Lz, L±]− = ±�L± . (5.23)

Proof:

[Lz, L±]− = [Lz, Lx ± i Ly]− = [Lz, Lx]± i[Lz, Ly]−
= i �Ly ± i(−i �Lx) = ±�(Lx ± i Ly) = ±�L± q.e.d. ,

[L2, L±]− = 0 . (5.24)

This relation follows of course immediately from the fact that L2 commutes
with each component of L.

We close this section with two remarks:

1. For the handling of the eigen-value problem (see Sect. 5.1.4) we actually
need only the commutation relations (5.14) and (5.16), where the latter is
already a consequence of (5.14). We can therefore ignore for the further
discussion the concrete definition of the orbital angular momentum. We
will consider each vector operator, whose components fulfill (5.14), as
angular momentum.

2. We had found in Sect. 1.4.3 of Vol. 2, in the framework of Lagrange
Mechanics, by means of simple symmetry considerations, that, for a closed
system, the constancy of the classical angular momentum is fundamen-
tally related to the isotropy of the space. In turn, isotropy of the space
means that the properties of the system are invariant with respect to arbi-
trary space rotations. How does, however, this connection between space
rotations and operator of angular momentum manifests itself in Quantum
Mechanics? We try to answer this question in the next section, before we
go to the actual solution of the eigen-value problem in Sect. 5.1.4.

5.1.2 Rotations and Operator of Angular Momentum

There are two equivalent possibilities to represent rotations. One can think
of a rotation by the system itself, where the reference system remains fixed
(active rotation), or one holds the system down and rotates the reference system
correspondingly (passive rotation). Both versions of course lead to the same
results. In Sect. 1.6.3 of Vol. 1 we have for the first time dealt with rotations,
and have described them in their passive form. Let us choose here the other
possibility and reenact once more the line of thought from Vol. 1.

Let Σ be a space-fixed system of coordinates, whose axial directions are
given by the orthogonal unit vectors e1, e2, e3. Within this reference system Σ,
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our physical system is to be rotated. We define, in a way as auxiliary quantity,
the system of coordinates Σ, which co-rotates with the physical system. Let its
axes be oriented in the directions of the also orthogonal unit vectors e1, e2, e3.
Let Σ and Σ share the same fixed origin of coordinates. We now consider the
position vector of a point in the system,

r = (x1, x2, x3) in Σ ,

which performs in the space-fixed system of coordinates the rotation, thereby
of course changing its components:

r → r = (x1, x2, x3) in Σ .

In the co-rotating system of coordinates Σ the position vector retains its old
components:

r = (x1, x2, x3) in Σ .

This means:

3∑

i=1

xi ei =
3∑

j =1

xj ej . (5.25)

Scalar multiplication by ei yields the components after the rotation in Σ:

xi =

3∑

j =1

(ei · ej)xj ≡
3∑

j =1

Dij xj . (5.26)

This relation is valid for arbitrary position vectors. It defines the (3×3)-rotation
matrix:

D = (Dij)i,j =1,2,3 ; Dij = cosϕij = (ei · ej) . (5.27)

ϕij is the angle, enclosed by the i-axis in Σ and the j-axis in Σ. The elements
of the rotation matrix are all real. By the use of D, Eq. (5.26) can also be read
as matrix equation:

r = D r . (5.28)

Especially for the basis vector ei of the co-rotated system Σ, we find in Σ:

ei =

3∑

j =1

x
(i)
j ej ; x

(i)
j = (ej · ei) = Dji .

It follows immediately from the orthonormality of the basis vectors ei that the
columns of the rotation matrix are pairwise orthonormal:

ei · ej = δij =
∑

k,m

Dki Dmj (ek · em) =
∑

k

DkiDkj . (5.29)
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That can be shown, similarly simply, also for the rows of the rotation matrix
(see Exercise 5.1.7). To guarantee that the rotated system of coordinates Σ is
a right-handed system like Σ, we still have to require

detD = 1 .

The proof of this fact is provided by Eq. (1.344) in Vol. 1.
Because of D−1 D = 1l, the inverse rotation matrix undoes the rotation

(5.28) and is therefore defined by

r = D−1 r . (5.30)

When one multiplies (5.25) scalarly by ej , one obtains:

xj =
∑

i

(ei · ej)xi =
∑

i

Dij xi
!
=

∑

i

(D−1)ji xi .

Thus D−1 arises from D simply by interchanging rows and columns, and is,
according to that, just the transposed matrix:

D−1 = DT . (5.31)

We have therewith recalled the most important properties of the rotation matrix,
which can easily be demonstrated by the example of the

rotation by the angle ϕ around the x3 = z-axis:

Dz(ϕ) =

⎛

⎝
cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎞

⎠ (5.32)

But what is to be understood quantum-mechanically by the rotation of a phys-
ical system? How can we introduce a rotation operator D̂, which quantum-
mechanically does just the same job as is classically done by the rotation matrix?
We now want to consider these questions.

As a start, we have to assume that the state of the system |ψ〉 will be changed
by the application of the still unknown rotation operator:

|ψ〉 = D̂|ψ〉 . (5.33)

Analogous to the fact that the lengths of vectors do not change with rotations in
the three-dimensional space, the norm of the state |ψ〉 should remain invariant

under the action of D̂:

〈ψ|ψ〉 = 〈ψ|ψ〉 =⇒ D̂+ = D̂−1 . (5.34)

D̂ should thus be a unitary operator! That corresponds, in the case of the
classical rotation, to Eq. (5.31) and to the fact that the elements of the rotation
matrix are all real.
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D̂ should now quantum-mechanically rotate not only the states but also the
observables. Figuratively, rotation of an observable always means rotation of
the corresponding measuring equipment, and that too in such a way that the
measurement of the rotated observable A in the rotated state |ψ〉 yields the same
results as the measurement of A in the state |ψ〉:

〈
ψ
∣∣∣A
∣∣∣ψ
〉

!
= 〈ψ|A|ψ〉 =⇒ A = D̂ A D̂+ . (5.35)

The rotation operator thus mediates a unitary transformation (see (3.90),
Vol. 6) of states and observables.

So far, the considerations concerning D̂ are still performed rather generally.
We now want to become more concrete and exploit the fact that, in the classical
limit, D̂ should have the same action as the rotation matrix. When we apply
the rotation operator D̂ to the position operator, we can use that in the posi-
tion representation the position operator is just the vector r. In the position
representation, D̂ has to therefore reproduce the action of the rotation matrix
formulated in Eq. (5.28). What does this mean for the wave function ψ(r)?
For a start, it holds, if we perform in (5.33) the transition into the position
representation according to the rule ((3.253), Vol. 6):

ψ(r) =
〈
r
∣∣∣ψ
〉
=
〈
r|D̂|ψ

〉
= Dψ(r) . (5.36)

Because of the unitarity of D̂ it must also be:

ψ(r) =
〈
r
∣∣ψ
〉
=
〈
r|D̂+D̂|ψ

〉
=
〈
r
∣∣ψ
〉
= ψ(r) .

When we combine these two equations, we get:

Dψ(r) = ψ(r) = ψ
(
D−1 r

)
. (5.37)

Let us explicitly evaluate this formula for the example (5.32), where we restrict
ourselves, however, to an infinitesimal rotation dϕ, for which we can replace
the cosine by 1 and the sine by its argument:

Dz(dϕ) =

⎛

⎝
1 −dϕ 0
dϕ 1 0
0 0 1

⎞

⎠ ; D−1
z (dϕ) =

⎛

⎝
1 dϕ 0

−dϕ 1 0
0 0 1

⎞

⎠ .

This means in (5.37):

Dz(dϕ)ψ(x, y, z) = ψ(x + dϕ y,−dϕx+ y, z)

= ψ(x, y, z) + dϕ

(
y
∂ψ

∂x
− x

∂ψ

∂y

)
+O(dϕ2) .

We have added a Taylor expansion. From the fact that ψ is arbitrary, we infer
the following operator identity (bars can now be removed):

Dz(dϕ) = 1+ dϕ

(
y
∂

∂x
− x

∂

∂y

)
.
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On the right-hand side we recognize with (5.2), except for a numerical factor,
the z-component of the orbital angular momentum in its position representation(
px = (�/i) (∂/∂x), py = (�/i) (∂/∂y)

)
:

Dz(dϕ) = 1− dϕ
i

�
Lz . (5.38)

This result takes a bit more general form when the rotation is carried out around
an arbitrary axis in the direction of the unit vector n:

Dn(dϕ) = 1− dϕ
i

�
(n · L) . (5.39)

We have derived therewith the important statement:

The orbital angular momentum is the generating function of infinitesimal
rotations!

The result (5.39) can easily be transferred to finite angles ϕ. At first we can use
of course:

Dn(dϕ+ dψ) = Dn(dϕ)Dn(dψ) .

When we now take Δϕ = ϕ/m −→
m→∞ dϕ (m ∈ N), we can write:

Dn(ϕ) = lim
m→∞

[
1− 1

m

i

�
ϕ(n · L)

]m
.

With the definition of the exponential function

ex = lim
m→∞

(
1 +

x

m

)m

we have eventually:

Dn(ϕ) = exp

[
− i

�
(n · L)ϕ

]
. (5.40)

The last element in our chain of conclusions is now, to move away from the spe-
cial position representation and to interpret (5.40) as the general representation-

independent connection between rotation operator D̂n(ϕ) and component of the
orbital angular momentum n · L.

When one compares (5.40) with ((3.249), Vol. 6), one recognizes that the
orbital angular momentum plays for rotations the same role as the momentum
p for translations.

5.1.3 Commutation Relations

In order to be fully convinced that the orbital angular momentum L, intro-
duced with (5.40), is indeed the same operator as that which we transferred in
Sect. 5.1.1 ‘correspondence-like’ from Classical Physics into Quantum Mechan-
ics, we still have to verify that its components fulfill the fundamental commu-
tation relations (5.14).

For this purpose we go back once more to the infinitesimal rotation about
the axis n. As to this, the vector e is rotated by the angle dϕ. We read off from
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Figure 5.1: Angle relations for the rotation of the unit vector e about the axial
direction n

Fig. 5.1:

e = e+ de ; de ↑↑ n× e ,

de = e sinϑ dϕ = |n× e|dϕ .

This means altogether:

e = e+ (n× e) dϕ . (5.41)

Let us now consider an arbitrary vector operator:

A =

3∑

i=1

Ai ei (Ai = A · ei) . (5.42)

Its components Ai transform, according to (5.35) and (5.39), with an infinites-
imal rotation by dϕ, as

Ai = D̂n(dϕ)Ai D̂
+
n (dϕ) = Ai − dϕ

i

�
[n · L, Ai]− .

This corresponds to the infinitesimal unitary transformation, which was formu-
lated, very generally, in ((3.95), Vol. 6).

It must now be possible, however, to calculate the transformed components
also by using the formula (5.41), which is of course valid for unit vectors, too:

Ai ≡ A · ei = A · [ei + (n× ei) dϕ] = Ai +A · (n× ei) dϕ .

The comparison of these two equivalent expressions for Ai leads to the very
useful relation:

[n · L, ei ·A]− = i �(n× ei) ·A . (5.43)

Note that this equation is valid for arbitrary vector operators. It holds of
course also when A = L. But then we get immediately with

[Lx, Ly]− = i � (ex × ey) · L = i �Lz , (5.44)

[Ly, Lz]− = i � (ey × ez) · L = i �Lx , (5.45)

[Lz, Lx]− = i � (ez × ex) · L = i �Ly (5.46)
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the fundamental commutation relations (5.14) of the components of the orbital
angular momentum. When choosing A = r = (x1, x2, x3) we find with (5.43):

[Li, xj ]− = i � (ei × ej) · r = i �
∑

k

εijk xk .

This agrees with (5.19). For A = p = (p1, p2, p3) (5.43) yields with

[Li, pj ]− = i � (ei × ej) · p = i �
∑

k

εijk pk

exactly the relation (5.20). Now we are sure that the operator of the orbital
angular momentum,‘correspondence-like’ introduced in Sect. 5.1.1 and the oper-
ator from (5.40), which generates the rotation, are completely identical. The
considerations to (5.40), though, help us to recognize more clearly the deep
physical connections.

More important conclusions result for the scalar rotation-invariant oper-
ators S, as for instance p2, r2 and L2, which, by definition, remain uninfluenced
by rotations. For these it must be S = S and therewith according to (5.35):

S
!
= S = D̂ S D̂+ ⇐⇒ S D̂ = D̂ S ⇐⇒ [S, D̂]− = 0 .

A scalar rotation-invariant operator thus commutes with the rotation operator
and therewith, because of (5.40), also with each component of the orbital angular
momentum:

[S, (n · L)]− = 0 . (5.47)

From our symmetry considerations, it follows therewith immediately (5.16),

[L2, Li]− = 0 ∀i ,
as well as (5.18):

[r2, Li]− = [p2, Li]− = 0 .

In Chap. 6 we will investigate central fields, which are characterized by V (r) =
V (r). The full Hamilton operator is then invariant with respect to rotations, so
that we can assume, without explicit investigation, that in such a case H, L2

and Lz must have a common set of eigen-states, since H commutes with each
component of L.

5.1.4 Eigen-Value Problem

For the following purely algebraic considerations we need out of the proper-
ties of the orbital angular momentum only its fundamental commutation rela-
tions (5.14) and the fact that its components are all Hermitian operators. We
had already agreed upon calling any vector operator, which fulfills these condi-
tions, an angular momentum. We therefore detach ourselves in this chapter from
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the concrete view of an orbital angular momentum, formally indicating that by
the use of the symbol J for the more general angular momentum, instead of L.
The results of this section are then correct in particular for the orbital angular
momentum, but not exclusively for it. They are for instance also valid for the
important observable spin, which will be introduced in a forthcoming section.

We know that J2 commutes with each component of J, and that, on the
other hand, the various components do not commute with one another. It is
conventional to pick out J3 = Jz. We can then assume that J2 and Jz possess
a common set of eigen-states. We want to mark these common eigen-states, at
first, by the symbol |αjm〉, and assume that they are normalized to one. In the
eigen-value equations

J2|αj m〉 = �
2αj |αj m〉 , (5.48)

Jz |αj m〉 = �m|αj m〉 (5.49)

αj and m are dimensionless numbers. Furthermore, we start from a Hilbert
space, in which J2 and Jz represent a complete set of compatible observables.

The further course of action will remind us strongly of the considerations
on the harmonic oscillator in Sect. 4.4.2 in Vol. 6. The ladder operators J±,
defined in (5.21), allow for a similar solution of the eigen-value problem as for
the harmonic oscillator by the use of the creation and annihilation operators a+

and a. J+ and J− comply with the commutation relations (5.23) and (5.24),
since these have been derived directly by the use of the commutators (5.14). We
prove therewith the following assertion:

If |αj m〉 is an eigen-state of J2 and Jz, then J±|αj m〉 is also an eigen-state of
J2 with the same eigen-value �

2αj, and of Jz with the eigen-value �(m± 1).

The assertion consists of two parts. Since, according to (5.24), J2 commutes
with J±, it follows at first:

J2(J±|αj m〉) = J± J2|αj m〉 = �
2αj(J±|αj m〉) . (5.50)

J±|αj m〉 is thus indeed an eigen-state of J2 with the same eigen-value as |αj m〉.
We now use (5.23), in order to prove the second part of the assertion:

Jz(J±|αj m) = ([Jz, J±]− + J± Jz)|αj m〉
= (±� J± + �mJ±)|αj m〉
= �(m± 1) (J±|αj m〉) . (5.51)

The application of J+ and J− to the eigen-state |αj m〉 raises and lowers, respec-
tively, the eigen-value of Jz by one �.

We want to collect further information about the eigen-values αj and m:
Because of the hermiticity of the components Jx and Jy of the angular momen-
tum the expectation values of the operators J2

x,y in arbitrary states |ψ〉 are
non-negative:

〈ψ|J2
x |ψ〉 = ‖Jx ψ‖2 ≥ 0 ,

〈ψ|J2
y |ψ〉 = ‖Jy ψ‖2 ≥ 0 .
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On the right-hand side there stands the norm of the state Jx,y|ψ〉, which, accord-
ing to ((3.18), Vol. 6), cannot be negative. When we choose, in particular,
|ψ〉 = |αj m〉, then it follows from

〈
αj m

∣∣(J2
x + J2

y )
∣∣αj m

〉 ≥ 0 ,

because of J2
x + J2

y = J2 − J2
z :

�
2(αj −m2) ≥ 0 .

This in turn means:

−√
αj ≤ m ≤ +

√
αj . (5.52)

Since we have shown with (5.51) that, by application of J+ to |αj m〉, an eigen-
state results with a quantum number m raised by one and an unchanged αj ,
we have to argue from (5.52) that there must exist a maximal m = j. A state
|αj m〉 with m > j can not appear. Thus it must be:

J+|αj j〉 = 0 . (5.53)

We will deliver at a later stage the proof that in the interval (5.52) there is
indeed only one m = j, which fulfills (5.53). The same line of thought leads,
with the properties of J−, to the existence of a minimal m = m̂:

J−|αj m̂〉 = 0 . (5.54)

Also here, we will later be able to show that there exists exactly one of such
an m = m̂ in the interval (5.52).

One easily proves by complete induction, as generalization of (5.23), the
commutation relation:

[Jz, J
n
±]− = ±n � Jn

± (n = 0, 1, 2, . . .) . (5.55)

The assertion is surely true for n = 0 and n = 1. In the case that it is true for
n, we draw the conclusion for n+ 1:

[Jz, J
n+1
± ]− = J±[Jz, Jn

±]− + [Jz , J±]− Jn
±

= ±n � J± Jn
± ± �J± Jn

± = ±(n+ 1) � Jn+1
± .

As in (5.51) one then shows:

Jz (J
n
±|αjm〉) = �(m± n) (Jn

±|αjm〉) . (5.56)

Jn±|αjm〉 is thus as |αjm〉 eigen-state of Jz with a quantum number m changed
by ±n.

But if it is really so that in the interval (5.52) there is exactly one m = j,
for which (5.53) is fulfilled, and exactly one m = m̂ according to (5.54), then
it must be possible to transfer the states |αj j〉 and |αjm̂〉 by application of Jn

+
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and Jn
−, respectively, into each other with the proper n, at least except for an

unimportant numerical factor. But that means that the difference between the
maximal and the minimal m,

j − m̂ = n = 0, 1, 2, . . . , (5.57)

must be a non-negative integer.
We now still exploit two further relations which can easily be verified by

insertion of the respective definitions (Exercise 5.1.6):

J+ J− = J2 − J2
z + � Jz , (5.58)

J− J+ = J2 − J2
z − � Jz . (5.59)

The second equation enables, with (5.53), the fixing of αj :

J− J+|αj j〉 = 0 = (J2 − J2
z − � Jz)|αj j〉

= (�2 αj − �
2 j2 − �

2j)|αj j〉 .
This means:

αj = j(j + 1) . (5.60)

Using (5.58) we now can easily determine the minimal m:

J+ J−|αj m̂〉 (5.54)
= 0 = (J2 − J2

z + � Jz)|αj m̂〉
= �

2(αj − m̂2 + m̂)|αj m̂〉 .
Hence it must be

j(j + 1) = m̂(m̂− 1) .

This equation has two solutions, namely m̂ = j+1 and m̂ = −j. The first does
not come into question because j is already the maximal value of m. Therefore,
we have to take:

m̂ = −j . (5.61)

The difference between maximal and minimal m-value therewith amounts to 2j.
According to (5.57) j must therefore be an integral or half-integral number.

Let us summarize once more, which important statements about the eigen-
value spectrum of the angular momentum, we were able to derive so far, only
on the basis of the algebraic form of the commutation relation (5.14):

1. J2 has eigen-values of the form

�
2j(j + 1) ,

with the possible quantum numbers

j = 0,
1

2
, 1,

3

2
, 2, . . . (5.62)
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2. Jz has eigen-values of the form

�m ,

where m assumes one of the (2j + 1) values

m = −j, −j + 1, . . . , j − 1, j . (5.63)

Since, according to (5.60), αj is uniquely fixed by j, we change, from now
onwards, the state symbol:

|αjm〉 −→ |j m〉 .
One says that the system in the eigen-state |j m〉 possesses the angular momen-
tum (j,m).

Let us still comment a bit on the results so far at hand. If one performs a
measurement on the system only for the observable J2, then, after the measure-
ment, the state lies in the (2j + 1)-dimensional subspace, which is spanned by
the states |j j〉, |j j − 1〉, . . . , |j − j + 1〉, |j − j〉:

|ψ〉 =
+j∑

m=−j

γm|j m〉 .

One speaks of directional degeneracy. Incidentally, the common eigen-states of
(J2, Jx) and of (J2, Jy) are of course also in this subspace. We have pretty
arbitrarily taken Jz for our considerations; we could have taken equally well Jx
or Jy. The physically relevant results would have been the same. For instance
as a matter of course, Jx and Jy have the same eigen-values (5.63) as Jz. The
not directly measurable eigen-states, though, will be different.

By an additional measurement of Jz the directional degeneracy is removed
and replaced by a directional quantization, which states that not all orien-
tations of the angular momentum are allowed. The graphical interpretation of
the results uses the semi-classical vector model (Fig. 5.2). Since one cannot pre-
cisely measure the three components of the angular momentum simultaneously,
it makes little sense to represent J as a space-fixed vector arrow. One helps
oneself with the imagination that J is precessing as a vector arrow around the
z-axis, and that on the barrel surface of a cone, whose height is equal to �m,
while its barrel line amounts to �

√
j(j + 1). The precession of the vector arrow

conveys the impression of the uncertainty of Jx and Jy for a simultaneously pre-

cisively measured z-component. The cone radius comes out as �
√
j(j + 1)−m2,

which corresponds to an eigen-value of the operator
√
J2 − J2

z =
√
J2
x + J2

y .

Some details are classically not explainable, being typical quantum-mechanical
effects. So, except for the trivial case j = 0,

√
j(j + 1) is always greater than

j. Obviously, the angular momentum J is not able to exactly occupy the direc-
tion of its maximal component. The maximal component is with � j always
smaller than the vector length �

√
j(j + 1). The exact orientation along the z-

axis, though, would fix precisely Jx and Jy, in contradiction to the uncertainty
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Figure 5.2: Illustration by the semi-classical vector model of the directional
quantization of the quantum-mechanical angular momentum

relation. The classically astonishing result is of course the directional quantiza-
tion, which has been postulated already in the older Bohr-Sommerfeld theory,
but could not strictly be justified at that time (see Sect. 1.5, Vol. 6).

Let us now come back to our eigen-value problem and try to find out some-
thing more about the eigen-states. We had recognized with (5.51) that with
|j m〉 also J±|j m〉 is an eigen-state of (J2, Jz). Since, because of our initial
precondition, (J2, Jz) represent a complete set of commutable operators, the
eigen-states will not be degenerate. Therefore, from the fact that J±|j m〉 is an
eigen-state with the eigen-value �(m± 1), we can come to the following ansatz:

J±|j m〉 = A±(j,m)|j m± 1〉 .
We determine the coefficients A±(j,m) via the normalization condition. The
phase can be put to one, and therefore the A± can considered to be real:

〈j m|J− J+|j m〉 = A2
+(j m)〈j m+ 1|j m+ 1〉

= A2
+(j m)

(5.59)
= 〈j m|(J2 − J2

z − � Jz)|j m〉
= �

2[ j(j + 1)−m(m+ 1)] ,

〈j m|J+ J−|j m〉 = A2
−(j m)

(5.58)
= 〈j m|(J2 − J2

z + � Jz)|j m〉
= �

2[ j(j + 1)−m(m− 1)] .

We have therewith found, except for the usual arbitrary phase:

J±|j m〉 = �

√
j(j + 1)−m(m± 1)|j m± 1〉

= �

√
(j ∓m) (j ±m+ 1)|j m± 1〉 . (5.64)

This expression delivers, in addition, the proof that in the interval (5.52) only
m = j fulfills the relation (5.53), and only m = −j the relation (5.54).
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For the matrix representations of the various angular momentum operators
the matrix elements can be quickly calculated after our preparations, by the use
of the complete set of eigen-states |j m〉 of J2 and Jz ((J2, Jz)-representation):

〈j m′|J2|j m〉 = �
2 j(j + 1) δmm′ ,

〈j m′|Jz|j m〉 = �mδmm′ ,

〈j m′|J+|j m〉 = �

√
(j −m) (j +m+ 1) δm′m+1 ,

〈j m′|J−|j m〉 = �

√
(j +m) (j −m+ 1) δm′m−1 .

Let us look at two examples:

1. j = 1/2 :
Because of 2j + 1 = 2, the angular momentum operators are represented
by 2× 2-matrices:

J2 =
3

4
�
2

(
1 0
0 1

)
; Jz =

�

2

(
1 0
0 −1

)
, (5.65)

J+ = �

(
0 1
0 0

)
; J− = �

(
0 0
1 0

)
,

Jx =
1

2
(J+ + J−) =

�

2

(
0 1
1 0

)
, (5.66)

Jy =
1

2i
(J+ − J−) =

�

2

(
0 −i
i 0

)
. (5.67)

We will meet the matrices of Jx, Jy and Jz again in the next section as
Pauli spin matrices when we consider the observable spin. In fact we have
already used them in some exercises in Chap. 3 of Vol. 6.

2. j = 1 :
Because of 2j + 1 = 3 the angular momentum operators are now 3 × 3-
matrices:

J2 = 2�2

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ; Jz = �

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ ,

J+ = �

⎛

⎝
0

√
2 0

0 0
√
2

0 0 0

⎞

⎠ ; J− = �

⎛

⎝
0 0 0√
2 0 0

0
√
2 0

⎞

⎠ ,

Jx =
1

2
(J+ + J−) =

�

2

⎛

⎝
0

√
2 0√

2 0
√
2

0
√
2 0

⎞

⎠ ,

Jy =
1

2i
(J+ − J−) =

�

2i

⎛

⎝
0

√
2 0

−√
2 0

√
2

0 −√
2 0

⎞

⎠ .
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After the purely algebraic procedure concerning the treatment of the eigen-
value problem of the general angular momentum, we now come back to the
particular case of the orbital angular momentum, using which we had introduced,
at the beginning of this chapter, the quantum-mechanical observable angular
momentum. By an analytical investigation of its special position representation,
we will try to get further information. Thereby we keep the usual notation and
replace the quantum number j by l (quantum number of the orbital angular
momentum) for the special case of the orbital angular momentum.

5.1.5 Position Representation of the Orbital Angular
Momentum

The formal transition into the position representation takes place, according to
((3.253), Vol. 6), by a scalar multiplication of the eigen-value equations,

L2|l m〉 = �
2l(l + 1)|l m〉 ,

Lz|l m〉 = �m|l m〉 ,

by the bra-position eigen-state 〈r|:

〈r|L2|l m〉 = �
2l(l+ 1)〈r|l m〉 , (5.68)

〈r|Lz |l m〉 = �m〈r|l m〉 . (5.69)

On the right-hand side there appears, except for numerical factors, the eigen-
function belonging to the quantum numbers l and m, which we denote, at
first, by

ψlm(r) ≡ 〈r|l m〉 . (5.70)

From (5.68) and (5.69), remembering that in the position representation the
position operator r acts purely multiplicatively, while the momentum operator
is essentially replaced by the gradient ∇, it follows that:

L2ψlm(r) = −�
2(r×∇)2ψlm(r) = �

2l(l + 1)ψlm(r) , (5.71)

Lz ψlm(r) =
�

i
(r×∇)z ψlm(r) = �mψlm(r) . (5.72)

The position representation of the components of the orbital angular momentum
are quickly written down in the Cartesian coordinates, according to (5.2)

Lx =
�

i

(
y
∂

∂z
− z

∂

∂y

)
, (5.73)

Ly =
�

i

(
z
∂

∂x
− x

∂

∂z

)
, (5.74)

Lz =
�

i

(
x
∂

∂y
− y

∂

∂x

)
. (5.75)
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For most of the applications, though, the use of Cartesian coordinates turns
out to be inexpedient. The close relationship between angular momentum and
space rotations (see Sect. 5.1.2) suggests rather the use of spherical coordinates
r, ϑ, ϕ (see Sect. 1.7.4, Vol. 1):

x = r sinϑ cosϕ ,

y = r sinϑ sinϕ ,

z = r cosϑ . (5.76)

We have exercised, very extensively, the transformation of coordinates in the
first volume of this ground course in Theoretical Physics. We therefore can
revert to what we have learned there.

In particular, it holds for very general unit vectors eyi in a curvilinear-
orthogonal system of coordinates (y1, y2, y3) ((1.371), Vol. 1):

eyi = b−1
yi

∂r

∂yi
; byi =

∣∣∣∣
∂r

∂yi

∣∣∣∣ .

This means for the spherical coordinates:

br = 1, bϑ = r, bϕ = r sinϑ ,

er = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) ,

eϑ = (cosϑ cosϕ, cosϑ sinϕ, − sinϑ) ,

eϕ = (− sinϕ, cosϕ, 0) . (5.77)

As is well-known, it holds for the gradient (nabla operator) in Cartesian coor-
dinates:

∇ ≡
(

∂

∂x
,
∂

∂y
,
∂

∂z

)
.

From that one gets the components in any curvilinear-orthogonal system of
coordinates by:

eyi ·∇ = b−1
yi

∂r

∂yi
·∇ = b−1

yi

(
∂x

∂yi

∂

∂x
+

∂y

∂yi

∂

∂y
+

∂z

∂yi

∂

∂z

)
= b−1

yi

∂

∂yi
.

In the last step we have used the chain rule. In the special case of spherical
coordinates r, ϑ, ϕ we get:

∇ ≡
(

∂

∂r
,
1

r

∂

∂ϑ
,

1

r sinϑ

∂

∂ϕ

)
. (5.78)

Therewith we now have all that we need to formulate the orbital angular momen-
tum in spherical coordinates:

L =
�

i
(r×∇) =

�

i
r (er ×∇) =

�

i
r

(
eϕ

1

r

∂

∂ϑ
− eϑ

1

r sinϑ

∂

∂ϕ

)
.
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(er, eϑ, eϕ build, in this sequence, a right-handed system!). We finally insert
(5.77):

L =
�

i

⎧
⎨

⎩

⎛

⎝
− sinϕ
cosϕ
0

⎞

⎠ ∂

∂ϑ
−
⎛

⎝
cotϑ cosϕ
cotϑ sinϕ

−1

⎞

⎠ ∂

∂ϕ

⎫
⎬

⎭ . (5.79)

One notices the particularly simple form of Lz compared to that of Lx and Ly:

Lz =
�

i

∂

∂ϕ
. (5.80)

That is of course due to the special choice of the system of coordinates, which
marks the z-axis out.

The ladder operators (5.21) are also important for us:

L± = Lx ± i Ly = � e±iϕ

(
± ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
. (5.81)

For the product formation, the sequence of the terms is of course important
because of the differential operators. We calculate as an example:

L+ L− = �
2

[
eiϕ

(
∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
e−iϕ

(
− ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)]

= �
2

[
− ∂2

∂ϑ2
− i

sin2 ϑ

∂

∂ϕ
+ i cotϑ

∂2

∂ϑ ∂ϕ

+ cotϑ

(
− ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
− i cotϑ

∂2

∂ϕ∂ϑ
− cot2 ϑ

∂2

∂ϕ2

]

= �
2

[
− ∂2

∂ϑ2
− i

∂

∂ϕ
− cotϑ

∂

∂ϑ
− cot2 ϑ

∂2

∂ϕ2

]
.

This we can directly exploit, in order to find with (5.58),

L2 = L+ L− − �Lz + L2
z ,

the position representation of the square of the orbital angular momentum in
spherical coordinates:

L2 = − �
2

sin2 ϑ

[
sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

∂2

∂ϕ2

]
. (5.82)

Needless to say that the operators Lx, Ly, Lz, L±, L2 fulfill the fundamental
commutation relations (5.14), (5.16), (5.18)–(5.20), (5.22)–(5.24) in the position
representation too. This we check in Exercise 5.1.14 by some examples.

It is certainly not uninteresting for later applications that the representation
(5.82) for L2 exhibits a very close connection with the angular of the Laplace
operator Δ ((2.145), Vol. 3):

Δ =
1

r2
∂

∂r

(
r2

∂

∂r

)
− L2

r2�2
. (5.83)

So it can be shown, for instance, that the kinetic energy T of a particle can be
decomposed into a radial part Tr and an angular part Tϑ,ϕ, where the angular
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part is determined, according to (5.83), by L2:

T =
p2

2m
= − �

2

2m
Δ = Tr + Tϑ,ϕ , (5.84)

Tr = − �
2

2mr2
∂

∂r

(
r2

∂

∂r

)
, (5.85)

Tϑ,ϕ =
L2

2mr2
. (5.86)

5.1.6 Eigen-Functions in Position Representation

With the operators of the orbital angular momentum, formulated in position
representation, (5.80) and (5.82), the to be solved eigen-value equations (5.71)
and (5.72) are now to be read as:

− 1

sin2 ϑ

[
sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
+

∂2

∂ϕ2

]
ψlm(r) = l(l + 1)ψlm(r) , (5.87)

−i
∂

∂ϕ
ψlm(r) = mψlm(r) . (5.88)

One recognizes with these equations that normally L2 and Lz do not represent a
complete set of observables, because the r-dependence of the wave function, the
so-called ‘radial part’, remains completely undetermined. L2 and Lz obviously
act only on the ‘angular part’ of the wave function. If one chooses for ψlm the
ansatz

ψlm(r) = R(r)Ylm(ϑ, ϕ) , (5.89)

then the radial part is canceled out in both equations, (5.87) and (5.88). The
special form of the operators L2 and Lz let us suppose that a separation ansatz
will be reasonable also for the angular part:

Ylm(ϑ, ϕ) = Φ(ϕ)Θ(ϑ) . (5.90)

The ϕ-dependence is easily determined by the use of (5.88):

Φ(ϕ) = eimϕ . (5.91)

From this relationship we can already read off a physically important statement.
Because of the uniqueness of the wave function, it must be required that Φ(ϕ+
2π) = Φ(ϕ). But (5.91) allows this only if m is an integer. From this it follows,
according to (5.63), that l, too, is an integer. We thus conclude:

quantum numbers of the orbital angular momentum

l = 0, 1, 2, 3, . . . ,

m = −l, −l+ 1, . . . , l − 1, l . (5.92)
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If we now insert (5.90) and (5.91) into the L2-equation (5.87), what remains to
be solved is:

− 1

sin2 ϑ

[
sinϑ

d

dϑ
sinϑ

d

dϑ
−m2

]
Θ(ϑ) = l(l + 1)Θ(ϑ) . (5.93)

We could replace the partial by the total differentiation with respect to ϑ, since
Θ depends only on this single variable. We can now bring this differential
equation with the substitution,

z = cosϑ −→ sinϑ
d

dϑ
= (z2 − 1)

d

dz
,

into a form, which we got to know already in Electrodynamics ((2.149), Vol. 3),
namely in connection with the multipole moments of electric charge densities:

[
d

dz
(1− z2)

d

dz
+

(
l(l + 1)− m2

1− z2

)]
Θ(z) = 0 . (5.94)

It is the

generalized Legendre equation ,

frequently discussed and applied in mathematical physics, from which one knows
that it is solved by the so-called

associated Legendre polynomials Pm
l (z) .

Hence, we can take over directly from Vol. 3 of this ground course in Theoretical
Physics :
Θ(z) ∼ Pm

l (z) :

Pm
l (z) = (−1)m (1− z2)m/2 dm

dzm
Pl(z) ; m ≥ 0 ,

P−m
l (z) = (−1)m

(l −m)!

(l +m)!
Pm
l (z) . (5.95)

On the right-hand side of this defining equation there appear the

Legendre polynomials

Pl(z) =
1

2ll!

dl

dzl
(z2 − 1)l (5.96)

as solutions of the

ordinary Legendre equation

[
d

dz
(1 − z2)

d

dz
+ l(l + 1)

]
Pl(z) = 0 . (5.97)
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One easily realizes that the Pl(z) are polynomials of l-th degree. They build a
complete orthogonal system in the interval [−1,+1]. They are not normalized
to one, in fact it holds:

+1∫

−1

dz Pl(z)Pk(z) =
2

2l + 1
δlk , (5.98)

Pl(±1) = (±1)l . (5.99)

Their completeness is expressed by

1

2

∞∑

l=0

(2l + 1)Pl(z
′)Pl(z) = δ(z − z′) . (5.100)

These properties of the Legendre polynomials are transferred, because of (5.95),
to the associated Legendre polynomials, for instance the orthogonality:

+1∫

−1

dz Pm
l (z)Pm

k (z) =
2

2l+ 1

(l +m)!

(l −m)!
δlk . (5.101)

Let us now come back to the eigen-functions (5.90) of the orbital angular
momenta L2 and Lz. Because of (5.91) and (5.94) their structures are already
known to us:

Ylm(ϑ, ϕ) ∼ Pm
l (cosϑ) eimϕ .

We only have to suitably normalize:

2π∫

0

dϕ

+1∫

−1

d cosϑY ∗
l′m′(ϑ, ϕ)Ylm(ϑ, ϕ) = δll′ δmm′ . (5.102)

With (5.101) and

2π∫

0

dϕ ei(m−m′)ϕ = 2π δmm′

that does of course not pose any problem:

Ylm(ϑ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cosϑ) eimϕ . (5.103)

From (5.95) one easily infers the symmetry relation:

Yl−m(ϑ, ϕ) = (−1)m Y ∗
lm(ϑ, ϕ) . (5.104)
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Eigen-functions of the orbital angular momenta L2 and Lz are therefore the

spherical harmonics,

well-known from mathematical physics. One knows that these functions repre-
sent a complete system on the unit sphere ((2.158), Vol. 3):

∞∑

l=0

+l∑

m=−l

Y ∗
lm(ϑ′, ϕ′)Ylm(ϑ, ϕ) = δ(ϕ− ϕ′) δ(cosϑ− cosϑ′) . (5.105)

Each arbitrary function f(r) = f(r, ϑ, ϕ) can thus be expanded in them:

f(r) =
∞∑

l=0

+l∑

m=−l

Rlm(r)Ylm(ϑ, ϕ) . (5.106)

For the radial components it holds thereby, because of (5.102):

Rlm(r) =

2π∫

0

dϕ

+1∫

−1

d cosϑ f(r, ϑ, ϕ)Y ∗
lm(ϑ, ϕ) . (5.107)

The spherical harmonics are present in tabulated form in many textbooks of
mathematical physics. We list here only a few examples of lower-indexed func-
tions, which are easily derived from (5.103):

l = 0: Y00(ϑ, ϕ) ≡ 1√
4π

, (5.108)

l = 1: Y10(ϑ, ϕ) =

√
3

4π
cosϑ , (5.109)

Y1±1(ϑ, ϕ) = ∓
√

3

8π
sinϑ e± iϕ , (5.110)

l = 2: Y20(ϑ, ϕ) =

√
5

16π
(3 cos2 ϑ− 1) , (5.111)

Y2±1(ϑ, ϕ) = ∓
√

15

8π
sinϑ cosϑ e± iϕ , (5.112)

Y2± 2(ϑ, ϕ) =

√
15

32π
sin2 ϑ e± i2ϕ . (5.113)

We could make these very detailed statements about the eigen-functions of
the orbital angular momentum, because the eigen-value equation of Lz was
trivially solvable, and the eigen-value equation of L2 could be reformulated into
a differential equation already known to us. Our task actually consisted only of
listing up the already known properties of the solution.

However, we could have derived the eigen-functions of the operators L2 and
Lz also successively by applying the ladder operators L+ and L−. Because
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of its basic importance we will briefly sketch this method. We start at the
intermediate result (5.90), (5.91), which comes out after the solution of the
simple eigen-value equation (5.88) for Lz:

|l m〉 ↔ Ylm(ϑ, ϕ) = Θlm(ϑ) eimϕ .

We know that the minimal value of m is equal to −l. According to (5.54) it
must therefore be

L−|l − l 〉 = 0 .

This yields, in the position representation with (5.81), the differential equation

� e−iϕ

(
− ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
Θl− l(ϑ) e

−ilϕ = 0 ,

which, after performing the ϕ-differentiation, simplifies to:
(
− d

dϑ
+ l cotϑ

)
Θl− l(ϑ) = 0 . (5.114)

This equation is obviously solved by

Θl− l(ϑ) = cl sin
l ϑ . (5.115)

The coefficients cl can be determined, except for a phase factor which we assume
to be one, by the normalization condition for Yl− l(ϑ, ϕ) (Exercise 5.1.15):

cl =
1

2l l!

√
(2l + 1)!

4π
.

We have therewith completely determined the (l, m = −l ) eigen-function:

Yl− l(ϑ, ϕ) =
1

2l l!

√
(2l + 1)!

4π
sinl ϑ e−ilϕ . (5.116)

By the application of L+ we are now able to construct successively all Ylm(ϑ, ϕ)
out of Yl− l(ϑ, ϕ). So we obtain in the first step:

L+ Yl− l(ϑ, ϕ) = � eiϕ
(

∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
Θl− l(ϑ) e

−ilϕ

= � ei(−l+1)ϕ

(
d

dϑ
+ l cotϑ

)
Θl− l(ϑ) .

For l cotϑ we write (1/ sinl ϑ) (d/dϑ) sinl ϑ and have then:

L+ Yl− l(ϑ, ϕ) = � ei(−l+1)ϕ 1

sinl ϑ

d

dϑ
(sinl ϑΘl− l(ϑ))

= −� ei(−l+1)ϕ 1

sinl−1 ϑ

d

d cosϑ
(sinl ϑΘl− l(ϑ)) .
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The procedure can be continued step-by-step. By complete induction we prove
the following assertion:

(L+)
n Yl− l (ϑ, ϕ) = (−�)n ei(−l+n)ϕ 1

sinl−n ϑ

dn

d cosϑn
(sinl ϑΘl− l(ϑ)) .

(5.117)

For n = 1 we have just proved this relation. We then assume that the relation
is correct for n, and conclude inductively for n+ 1:

(L+)
n+1 Yl− l(ϑ, ϕ)

= � eiϕ
(

∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
(−�)n ei(−l+n)ϕ

· 1

sinl−n ϑ

dn

d cosϑn
(sinl ϑΘl− l(ϑ))

= �(−�)n ei(−l+n+1)ϕ

[
d

dϑ
+ (l − n) cotϑ

]
1

sinl−n ϑ

· dn

d cosϑn
(sinl ϑΘl− l(ϑ))

= −(−�)n+1 ei(−l+(n+1))ϕ

·
[
−(l− n)

cosϑ

sinl−n+1 ϑ

dn

d cosϑn
(sinl ϑΘl− l(ϑ))

+
1

sinl−n ϑ
(− sinϑ)

dn+1

d cosϑn+1
(sinl ϑΘl− l(ϑ))

+ (l − n)
cosϑ

sinl−n+1 ϑ

dn

d cosϑn
(sinl ϑΘl− l(ϑ))

]

= (−�)n+1 ei(−l+(n+1))ϕ 1

sinl− (n+1) ϑ

dn+1

d cosϑn+1
(sinl ϑΘl− l(ϑ)) .

Therewith the assertion (5.117) is proven. We now insert the result (5.115) and
choose especially n = l+m:

(L+)
l+m Yl− l(ϑ, ϕ)

=
1

2ll!

√
(2l + 1)!

4π
(−�)l+m eimϕ sinm ϑ

dl+m

d cosϑl+m
(1− cos2 ϑ)l

=

√
(2l + 1)!

4π
�
l+m eimϕ Pm

l (cosϑ) .

In the last step, (5.95) and (5.96) were exploited. In part 2. of Exercise 5.1.8
the following recursion formula is proven

|l m〉 =
√

(l −m)!

(2l)!(l +m)!

(
1

�
L+

)l+m

|l − l〉 . (5.118)

After multiplication by the bra-state 〈ϑϕ|, this equation yields the corresponding
connection between Ylm(ϑ, ϕ) and Yl− l(ϑ, ϕ). The two latter equations can then
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be combined to

Ylm(ϑ, ϕ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
eimϕ Pm

l (cosϑ) .

This, however, agrees exactly with (5.103). The spherical harmonics are thus
indeed the common eigen-functions of the orbital angular momenta L2 and Lz.

We want to close this section on the orbital angular momentum with two
remarks:

1. As we will discuss in detail in Chap. 6, the orbital angular momentum
plays a very essential role in the theory of the atomic structure. From
atomic spectroscopy, there stems a special notation of the eigen-states of
the operator L2 characterized by the quantum number l. One speaks for

l = 0 1 2 3

of a

s- p- d- f -state (orbital) .

2. The eigen-functions of the orbital angular momenta have a well-defined
parity. With a space reflection (inversion at the origin),

r = (r, ϑ, ϕ) −→ −r = (r, π − ϑ, ϕ+ π) ,

the spherical harmonics change as follows:

Ylm(π − ϑ, ϕ+ π) = (−1)l Ylm(ϑ, ϕ) . (5.119)

One factor (−1)l+m stems from the associated Legendre polynomials,
another factor (−1)m from the exponential function eimϕ.

The eigen-functions with even l have even parity, the functions with odd
l have odd parity!

5.1.7 Exercises

Exercise 5.1.1
Show that the rows of the rotation matrix, defined in (5.27), are pairwise
orthonormal!

Exercise 5.1.2

1. Does the matrix

D =

⎛

⎝
− 1

2

√
2 0 − 1

2

√
2

0 1 0
1
2

√
2 0 − 1

2

√
2

⎞

⎠

mediate a rotation? If yes, which one?
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2. How do the vectors

a = (0,−2, 1) ; b = (3, 5,−4)

change after the rotation? Calculate the scalar product a · b before and
after the rotation!

3. Show that the ‘lengths’ of the vectors do not change by the rotation!

Exercise 5.1.3
Show that the orbital angular momentum L, defined in (5.11), is Hermitian!

Exercise 5.1.4
Calculate with the use of the fundamental commutation relation between posi-
tion and momentum the following commutators:

1. [Lx, Ly]−, [Ly, Lz]−, [Lz, Lx]−,

2. [L2, Lx,y,z]−,

3. [Lx, r
2]−,

4. [Ly,p
2]−,

5. [Lz, x]−, [Lz, px]−.

6. [Li, xj ]− (5.19), [Li, pj ]− (5.20)

Exercise 5.1.5
Show that an operator, which commutes with two components of the orbital
angular momentum, does also commute with the third component.

Exercise 5.1.6
Express the operator products L+ L− and L− L+ by L2 and Lz.

Exercise 5.1.7
Let r = (x, y, z) be the position operator. Verify the following commutation
relations:

1. [Lz, z]− = 0; [Lz, x± i y]− = ±�(x± i y),

2. [L2, [L2, r]−]− = 2�2(L2r+ rL2).

Exercise 5.1.8
Verify the following recursion formulas for the eigen-states |j m〉 of the angular
momentum:

1.

|j m〉 =
√

(j +m)!

(2j)! (j −m)!

(
1

�
J−

)j −m

|jj〉 ,
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2.

|j m〉 =
√

(j −m)!

(2j)! (j +m)!

(
1

�
J+

)j +m

|j − j〉 .

Exercise 5.1.9
Let the physical system be in an eigen-state |j m〉 of J2 and Jz. Calculate the
expectation values 〈Jx〉, 〈Jy〉 and the mean square deviations ΔJx, ΔJy.

Exercise 5.1.10
Find for j = 3/2 the matrix representations of the operators

J+, J−, Jx, Jy, Jz .

Use as basis the eigen-states |j m〉 of the operators J2 and Jz.

Exercise 5.1.11
Let |jm〉 be the common eigen-states of the angular-momentum operators J2

and Jz.

1. In which state |jm〉 with fixed j do the uncertainties (’mean square devi-
ation’) of the components Jx, Jy have smallest values and how large are
those?

2. Are there states in the considered Hilbert space, for which all components
of J have a precise value?

Exercise 5.1.12
Let the system be in an eigen-state of the observable J2 with the eigen-value 2�2.

1. By an additional measurement of Jz, the pure state |j mz〉 is prepared.
Give, without calculation, the possible measured values �mx due to a
subsequent measurement of Jx.

2. Which are the probabilities to observe indeed the values calculated in 1.?

3. After the measurement of Jx, Jz is measured once more. What is the
probability to find again the old value �mz?

Exercise 5.1.13

1. Let a j = 1-particle be in the (normalized) state |ϕ〉, for which it is
measured

〈ϕ|Jz |ϕ〉 = −1� .

Is |ϕ〉 an eigen-state of Jz? What comes out for 〈ϕ|Jx|ϕ〉, 〈ϕ|Jy |ϕ〉?
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2. Let a j = 7
2 -particle be in the (normalized) state |ψ〉, for which it is

measured

〈ψ|Jz |ψ〉 = 3

2
�〈ψ|Jx|ψ〉 = 〈ψ|Jy|ψ〉 = 0 .

Do we have to conclude then that |ψ〉 is an eigen-state of Jz?

Exercise 5.1.14
Verify for the orbital angular momentum in its position representation the fol-
lowing commutation relations:

1. [Lx, Ly]− = i �Lz,

2. [Ly, r
2]− = 0,

3. [L+, L−]− = 2�Lz.

Exercise 5.1.15

1. Calculate the normalization constant cl of the eigen-functions of the angu-
lar momentum

Yl− l(ϑ, ϕ) = cl sin
l ϑ e−ilϕ .

2. Verify that Yl− l(ϑ, ϕ) is indeed eigen-function of L2 with the eigen-value
�
2l(l + 1).

Exercise 5.1.16
Let a two-dimensional rotator (polar angle ϑ, ϕ) be in a state with the wave
function

〈ϑ, ϕ|ψ〉 ≡ ψ(ϑ, ϕ) = α (sinϑ cosϕ+ sinϑ sinϕ+
√
3 cosϑ)

(α > 0 : normalization constant)

1. Find |ψ〉 as linear combination of eigen-states |lm〉 of the angular momen-
tum!

2. With which probability is the value 2�2 found by a measurement of the
square of the angular momentum L2 of the rotator?

3. With which probability does one find by a simultaneous measurement of
L2 and Lz the pair of values (2�2, 0)?

Exercise 5.1.17
A rigid dumbbell-molecule rotates in the space around the origin of coordinates
with two degrees of freedom, corresponding to the polar angles ϑ and ϕ (rotator).
It is described by the Hamilton operator

H =
1

2J
L2 (J = moment of inertia) .
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1. Calculate the eigen-values, eigen-functions, and possible degrees of degen-
eracy!

2. At a certain point of time the rotator is in the state

ψ(ϑ, ϕ) = α(cos2 ϑ+ sin2 ϑ cos 2ϕ)

(α : normalization constant) .

With which probability does a measurement of L2 yield the values

6�2, 2�2, 0 ?

3. With which probability does the simultaneous measurement of L2 and Lz

yield the pair of values (6�2, −2�)?

Exercise 5.1.18

1. How does the distribution of the density of the position probability |Ylm|2
of a particle in the state Y10(ϑ, ϕ) look like (polar diagram)?

2. Which state function would result from an identical distribution but with
the x-axis as symmetry axis?

Exercise 5.1.19
The Hamilton operator

H = AL2
z +B

(
L2
x + L2

y

)

is frequently used in solid state physics as so-called crystal-field operator for the
description of the electric field in a crystal. Determine its eigen-values and its
real eigen-functions.

Exercise 5.1.20
Assume there were an eigen-state of the orbital angular momentum with the
quantum number l = 1

2 .

1. Consider the ‘eigen-state of the angular momentum’

|lm〉 =

∣∣∣∣
1

2

1

2

〉
.

Which (ϑ, ϕ)-dependence would the corresponding wave function

〈
ϑϕ

∣∣∣∣
1

2

1

2

〉

have?
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2. Calculate

L+

∣∣∣∣
1

2

1

2

〉
!

Is there a contradiction to the assumption l = 1
2?

3. Calculate

L2
−

∣∣∣∣
1

2

1

2

〉
!

Is there a contradiction?

5.2 Spin

We have already pointed out that not all quantum-mechanical observables have
a classical analog. For a complete characterization of physical systems also, such
quantities are needed which can not be traced back, on the basis of the principle
of correspondence, to classical dynamical variables. The probably most impor-
tant quantity of this kind is the spin, which we will deal with in this section.
We start with the introduction of the so far not yet treated observable magnetic
moment, which we can find by analogy observations to Classical Electrodynam-
ics. The calculation of the moment leads for an atomic system to discrepancies
between theory and experiment, which will necessitate the incorporation of the
spin as intrinsic angular momentum into Quantum Mechanics. We will discuss
properties and consequences of the spin operator, while we postpone the correct
justification of the observable spin, by the relativistic Dirac equation, to the
next chapter (Sect. 5.3).

5.2.1 Operator of the Magnetic Moment

In a certain sense as motivation for the considerations that follow later, we
will, at first, deal with the observable magnetic moment, which has so far not
been a subject of our discussions. We, of course, know the concept of the
magnetic moment already from Classical Electrodynamics (Vol. 3), but let us,
nevertheless, recall here its definition once more. Consider a physical system
(particle), which is thought to occupy a macroscopically tiny volume v and to
contain charges in arbitrary form. We will not care about its special structure,
but we consider it abstractly as a local current distribution j. This creates,
according to the rules of Classical Electrodynamics, a magnetic moment m
((3.43), Vol. 3):

m =
1

2

∫

v

d3r [r× j(r)] . (5.120)
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Let the center point of the particle thereby define the origin of coordinates. The
current density j is stationary, and must therefore fulfill:

divj = 0 . (5.121)

Then we can make the following ansatz for j:

j = −m×∇f(r) = curl (m f(r)) . (5.122)

The second equality sign holds because m is a position-independent vector.
This ansatz fulfills automatically (5.121), because div(curla) = 0 for arbitrary
vectors a. In order to satisfy also (5.120), only two demands have to be made
on the function f(r):

1. f(r) ≡ 0 outside of v ,

2.
∫
v d

3r f(r) = 1 .

The validity of (5.120) is verified by insertion of the ansatz (5.122). This we
have explicitly performed after Eq. (3.65) in Vol. 3, and therefore it will not be
repeated here once more.

If we recall the actual goal of these considerations, then the expression
(5.120) appears a bit too unwieldy, in order to transform it, according to the
concept of correspondence, into Quantum Mechanics. We therefore look for
another starting point, and investigate the question, how the energy of the sys-
tem in the volume v changes when a magnetic field is switched on. An energy
change appears as a consequence of the work done by field on the current den-
sity j, and that too, indirectly, via the E-field, which is induced by the magnetic
induction B:

curlE = −Ḃ .

We denote the system energy, temporarily, by using the letter W , in order to
avoid a mix-up with the electric field. We find for the energy change according
to Eq. ((4.44), Vol. 3):

dW

dt
=

∫
j ·E d3r = −

∫
(m×∇f) ·E d3r = −m ·

∫
(∇f ×E) d3r

= −m ·
∫

[curl( f E)− f curlE] d3r .

The first integral is transformed by the Gauss theorem ((1.58), Vol. 3) into a
surface integral over an area lying at infinity, and it therefore vanishes because
of f (condition 1.). It thus remains:

dW

dt
= m ·

∫
fcurlE d3r = −m ·

∫
Ḃ f(r)d3r

1.
= −m ·

∫

v

Ḃ f(r)d3r .
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Since v is macroscopically small, the macroscopic field quantity Ḃ will practi-
cally not change within v and can therefore be drawn to the front of the integral.
It follows then with condition 2. for the function f(r):

dW

dt
= −m · Ḃ ⇐⇒ dW = −m · dB .

This yields as alternative to (5.120) a further classical definition of the magnetic
moment:

m = −∇BW . (5.123)

This version is now very much better suited for the ‘correspondence-like’ tran-
sition to the respective quantum-mechanical observable. We interpret W as the
solution of the time-independent Schrödinger equation,

H |ψ〉 = W |ψ〉 ; 〈ψ|ψ〉 = 1 ,

and differentiate this equation with respect to the field B:

(∇BH −∇BW ) |ψ〉+ (H −W )|∇Bψ〉 = 0 .

If we now multiply from the left by the bra-state 〈ψ|, then the second summand
disappears because of the hermiticity ofH (〈ψ|H = 〈ψ|W ), and what remains is:

〈ψ|∇BH |ψ〉 = ∇BW . (5.124)

With the usual conclusion by analogy (Sect. 3.2.7), according to which classi-
cal quantities correspond to the expectation values of the associated quantum-
mechanical observables, we derive by comparison of (5.123) and (5.124):

operator of the magnetic moment:

μ = −∇BH . (5.125)

This moment operator will be calculated explicitly in the next section for a
special concrete situation.

5.2.2 Magnetic Moment and Angular Momentum

As an example, let us apply the theory of the last section to an atom or an ion.
This consists of a positively charged nucleus, which we can assume to be ‘at
rest’ because of its relatively large mass, and p electrons of mass me and charge
q̂ = −e. Let the atom (ion) be in a homogeneous field:

B = curlA = (0, 0, B) .

We know from Electrodynamics that the vector potential A(r, t) is uniquely
determined only except for a gauge function χ(r, t). The actual quantities of
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measurement, the fields E andB do not change when one performs the following
substitutions for the vector potential and the scalar potential ϕ(r, t):

A(r, t) −→ A(r, t) +∇χ(r, t) ,

ϕ(r, t) −→ ϕ(r, t)− χ̇(r, t) .

Thereby one still has the freedom to choose χ(r, t) as convenient as possible. In
the so-called ‘Coulomb gauge’ ((4.26), Vol. 3) χ(r, t) is taken such that

divA(r, t) = 0 .

This relation as well as curlA = B can obviously fulfilled by

A =
1

2
B× r .

We know from Analytical Mechanics (Vol. 2), that position and mechani-
cal momentum of a particle in the magnetic field are not canonically conjugate
variables. As canonically conjugate one denotes variables, which fulfill the fun-
damental Poisson bracket {q, p} = 1 ((2.110), Vol. 2), and therewith, according
to the principle of correspondence, the for Quantum Mechanics equally funda-
mental commutation relation [q, p]− = i �. The canonical momentum of a
particle with the charge q̂ and the mass m in the electromagnetic field reads
((2.38), Vol. 2):

p = m ṙ+ q̂A(r, t) .

We formulate therewith now the Hamilton function of our p-electron atom
(ion):

H =

p∑

i=1

[
1

2me
(pi + eA(ri))

2
+ V (ri)

]
. (5.126)

The potential V (ri) contains the interaction of the electron with the positively
charged nucleus, as well as, at least in an averaged form, the interaction with the
other atomic electrons. The latter can not be easily treated in a rigorous man-
ner. As a rule, however, one is content with the so-called central-field approxi-
mation, in which these interactions are replaced by a central field V (ri) = V (ri).
Therewith the Hamilton function separates according to the individual electron
coordinates:

H =

p∑

i=1

Hi ; Hi =
1

2me
(pi + eA(ri))

2
+ V (ri) .

We now perform the transition to Quantum Mechanics and use for this purpose
the position representation. The Hamilton operator, which we already used in
((2.115), Vol. 6), and for which we take the same letter H as for the Hamilton
function, then reads:

Hi =
1

2me

[
−�

2Δi + e
�

i
(divA(ri) + 2A(ri) ·∇i) + e2A2(ri)

]
+ V (ri) .
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This expression simplifies when using the Coulomb gauge,

Hi = H0i +
e

me
A(ri) · pi +

e2

2me
A2(ri) ,

where we have collected in H0i all terms, which are not directly influenced by
the magnetic field. One easily calculates:

A2(ri) =
1

4
(B× ri)

2

=
1

4
B2r2i sin

2 ϑi ; ϑi = �(B, ri) .

Thereby we could exploit that B is not an operator, and is therefore arbitrarily
commutable with r.

A(ri) · pi =
1

2
(B× ri) · pi =

1

2
B · (ri × pi) =

1

2
B · Li .

Li is the orbital angular momentum of the ith electron referred to the origin of
coordinates. We get therewith as an intermediate result:

Hi = H0i +
e

2me
Li ·B+

e2B2

8me
r2i sin

2 ϑi .

Our considerations have been focused so far almost only on a single electron,
which possesses the orbital angular momentum Li. When summing up to the
full Hamilton operator it shows up the

total orbital angular momentum : L̂ =

p∑

i=1

Li , (5.127)

for which we still have to show, strictly speaking, that it is indeed an angular
momentum. This is exactly the case when its Cartesian components fulfill the
fundamental commutation relations (5.14). This can easily be shown if one
exploits the fact that the angular momenta of different electrons commute with
each other:

[L̂x, L̂y]− =

p∑

i, j =1

[
Lxi , Lyj

]
− =

p∑

i, j =1

δij [Lxi , Lyi]− =

p∑

i=1

i �Lzi = i � L̂z .

In the same way one verifies the two other relations. L̂ is thus quite a normal
angular momentum.

At the end, the Hamilton operator of the p-electron atom (ion) therewith
reads:

H = H0 +
e

2me
L̂ ·B+

e2B2

8me

p∑

i=1

r2i sin
2 ϑi . (5.128)
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According to (5.125) the particle then has the magnetic moment:

μ = − e

2me
L̂−

(
e2

4me

p∑

i=1

r2i sin
2 ϑi

)
B . (5.129)

The first term is particularly interesting, because it reveals the close connec-
tion between the orbital angular momentum and the magnetic moment. The
second term is field-dependent and vanishes therefore as soon as the field is
switched off. The first summand in (5.129) represents a permanent mag-
netic moment, and the second term an induced moment. The permanent
moment results from the electron motion around the nucleus. The field couples
linearly to it. The moment persists even after the field is switched off, and
is therefore independent of the field. The magnetic field, though, changes the
orbit of the electron a bit, inducing therewith an additional magnetic moment,
which is again linearly coupled to the field. This induced moment leads to the
phenomenon of diamagnetism (see Sect. 3.4.2, Vol. 3), which is present in all
materials. The existence of permanent magnetic moments leads to param-
agnetism. That is due to the fact that with the switching on of a magnetic
field, the permanent atomic moments try to orient themselves parallel to the
field. This ordering tendency is opposed by the thermal motion. The resulting
compromise causes the characteristic properties of a paramagnet. If in a solid
the permanent atomic moments order themselves spontaneously, i.e., without
being forced by an external field, there arises ferro- (antiferro-)magnetism.
One can show that the induced moment delivers only a very small contribu-
tion, so that diamagnetism is observable only if the rival permanent moment
vanishes (l = 0). For all the other cases it is therefore commonly accepted that
the induced moment is suppressed. Note that, because of the negative elec-
tronic charge, angular momentum and permanent magnetic moment
are always oriented antiparallel.

Let us draw some further conclusions from our considerations so far. With-
out field, H0 is the Hamilton operator of the atom. In the central field approx-
imation it is a scalar rotation invariant operator. According to the results in
Sect. 5.1.3 (see (5.47)), H0, L̂

2 and L̂z must therefore have a common set of
eigen-states |ψxlm〉:

H0|ψxlm〉 = E
(0)
xl |ψxlm〉 . (5.130)

The index x contains all quantum numbers which are, except for l and m, still
necessary for the identification of the states. H0 contains in the kinetic energy
the Laplace operator, which is, according to (5.83), closely linked to the square
of the orbital angular momentum. We should therefore accept that the energy

eigen-values E
(0)
xl depend on l, while they are certainly degenerate with respect

to m.
When we now switch on a homogeneous magnetic field, which may define the

z-direction, then not only the eigen-values, but also the eigen-states will change
due to the diamagnetic term. When we, however, suppress for our qualitative
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considerations here this term, because of its mentioned relative insignificance,
then the situation is strongly simplified, since the paramagnetic part in (5.128)

(∼ L̂z) does not change the eigen-states. It removes, though, the m-degeneracy:

H |ψxlm〉 = Exlm|ψxlm〉 , (5.131)

Exlm = E
(0)
xl + μBBm . m = −l,−l+ 1, . . . ,+l . (5.132)

μB is the Bohr magneton, already used in ((1.59), Vol. 6):

μB =
e �

2me
= 9.274 · 10−24 J

T
(= Am2) = 0.579 · 10−4 eV

T
. (5.133)

In the magnetic field, each atomic energy term E
(0)
xl should therefore be (2l+1)-

fold split (Zeeman effect), where the single levels are energetically arranged
equidistantly. The distance μBB is extremely small. For an already rather
strong magnetic field of one Tesla, ΔE would amount to only about 0.6·10−4 eV.
The required resolution, however, does not pose any difficulty for the experimen-
tal atomic physics. Since the magnetic field removes the directional degeneracy,
m is called the magnetic quantum number.

Let us compare these statements with the experimental findings. The mag-
netic field-caused splitting of the energy levels is uniquely confirmed, but at the
same time, if considered in detail, also with significant deviations from our the-
oretical predictions. Very generally, one observes, in atoms with an odd number
of electrons, splittings, which correspond rather to a half-integer magnetic
quantum number. In addition, in contradiction to (5.132), it is found that the
splitting of different levels can also be different.

We will show in Chap. 6 that the ground state of the simple hydrogen atom
belongs to l = 0. According to (5.132) it should therefore remain uninfluenced by
a magnetic field. This contradicts, however, the experimental findings, accord-
ing to which the ground state level is twofold split by the field.

Let us recall the Stern-Gerlach experiment, discussed in detail in
Sect. 1.3.2 (Vol. 6). The properties of the silver atoms, which traverse an inho-
mogeneous magnetic field in this experiment, are dominated by the so-called
luminous (valence) electron (5s-electron). The angular momenta of all the
other electrons in the Ag-atom are vectorially add up to zero. The valence
electron possesses in the ground state also l = 0. Nevertheless, even in this case
a twofold splitting is observed which does not at all agree with our knowledge
so far.

All these problems are rather immediately solved when we assume that
quantum-mechanical particles possess, besides their orbital angular momentum,
further an intrinsic angular momentum, which we will call spin S. It is a vector
operator, whose Cartesian components fulfill the commutation relations (5.14).
S is therewith quite a normal angular momentum, for which all statements,
derived in Sect. 5.1.4, thus apply. This is true, in particular, for the eigen-
value equations:

S2|Sms〉 = �
2S(S + 1)|Sms〉 , (5.134)

Sz|Sms〉 = �ms|Sms〉 . (5.135)
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The spin quantum number S can thereby be an integral or a half-integral
number:

S = 0,
1

2
, 1, . . . ms = −S,−S + 1, . . . ,+S . (5.136)

In Chap. 8 we will get to know a meaningful division of the quantum-mechanical
particles into those with half-integral spin and those with integral spin. The
particles with half-integral spin are called fermions (S = 1/2: electron, neutron,
proton, . . .), and those with integral spin bosons (S = 0: π-meson; S = 1:
photon, magnon; . . .).

In Classical Mechanics, we could almost always consider particles as mass
points. The only property of the particle was therewith the mass m. In Electro-
dynamics it came along the charge q̂. The classical particle has three (contin-
uous) degrees of freedom. Otherwise, a quantum-mechanical particle possesses
besides massm, charge q̂ another property spin S. As a genuine particle prop-
erty, the spin quantum number S is unchangeable for a given particle. Thus
S differs, e.g., from the quantum number of the orbital angular momentum l,
which can take for a particle, in principle, infinitely many values (l = 0, 1, 2, . . .).

However, with S does not come along only a new particle property, but
also an additional degree of freedom, namely the orientation of the vector S
relatively to a given direction. This degree of freedom is independent of the
spatial degrees of freedom, and is, in contrast to them, in any case discrete.

5.2.3 Hilbert Space of the Spin

For the complete description of a quantum-mechanical particle, the Hilbert
space HO of the orbital motion does no longer suffice. This space is, e.g.,
spanned by the (improper) eigen-states |r〉 of the position operator. We have
to extend it by the (2S + 1)-dimensional spin space HS. The full space is the
direct product space of the two partial spaces HO and HS:

H = HO ⊗HS . (5.137)

Up to now we did not yet introduce the concept of the product space. We
therefore want to illustrate it here a bit in more detail by our current concrete
example. We will meet this concept in other connections also.

For the states |ψ;ϕ〉 from H one writes:

|ψ;ϕ〉 = |ψ〉O|ϕ〉S = |ϕ〉S|ψ〉O . (5.138)

|ψ〉O is a state from HO, and |ϕ〉S one of the spin space HS . One denotes the
right-hand side as direct product of the states |ψ〉O and |ϕ〉S , not to be confused
with the scalar product ((3.15), Vol. 6) of states or with the dyadic product
((3.75), Vol. 6). Equation (5.138) expresses the commutativity of the direct
product. It also possesses distributivity. Let

|ψ〉O = |ψ1〉O + |ψ2〉O ; |ϕ〉S = |ϕ1〉S + |ϕ2〉S
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be states from HO and HS, respectively. Then:

|ψ;ϕ〉 = |ψ1;ϕ〉+ |ψ2;ϕ〉 ,
|ψ;ϕ〉 = |ψ;ϕ1〉+ |ψ;ϕ2〉 . (5.139)

The scalar product in the Hilbert space H is traced back to the corresponding
products in HO and HS, where of course only the states of the same subspace
can be scalarly multiplied :

〈ψ̂; ϕ̂|ψ;ϕ〉 = O〈ψ̂|ψ〉O S〈ψ̂|ψ〉S . (5.140)

We can also quickly think over how the basis of the combined space H must look
like when the bases of the subspaces are given. Let {|αi〉O} be an orthonormal-
ized basis system (continuous or discrete) for HO, and let {|βj〉S} (discrete) be
such a system for HS with:

O〈αj |αi〉O = δ(i, j) ; S〈βm|βn〉S = δmn . (5.141)

We have introduced the sign δ(i, j) in ((3.49), Vol. 6). It is the Kronecker-
delta δij in the case of a discrete basis, and it is the delta-function δ(i − j) in
the case of a continuous basis. The states {|αi;βm〉} then represent in H an
orthonormalized,

〈αj ;βm|αi;βn〉 = δ(i, j) δmn , (5.142)

and complete basis system:

∑∫

i

∑

m

|αi;βm〉〈αi;βm| = 1l . (5.143)

Each arbitrary state |ψ;ϕ〉 ∈ H can be expanded in these basis states:

|ψ;ϕ〉 =
∑∫

i

∑

m

|αi;βm〉〈αi;βm|ψ;ϕ〉 . (5.144)

All rules, theorems and statistical interpretations, which we derived in Chap. 3
(Vol. 6) for states in the Hilbert space, can be directly taken over. That holds
in particular for the spectral representation ((3.68), Vol. 6) of an operator
A acting in H:

A = 1lA 1l =
∑∫

i

∑

m

∑∫

j

∑

n

|αi;βm〉〈αi;βm|A|αj ;βn〉〈αj ;βn| . (5.145)

An exceptional position is taken by such operators which act exclusively in
either of the two subspaces. When AO,S acts only in HO,S, then the spectral
representation reduces because of

〈αi;βm|AO|αj ;βn〉 = O 〈αi|AO|αj〉O δmn ,

〈αi;βm|AS|αj ;βn〉 = S 〈βm|AS|βn〉S δ(i, j)



42 CHAPTER 5. QUANTUM THEORY OF THE ANGULAR MOMENTUM

in H to:

AO =

⎡

⎣
∑∫

i

∑∫

j

|αi〉O O〈αi|AO|αj〉O O〈αj |
⎤

⎦ 1lS , (5.146)

AS =

[
∑

m

∑

n

|βm〉S S〈βm|AS|βn〉S S〈βn|
]
1lO . (5.147)

1lO,S is the unit operator in HO,S. The action of AO,S on an arbitrary state
|ψ;ϕ〉 of the product space takes place such that the respective other part of the
state remains uninfluenced:

AO|ψ;ϕ〉 = |ψ;ϕ〉 ←→ AO|ψ〉O = |ψ〉O ,

AS |ψ;ϕ〉 = |ψ;ϕ〉 ←→ AS|ϕ〉S = |ϕ〉S .

In particular, this has the consequence that such operators commute in the
product space:

[AO, AS]− = 0 . (5.148)

For our present case, we can immediately affiliate to (5.148) the following
important statements:

[S, r]− = 0 , (5.149)

[S,p]− = 0 , (5.150)

[S,L]− = 0 . (5.151)

This result is extremely becalming, because it simply states that we do not have
to revise any part of the spinless Quantum Mechanics, performed so far. All the
operators (observables), encountered so far, have, as AO in (5.146), no influence
on the spin space HS .

We had already recognized that the spin operator S is quite a normal angular
momentum in the sense that its Cartesian components fulfill the commutation
rules (5.14):

[Sx, Sy]− = i �Sz ; [Sy, Sz]− = i �Sx ; [Sz, Sx]− = i �Sy . (5.152)

When we define, as in (5.21), the ladder (step) operators for the spin also,

S± = Sx ± i Sy , (5.153)

then the previously very generally proven relations are of course valid for these
operators, too:

[Sz, S±]− = ± �S± ; [S+, S−]− = 2�Sz . (5.154)
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Especially, the matrix representations, listed following (5.64), can directly be
transferred to the spin operators, if one takes as basis the common eigen-states
|Sms〉 (5.134) and (5.135) of S2 and Sz.

The {|S,ms〉} build in HS a complete orthonormal basis. For a general spin
state |αS〉 we therefore have the expansion:

|αS〉 =
+S∑

ms =−S

α̂ms |S ms〉 . (5.155)

With respect to the matrix representations of the spin operators, |αS〉 can be
represented by a (2S + 1)-component column vector:

|αS〉 =

⎛

⎜⎜⎜⎝

〈S S|αS〉
〈S S − 1|αS〉

...
〈S − S|αS〉

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

α̂S

α̂S−1

...
α̂−S

⎞

⎟⎟⎟⎠ . (5.156)

The eigen-state |Sms〉 itself is a column vector with a 1 at the msth position
and otherwise nothing but zeros. One calls (5.156) a spinor.

When we still choose as basis of the subspace HO the eigen-states |r〉 of the
position operator, then it holds, according to (5.144), for an arbitrary state of
the product space H = HO ⊗HS:

|ψ;αS〉 =
+S∑

ms =−S

∫
d3r|r〉|S ms〉〈r|ψ〉〈S ms|αS〉 .

〈r|ψ〉 is the wave function ψ(r) associated to the state |ψ〉:

|ψ;αS〉 =
+S∑

ms =−S

∫
d3r α̂ms ψ(r)|r〉|S ms〉 . (5.157)

By scalar multiplication of this relation by the bra-position eigen-state 〈r| one
obtains, analogously to ((3.238), Vol. 6) the position representation of the state
|ψ;αs〉, which can be written as a (2S+ 1)-component spinor:

|ψS(r)〉 ≡

⎛

⎜⎜⎜⎝

ψS(r)
ψS−1(r)

...
ψ−S(r)

⎞

⎟⎟⎟⎠ ; ψms(r) ≡ 〈r|ψ〉〈S ms|αS〉 . (5.158)

We can interpret thereby the square of the absolute value of one component,

|ψms(r)|2 = |α̂ms |2 |ψ(r)|2 , (5.159)

as the probability density to find, with a simultaneous measurement of spin
and position, the particle with spin S at the position r with a spin orientation



44 CHAPTER 5. QUANTUM THEORY OF THE ANGULAR MOMENTUM

characterized by ms. Note that ‖ψS(r)‖2 = |ψ(r)|2. Furthermore, it holds in
any case:

S2|ψS(r)〉 = �
2S(S + 1)|ψS(r)〉 . (5.160)

If in addition

Sz|ψS(r)〉 = �ms|ψS(r)〉
then one speaks of an eigen-spinor. From the components in (5.158) only
ψms �= 0.

We will continue the discussion of the spin in the next section for the impor-
tant special case S = 1/2.

5.2.4 Spin S = 1/2

Spin S = 1/2 is realized, for instance, for electrons, protons and neutrons. It
is thus by far the most important special case, which will therefore be investi-
gated in some detail here. The spin space HS =1/2 is two-dimensional for these
particles, and the spin operators are represented by 2 × 2-matrices. We had
already calculated these matrices at the end of Sect. 5.1.4:

S2 =
3

4
�
2 1l2 ; 1l2 =

(
1 0
0 1

)
, (5.161)

Sz =
�

2

(
1 0
0 −1

)
, (5.162)

S+ = �

(
0 1
0 0

)
; S− = �

(
0 0
1 0

)
. (5.163)

For the spin operator S sometimes one also writes:

S =
�

2
σ ; σ ≡ (σx, σy, σz) . (5.164)

The components of the vector operator σ are the Pauli spin matrices:

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (5.165)

For these one easily proves the following properties:

σ2
x = σ2

y = σ2
z = 1l2 , (5.166)

[σx, σy]+ = [σy, σz ]+ = [σz, σx]+ = 0 . (5.167)

Note the subscript in the last relation. By [. . . , . . .]+ we denote the so-called
anticommutator,

[A,B]+ = AB +BA , (5.168)
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which is to be distinguished from the commutator [A,B]− = AB − BA, with
which we are already familiar.

Trσx = Trσy = Trσz = 0 , (5.169)

σx σy σz = i 1l2 . (5.170)

Furthermore, the commutation rules (5.152) are of course also valid, in corre-
sponding form for the Pauli spin matrices:

[σx, σy]− = 2i σz ; [σy, σz ]− = 2i σx ; [σz , σx]− = 2i σy . (5.171)

For the common eigen-states |S ms〉 of S2 and Sz one uses in the case of S = 1/2
different self-explanatory symbols:

∣∣∣∣
1

2

1

2

〉
≡ | ↑〉 ≡ |+〉 ≡

(
1
0

)
,

∣∣∣∣
1

2
− 1

2

〉
≡ | ↓〉 ≡ |−〉 ≡

(
0
1

)
. (5.172)

The states are obviously orthonormalized,

〈±|±〉 = 1 ; 〈±|∓〉 = 0 , (5.173)

where, of course, with (5.161) and (5.162), the eigen-value equations

S2|±〉 = 3

4
�
2|±〉 ; Sz|±〉 = ±�

2
|±〉 (5.174)

are fulfilled. Let us still consider the action of the ladder operators, for which
we have in accordance with (5.64):

S+|−〉 = �|+〉 ; S+|+〉 = 0 ,
S−|−〉 = 0 ; S−|+〉 = �|−〉 . (5.175)

By S± the particle spin is thus ‘flipped up’ and ‘flipped down’, respectively. It is
clear that a spin S = 1/2 can be flipped up (down) at most once, a fact, which
in the H1/2 can also be formulated as an operator identity:

(S+)
2 = (S−)2 = 0 (5.176)

According to our general considerations in the last section, the state of a spin
1/2-particle can be written in the postion representation as a two-component
spinor:

∣∣ψ1/2(r)
〉
=

(
ψ+(r)
ψ−(r)

)
. (5.177)

|ψ±(r)|2 d3r is thereby the probability to find the particle with a simultaneous
measurement of spin and position, which is definitely possible because of (5.149),
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in the volume element d3r at r with a spin 1/2 parallel (+) and antiparallel (−),
respectively, to the z-axis. ψ±(r) must therefore be square integrable functions.
The square of the norm of the spinor,

∥∥ψ1/2(r)
∥∥2 =

〈
ψ1/2(r)

∣∣ψ1/2(r)
〉
= |ψ+(r)|2 + |ψ−(r)|2 = |ψ(r)|2 , (5.178)

corresponds to the normal density of the position probability for the considered
particle.

If for an actual physical problem, only the spin-dependence is of interest, one
will of course perform the respective calculations exclusively in the spin space
H1/2, in the same manner as we restricted ourselves in the preceding sections to
the space HO of the orbital motion, since in those cases investigated, the spin
was unimportant. We can expand, according to (5.155), the general normalized
spin state |α1/2〉 in the eigen-states |±〉:

∣∣α1/2

〉
= α+|+〉+ α−|−〉 = α+

(
1
0

)
+ α−

(
0
1

)
=

(
α+

α−

)
, (5.179)

|α+|2 + |α−|2 = 1 . (5.180)

The spin space H1/2 does not exhibit any peculiarities as Hilbert space. We can
directly take over all the statements of our general investigations on operators
and states in Hilbert spaces, developed in Chap. 3 (Vol. 6). It is even so that
the abstract Hilbert-space theory can be demonstrated especially clearly by the
use of the spin space H1/2, because this space is finite-dimensional, and, in par-
ticular, does not contain improper states (Sect. 3.2.4, Vol. 6). We have therefore
presented already in Chap. 3 (Vol. 6) several exercises on the application of the
Hilbert-space theory, which dealt with the observable spin, although at that
stage, strictly speaking, we did not know the spin.

To the spin as angular momentum there is an associated magnetic moment.
Via this moment the spin couples to an external magnetic field. We recall that
the experimentally not confirmed equidistant splitting of the atomic energy
levels (5.132), caused by the moment of the orbital angular momentum, was
just the motivation for us to postulate the spin with a corresponding magnetic
moment. But how does this spin moment really look like? The orbital angular
momentum of the electron causes, according to (5.129), a magnetic moment of
the form:

μL =
−e

2me
L = −μB

1

�
L . (5.181)

We could obtain this expression by the use of the principle of correspondence
from the corresponding relations of Classical Electrodynamics. The problem
with the spin lies now mainly in the fact that we cannot use a classical analog
as guideline. So the expectation that the spin moment μ̂S has exactly the same
structure as μ̂L is actually not supported by any lead. It is therefore, at first,
nothing more than a plausible ansatz when we write:

μS = μS · S . (5.182)
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If one permits that the coefficient μS is different for different spin-1/2-particles,
then this ansatz, though, has indeed excellently proven its worth. Especially
for electrons, the correction of (5.132) by the experimental evaluation of the
Zeeman effect yields:

μS (e
−) = −g

μB

�
. (5.183)

g is the Landé factor. The experiment requires g = 2, what is exactly confirmed
by the relativistic Dirac theory which we will deal with in the next section.
In the course of Quantum Electrodynamics this value becomes a bit further
corrected:

g = 2
(
1 +

α

2π
+ . . .

)
= 2.002319 . . . (5.184)

α = 1/137 is here Sommerfeld’s fine-structure constant. μB contains the elec-
tron mass. The magnetic moments of the proton and the neutron, in spite of
the same spin, are thus considerably smaller. For the nucleons one therefore
uses as guide value, instead of the Bohr magneton μB, the nuclear magneton:

μn =
e �

2mp
. (5.185)

mp is the mass of the proton, which amounts approximately to 1836-times the
electron mass me (μS(p) ≈ 5, 6μn/�; μS(n) ≈ −3, 8μn/�).

We have to now use for the total paramagnetic moment of the electron, after
we have fixed the spin contribution (5.183):

μ(e−) = −μB
1

�
(L+ 2S) . (5.186)

It is common to count the diamagnetic component (5.129) separately. The
moment μ then couples linearly to an external magnetic field B and produces
therewith an additional paramagnetic term in the Hamilton operator:

Hpm = −μ(e−) ·B = μB
1

�
(L+ 2S) ·B . (5.187)

The total Hamilton operator of an electron in the homogeneous magnetic field
B and in another potential field V (r) reads therewith, according to our present
state of knowledge:

H =
p2

2me
+ V (r) +Hpm +Hdia , (5.188)

Hdia =
e2B2

8me
r2 sin2 ϑ ; ϑ = �(r,B) . (5.189)

Even this expression will turn out to be not fully complete. We have namely
tacitly presumed that orbital angular momentum and spin do not influence each
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other. This assumption will later turn out as untenable, since a spin-orbit
interaction (see Sect. 5.3.4) cannot be ignored.

In the position representation, which we used to a large extent in this section,
the time-dependent Schrödinger equation,

i �
∂

∂t

∣∣ψ1/2 (r, t)
〉
= H

∣∣ψ1/2 (r, t)
〉
,

now reads for the electron in the homogeneous magnetic fieldB and the potential
V (r), without the not yet introduced spin-orbit interaction which will turn out
to be a purely relativistic effect:

i �
∂

∂t

(
ψ+(r, t)
ψ−(r, t)

)
=

[(
−�

2Δ

2me
+ V (r) +

μB

�
L ·B+Hdia

)
1l2

+2
μB

�
S ·B

](
ψ+(r, t)
ψ−(r, t)

)
. (5.190)

This, without the potential term V (r), is the so-called ‘Pauli equation’, which
we will meet again in the next section as the non-relativistic limiting case of the
Dirac theory.

For brevity, in the last two sections, we have disregarded the time-
dependence of the wave functions, because of being not essential for the
considerations there. One can of course easily bring, as done in (5.190), the
time-dependence retroactively into play.

Let us finally write down the Schrödinger equation for the important special
case of an electron in the time- and position-dependent electromagnetic field
(vector potential A(r, t), scalar potential ϕ(r, t)):

i �
∂

∂t

(
ψ+(r, t)
ψ−(r, t)

)
=

[(
1

2me
(p+ eA(r, t))2 − e ϕ(r, t)

)
1l2

+μBσ ·B(r, t)

] (
ψ+(r, t)
ψ−(r, t)

)
. (5.191)

In this section we have postulated the existence of the spin, only because of
an ‘experimental necessity’, and have discussed its consequences. In the next
section, we will rigorously justify, with the use of the relativistic Dirac theory,
the electron spin, the spin magnetic moment, and the spin-orbit interaction.

5.2.5 Exercises

Some important exercises concerning the spin have already been presented in
Chap. 3 (Vol. 6). The repetition of the Exercises 3.3.4–3.3.9, 3.4.1 and 3.4.2 is
at this stage very recommendable.

Exercise 5.2.1
Prove, only by the use of the general properties of the angular momentum, i.e.,
without the explicit matrix representations of the spin operators, the following
relations for a spin S = 1/2:
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1. [Sx, Sy]+ = 0,

2. S2
x = S2

y = S2
z = �

2

4 1l2,

3. Sx Sy = i �

2 Sz,

4. Sx Sy Sz = i �
3

8 .

Exercise 5.2.2

1. Verify the following relation for the Pauli spin matrices,:

σiσj = δij 1l2 + i
∑

k

εijk σk ; i, j, k ∈ {x, y, z} ,

εijk is the fully antisymmetric unit tensor of third rank (5.4).

2. Let a and b be two vector operators, which commute with all the three
Pauli spin matrices. Prove the relation:

(σ · a) (σ · b) = a · b 1l2 + iσ · (a × b) .

Exercise 5.2.3
Let Â and B̂ be two (2× 2)-matrices, which can be expressed as follows by the
Pauli spin operator σ (5.164):

Â = a01l2 + a · σ ; B̂ = b01l2 + b · σ .

a and b are thereby arbitrary three-dimensional vectors (not operators!), and
a0, b0 are arbitrary complex numbers.

1. Bring the matrix-product Â · B̂ into the form

Â · B̂ = x1l2 + y · σ .

2. Express the inverse matrix Â−1 by 1l2 and σ (a2 �= a20).

Exercise 5.2.4
Calculate the expectation values 〈Sx〉, 〈Sy〉, 〈Sz〉 in the spin state:

|α〉 = α+

(
1
0

)
+ α−

(
0
1

)
.

Exercise 5.2.5
Let {| 12 mS〉} be the common eigen-states of S2 and Sz for a spin- 12 particle.

1. Which are the eigen-values of Sx and Sy?

2. Determine the eigen-states of Sx and Sy in the basis system of the eigen-
states of S2 and Sz.
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Exercise 5.2.6

1. Let the unit vector

e = (e1, e2, e3) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)

define an arbitrary space direction. Calculate

(σ · e)2 !

σ: Pauli spin operator.

2. Let a particle with the spin S = 1/2 be at a certain point of time in the
(normalized) state

|ψ〉 = 1√
2
|+〉+ 1 + i

2
|−〉 .

|±〉 are, as in (5.172), the eigen-states of (S2, Sz) in the case S = 1/2. For
which space direction e does the spin projection S ·e have the uncertainty
zero?

Exercise 5.2.7
Consider an S = 1/2-particle with only one spin-degree of freedom. The matrix
elements of the Hamilton operator in the basis of the (S2, Sz)-eigen states |+〉 ≡
|10〉 and |−〉 ≡ |01〉 are the following:

〈±|H |±〉 = 0 ; 〈+|H |−〉 = 〈−|H |+〉 = η (η > 0) .

1. Show that it holds for the time-evolution operator in the Schrödinger
picture:

U(t, 0) = cos
(η
�
t
)
1l2 − i sin

(η
�
t
)
σx

σx: Pauli spin matrix.

2. At the time t = 0 the particle is in the state |+〉. What is the probability
that the particle is in this state even for t > 0?

3. Calculate the special (time-dependent) space direction e(t), for which the
particle is definitely an ↑-particle, i.e., for which a measurement of the
spin projection onto this direction yields with certainty the value +�/2.

Exercise 5.2.8
Let the spin S = 3/2 be in a normalized state |ϕ〉, for which the following
expectation values are found:

〈ϕ|Sz |ϕ〉 = �

2
; 〈ϕ|Sx|ϕ〉 = 〈ϕ|Sy|ϕ〉 = 0 .

Show that the conclusion herefrom that |ϕ〉 is an eigen-state of Sz, is sufficient
but not necessary.
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Exercise 5.2.9
Let a spin S = 3/2 be in a state |ψ〉 with

〈ψ|Sz|ψ〉 = 3

2
� .

Is |ψ〉 then eigen-state of Sz?

Exercise 5.2.10
An electron moves in an electromagnetic field (E,B), fixed by the scalar poten-
tial ϕ(r, t) and the vector potential A(r, t). Solution of the time-dependent
Schrödinger equation is the two-component spinor (5.177):

∣∣∣ψ 1
2
(r, t)

〉
=

(
ψ+(r, t)
ψ−(r, t)

)
.

Show that, in the case of a homogeneous magnetic induction B(r, t) ≡ B(t),
by the use of a product ansatz,

∣∣∣ψ 1
2
(r, t)

〉
= η(r, t)

∣∣∣χ 1
2
(t)

〉 ∣∣∣χ 1
2
(t)

〉
=

(
χ+(t)
χ−(t)

)
,

spin dynamics and orbit dynamics can be completely separated. Derive the
corresponding equations of motion!

Exercise 5.2.11
We describe an electron in the magnetic field B, with only one spin degree of
freedom, by the Hamilton operator

H = 2
μB

�
S ·B .

Calculate the time-dependences of the expectation values

〈Sx〉t , 〈Sy〉t , 〈Sz〉t .
Choose as the z-direction the direction of the magnetic field B.

Exercise 5.2.12
Calculate for a spin 1/2-particle the eigen-values and the eigen-functions of the
operator A = α(Sx + Sy); α: real! What is the probability that a measurement
of Sz yields the value −�/2, when the particle is in an eigen-state of A?

Exercise 5.2.13
At the time t = 0 a spin 1/2-particle is in the eigen-state |+〉 of Sz . It is subject
to the influence of a strong magnetic field B0 in the z-direction and a weak
alternating field

B1 = B1 (ex cosωt− ey sinωt) .

What is the probability w−(t) to find the particle in the state |−〉 at a later
point of time t? Discuss the result (paramagnetic resonance)! Take only the
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spin-degree of freedom of the particle into consideration, i.e., use as Hamilton
operator

H = −μS S ·B .

Exercise 5.2.14
A particle of the mass m and the charge q moves in a homogeneous magnetic
field

B =
1√
2
B(ey + ez)

and in a homogeneous electric field E = E ex.

1. Determine its magnetic moment μ (operator!)

2. Calculate the commutators

[μx, px]− , [μy, px]−

and the double-commutator
[
[μx, py]− , z

]

−
.

Exercise 5.2.15
A beam of neutrons is to equal parts spin-polarized in x- and z-direction (per-
pendicular to the y-direction).

1. Calculate the corresponding statistical operator ρ!

2. Determine the expectation value of the neutron spin for a measurement
in the direction (ϑ = π

3 , ϕ = π
6 )!

3. Find for the measurement in 2.) the uncertainty of the spin measurement
(mean square deviation)!

5.3 Relativistic Theory of the Electron

In this section we try to find a rigorous justification of the electron spin, for the
existence of which we found up to now only empirical reasons. Starting point
for that is the Dirac equation, which we will obtain by a linearization of the
relativistic generalization of the Scrödinger equation. For this purpose, though,
we have to, temporarily, leave the non-relativistic Quantum Mechanics, which
we are actually interested in, and avail ourselves of some concepts and theorems
of the Special Theory of Relativity, which we have introduced and discussed
in Vol. 4 of our ground course in Theoretical Physics. This is indispensable,
since spin, spin moment, and spin-orbit interaction turn out to be only
purely relativisticly justifiable particle properties. The reader, who is not yet
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or no longer familiar with the formalism of the theory of relativity, can skip
this section. He must then, however, be content with the introduction of the
spin by the use of empirical postulates as done in Sect. 5.2. For the further
discussion of the non-relativistic Quantum Mechanics in this volume, though,
the full understanding of the Dirac theory of the electron is not an imperative
precondition, nevertheless, of course, highly recommendable.

5.3.1 Dirac Equation

The relativistic, classical energy law for a free particle reads according to ((2.63),
Vol. 4):

E2 = c2p2 +m2
e c

4 .

c is the velocity of light, me is the mass of the electron, and p is its relativistic
mechanical momentum:

p = γ me v ; γ =

(
1− v2

c2

)−1/2

.

v is the velocity of the electron. In the preceding sections we got from non-
relativistic classical relations the corresponding quantum-mechanical concepts,
for instance, by the use of the rule of correspondence ((2.89), (2.108), Vol. 6)),

p −→ �

i
∇ ;

E −→ i �
∂

∂t
,

where the so introduced operators have to be applied to time- and position-
dependent wave functions ψ(r, t). In the case of corresponding transformations
of relativistic, classical laws into Quantum Mechanics, their covariance must
be preserved. This means that, even after quantization, the laws must be form-
invariant under Lorentz transformations because of the fundamental equivalence
of all inertial systems. Form-invariance under Lorentz transformations is guar-
anteed if all additive terms of an equation are four-(world-)tensors of the
same rank. In this sense, the above classical energy law of the free particle
can be written in a compact form as

pμpμ = m2
e c

2 . (5.192)

(Note here the summation convention: over Greek indexes of adjacent terms is
to be added up!)—pμ is the contravariant four-momentum and therewith as
a vector it is a tensor of first rank:

pμ =

(
E

c
, γ mevx, γ mevy , γ mevz

)

=

(
E

c
, γ mev

)
.
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The so-called covariant four-momentum pμ differs from pμ only by the opposite
sign of the space-components. The square of the norm of the four-momentum
pμ is, as the right-hand side of (5.192), a four-scalar. The energy law is thus in
the correct covariant form.

But the contravariant four-gradient ((2.31), Vol. 4),

∂μ ≡
(
1

c

∂

∂t
,−∇

)
,

now allows also to combine the two rules of correspondence in a relativistic-
covariant form:

pμ −→ i � ∂μ . (5.193)

With this relativistic rule of correspondence, the square of the norm of the four-
momentum reads:

pμpμ −→ −�
2∂μ∂μ = �

2 � . (5.194)

� is the d’Alembert operator ((2.33), Vol. 4),

� = Δ− 1

c2
∂2

∂t2
(Δ : Laplace operator) ,

as a scalar product it is of course a four-scalar. It is clear that with the quan-
tization of (5.192), in this case also, we have to apply the resulting operators
to a wave function, which describes the state of the particle. This function will
depend on the four-position

xμ ≡ (ct, x, y, z) ,

and therewith ultimately again on r and t. We choose therefore, as before, the
notation |ψ(r, t)〉. Out of the energy law (5.192), then follows, the relativistic
generalization of the Schrödinger equation,

(
�
2�−m2

ec
2
) ∣∣ψ(r, t)

〉
= 0 ,

which in the following form is called Klein-Gordon equation:

(
Δ− 1

c2
∂2

∂t2
− m2

ec
2

�2

) ∣∣ψ(r, t)
〉
= 0 . (5.195)

This wave equation, however, poses a not insignificant problem. It represents a
differential equation of second order with respect to the time. Its solution thus
requires initial conditions for |ψ〉 and |ψ̇〉. The non-relativistic Schrödinger
equation, in contrast, is of first order in time. One can surely question whether
the inclusion of relativistic effects must indeed lead to such drastic changes in
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the required initial information. Dirac’s idea was therefore, at first, to linearize
the starting equation (5.192), and that by the ansatz:

(
E − c

∑

i

α̂i pi − β̂ me c
2

) ⎛

⎝E + c
∑

j

α̂j pj + β̂ me c
2

⎞

⎠ = 0 (5.196)

i, j ∈ {x, y, z}
The new quantities α̂, β̂ have to fulfill the following relations:

[ α̂i, α̂j ]+ = 2δij 1l ,
[
α̂i, β̂

]

+
= 0 ; β̂ 2 = 1l . (5.197)

This is of course not achievable with normal numbers of the R or C. We will
therefore later try to interpret α̂ and β̂ as quadratic matrices. These must, after
the transition to the quantum-mechanical formulation, imperatively commute
with the momentum operator, in order to keep (5.196) valid. In particular, they
should not be position-dependent. We will of course come back later to the
explicit fixing of α̂i and β̂.

Each solution of the linearized equations
(
E ∓ c

∑

i

α̂i pi ∓ β̂ me c
2

)
= 0 ,

is of course also solution to (5.196). That leads, with the rule of correspondence
(5.193) to the

Dirac equation of the free electron
(
i �

∂

∂t
+ i � c α̂ · ∇ − β̂ me c

2

)
|ψ(r, t)〉 = 0 . (5.198)

Soon we will recognize that the second linearized equation, for which, compared
to the other equation, the second and the third summand both have the opposite
sign, leads to the same physical statements. One therefore needs to analyze only
one of the two equations. If α̂ and β̂ are really n × n-matrices, then the wave
function |ψ(r, t)〉 must be correspondingly an n-component vector.

In order that (5.198) gets formally the structure of the time-dependent
Schrödinger equation we introduce the

Dirac operator of the free electron

H
(0)
D = c α̂ · p+ β̂ me c

2 . (5.199)

By the use of this operator we formulate the time-dependent and the time-
independent Dirac equation:

i �
∂

∂t
|ψ(r, t)〉 = H

(0)
D |ψ(r, t)〉 , (5.200)

H
(0)
D |ψ(r, t)〉 = E|ψ(r, t)〉 . (5.201)
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The equal status of position and time components is typical for the theory of
relativity, which manifests itself already in the matrix of the Lorentz transforma-
tion ((1.16), Vol. 4). A relativistic wave equation should therefore be symmetric
with respect to space and time coordinates, i.e., in particular, it should be for the
space coordinates, too, a differential equation of first order. That is obviously
guaranteed by the Dirac equation (5.198).

We note at this stage that for the description of the electron in the electro-
magnetic field (vector potential A(r, t), scalar potential ϕ(r, t)) we have only to
perform in the so far derived relations the usual substitutions

p −→ p+ eA ; E −→ E + e ϕ .

These can be combined with the four-potential Aμ ((2.107), Vol. 4) to:

pμ −→ pμ + eAμ ; Aμ =

(
1

c
ϕ,A

)
. (5.202)

Analogously to (5.198) one comes then to the

Dirac equation of the electron in the electromagnetic field

[
i �

∂

∂t
− c α̂ ·

(
�

i
∇+ eA(r, t)

)
− β̂ me c

2 + e ϕ(r, t)

]
|ψ(r, t)〉 = 0 . (5.203)

The corresponding Dirac operator HD is then of the form:

HD = c α̂ · (p+ eA) + β̂ me c
2 − e ϕ . (5.204)

There still remains the task of fixing the Dirac matrices α̂ and β̂ using the
conditions (5.197). As already mentioned, the latter cannot be fulfilled by simple
c-numbers. But we remember that the Pauli spin matrices obey with (5.166) and
(5.167) the same relations as the three components of α̂. A direct identification

is, however, not possible, already because of the existence of β̂. One can show
that α̂ and β̂ must at least be 4 × 4-matrices, where with the following choice
(5.197) can be fulfilled (Exercise 5.3.1):

α̂ =

(
0 σ
σ 0

)
; β̂ =

(
1l2 0
0 −1l2

)
. (5.205)

The components of the spin operator σ (5.164) are the Pauli 2×2-spin matrices.
1l2 is the 2 × 2-unit matrix. The Dirac operator (5.199) becomes therewith a
4× 4-matrix:

H
(0)
D ≡

⎛

⎜⎜⎝

me c
2 0 c pz c(px − i py)

0 me c
2 c(px + i py) −c pz

c pz c(px − i py) −me c
2 0

c(px + i py) −c pz 0 −me c
2

⎞

⎟⎟⎠ . (5.206)
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Correspondingly, the wave function |ψ(r, t)〉 must also be a four-component

quantity. One reads off from (5.199) that H
(0)
D commutes with the momentum

operator. The following ansatz for |ψ〉 therefore appears rather promising:

|ψ(r, t)〉 = â exp

(
− i

�
pμxμ

)

= â exp

[
i

�
(p · r− E t)

]
. (5.207)

That is nothing else but the relativistic-covariantly written plane wave (eigen-
function of the momentum!), multiplied by a column vector,

â ≡

⎛

⎜⎜⎝

a1
a2
a3
a4

⎞

⎟⎟⎠ , (5.208)

with four position-independent components. One calls â or also |ψ(r, t)〉 a Dirac
spinor. If we apply this ansatz in the time-independent Dirac equation (5.201)
then we come to the following homogeneous system of equations:

⎛

⎜⎜⎝

me c
2 − E 0 c pz c(px − i py)
0 me c

2 − E c(px + i py) −c pz
c pz c(px − i py) −me c

2 − E 0
c(px + i py) −c pz 0 −me c

2 − E

⎞

⎟⎟⎠

⎛

⎜⎜⎝

a1
a2
a3
a4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ .

(5.209)

In contrast to (5.206) the momenta px, py, pz in this matrix are no longer oper-
ators, but numbers, which came out as eigen-values after the application of the
operators in (5.206) onto the plane wave (5.207). The zeros of the determinant
of the matrix of coefficients in (5.209),

0
!
=
{(

me c
2
)2 − E2 + c2p2

}2

,

correspond to the energy-eigen values of the Dirac operator:

Eη = η Ep ; η = ± ; Ep =
√
c2p2 +m2

e c
4 . (5.210)

Each of the two eigen-values is twofold degenerate. It is, at first, becalming
that, as eigen-value, the classical relativistic energy-momentum relation of the
free electron comes out. That holds, however, only for E+. There is a second
solution E−, which, at first glance, seems to describe a rather unphysical behav-
ior. The energy E− decreases with increasing momentum! Although highly
interesting and important we cannot follow here the detailed interpretation of
this aspect. It has the fundamental consequence of the theoretical prediction,



58 CHAPTER 5. QUANTUM THEORY OF THE ANGULAR MOMENTUM

due to P. Dirac, of the positron, the antiparticle of the electron. The positron
has the same mass as the electron and an opposite equal, positive charge. It
is in the meantime experimentally uniquely established, so that E− is indeed a
physical solution. Since this section, however, is about, exclusively, giving rigor-
ous reasons for the electron spin, we will restrict ourselves in the next sections
to the electronic solution E+.

To each of the two eigen-values E+ and E− there exist two linearly inde-
pendent eigen-spinors â±1,2, which we will distinguish, at first, by the lower
indexes 1 and 2. In order to determine them, we have to take in (5.209)
E = E±. One recognizes that, for instance, the first two rows of the matrix
are orthogonal to each other, while the third and the fourth row can be written
as linear combinations of the first two. The other way round, the third and
the fourth row are orthogonal, and the first and the second row are linear com-
binations of them. If we, for the moment, disregard normalizations, then we

can quickly fix with the presetting
(
a
(+)
11 = 1, a

(+)
12 = 0

)
,
(
a
(+)
21 = 0, a

(+)
22 = 1

)
,

(
a
(−)
13 = 1, a

(−)
14 = 0

)
, (a

(−)
23 = 0, a

(−)
24 = 1) the respective two other spinors

â
(±)
1 , â

(±)
2 by the use of (5.209):

â
(+)
1 ≡ d

⎛

⎜⎜⎜⎜⎜⎝

1
0

c pz

Ê
c p+

Ê

⎞

⎟⎟⎟⎟⎟⎠
; â

(+)
2 ≡ d

⎛

⎜⎜⎜⎜⎜⎝

0
1

c p−
Ê

−c pz

Ê

⎞

⎟⎟⎟⎟⎟⎠
, (5.211)

â
(−)
1 ≡ d

⎛

⎜⎜⎜⎜⎜⎜⎝

−c pz

Ê

−c p+

Ê
1
0

⎞

⎟⎟⎟⎟⎟⎟⎠
; â

(−)
2 ≡ d

⎛

⎜⎜⎜⎜⎜⎜⎝

−c p−
Ê

c pz

Ê
0
1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.212)

Here we have written for abbreviation:

Ê = Ep +me c
2 ; p± = px ± i py . (5.213)

The normalization constant d can be chosen as real, and then it is the same for
all the four spinors:

d =
me c

2 + Ep√
(me c2 + Ep)

2 + c2p2

=
1√

1 +
c2p2

Ê2

−→
v� c

1 . (5.214)



5.3. RELATIVISTIC THEORY OF THE ELECTRON 59

The four column vectors are obviously pairwise orthogonal. The vectors

â
(+)
1 and â

(+)
2 hence build a basis of the E+-eigen space; â

(−)
1 and â

(−)
2 span

the eigen-space of the eigen-value E−. Any arbitrary linear combination of â
(±)
1

and â
(±)
2 is then of course also an eigen-solution to the energy E±. The Dirac

equation (5.198) is therewith in principle solved. However, let us try to find out

something more about the degenerate solutions â
(+)
1,2 and â

(−)
1,2 , respectively. In

the sense of our general discussion in Sect. 3.3 (Vol. 6) we did not yet succeed in
preparing pure states. We should search for an observable, whosemeasurement
removes the still existing degeneracy. On the other hand, the observable must

commute with the Dirac operator H
(0)
D , in order to build together with it a

complete set of compatible observables (see Sect. 3.3.3, Vol. 6).

5.3.2 Dirac Spin Operator

We define as relativistic generalization of the Pauli spin operator σ in (5.164)
the Dirac spin operator:

Ŝ =
�

2
σ̂ ; σ̂ =

(
σ 0
0 σ

)
. (5.215)

This is, at this stage, only a definition, which ascribes to this 4 × 4-matrix a
certain name. We have discussed the physical property spin in the preceding
section. That the operator Ŝ has something to do with this property, which
would justify its name, is still to be shown.

We had agreed upon in Sect. 5.1 that a vector operator can always be inter-
preted as angular momentum when its components fulfill the fundamental com-
mutation relations (5.14). For the components of Ŝ,

Ŝx =
�

2

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ ;

Ŝy =
�

2

⎛

⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞

⎟⎟⎠ ;

Ŝz =
�

2

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟⎠ , (5.216)

the validity of (5.14) can indeed be shown (Exercise 5.3.2), so that Ŝ actually
represents an angular momentum. A special component of the Dirac spin oper-
ator is interesting for our purposes here, namely the component in the direction
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of the momentum p:

Ŝp =
1

p

(
Ŝ · p

)
=

�

2p

⎛

⎜⎜⎝

pz p− 0 0
p+ −pz 0 0
0 0 pz p−
0 0 p+ −pz

⎞

⎟⎟⎠ . (5.217)

Ŝp is a Hermitian operator which commutes with the Dirac operatorH
(0)
D . One

easily calculates:

H
(0)
D Ŝp = Ŝp H

(0)
D =

�

2p

⎛

⎜⎜⎝

me c
2pz me c

2p− cp2 0
me c

2p+ −me c
2pz 0 cp2

cp2 0 −me c
2pz −me c

2p−
0 cp2 −me c

2p+ me c
2pz

⎞

⎟⎟⎠ .

The other components of Ŝ, in contrast, do not commute with H
(0)
D .

But Ŝp might be now the wanted observable, which together withH
(0)
D builds

a complete set of compatible observables, and whose measurement uniquely clas-

sifies the energetically degenerate (mixed) states â
(+)
1,2 and â

(−)
1,2 in (5.211) and

(5.212).
The eigen-spaces to the energy-eigen values E+ and E− are both two-

dimensional. The operator Ŝp is therefore represented in these spaces by 2× 2-
matrices, which turn out to be the same in both spaces: With the basis states
(5.211) and (5.212) one finds:

Ŝp ≡
(〈

â
(±)
i

∣∣∣ Ŝp

∣∣∣ â(±)
j

〉)

i, j =1,2
=

�

2p

(
pz p−
p+ −pz

)
. (5.218)

From the secular determinant

det
(
Ŝp − �mσ 1l2

)
!
= 0

we get the eigen-values �mσ of the Dirac spin operator Ŝp:

m↑ = +
1

2
; m↓ = −1

2
. (5.219)

Ŝp is thus an angular momentum-1/2-operator, exactly like the electron spin,
which was empirically introduced in Sect. 5.2.4. The physical reason for the
twofold degeneracy of the energy E+ and E−, respectively, is therefore to be
found in the two possibilities for the orientation of the Dirac spin rel-
ative to the momentum direction. The corresponding eigen-states are of

course special linear combinations of the original basis states â
(+)
1,2 and â

(−)
1,2 .
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One finds:

|+, ↑〉 ≡ â
(+)
↑ =

√
p+ pz
2p

â
(+)
1 +

p+√
2p(p+ pz)

â
(+)
2

=
d√

2p(p+ pz)

⎛

⎜⎜⎜⎜⎝

p+ pz
p+

c p

Ê
(p+ pz)

c p

Ê
p+

⎞

⎟⎟⎟⎟⎠
, (5.220)

|+, ↓〉 ≡ â
(+)
↓ = −

√
p− pz
2p

â
(+)
1 +

p+√
2p(p− pz)

â
(+)
2

=
−d√

2p(p− pz)

⎛

⎜⎜⎜⎜⎝

p− pz
−p+

−c p

Ê
(p− pz)

c p

Ê
p+

⎞

⎟⎟⎟⎟⎠
, (5.221)

|−, ↑〉 ≡ â
(−)
↑ =

√
p+ pz
2p

â
(−)
1 +

p+√
2p(p+ pz)

â
(−)
2

=
d√

2p(p+ pz)

⎛

⎜⎜⎜⎜⎝

−c p

Ê
(p+ pz)

−c p

Ê
p+

p+ pz
p+

⎞

⎟⎟⎟⎟⎠
, (5.222)

|−, ↓〉 ≡ â
(−)
↓ = −

√
p− pz
2p

â
(−)
1 +

p+√
2p(p− pz)

â
(−)
2

=
−d√

2p(p− pz)

⎛

⎜⎜⎜⎜⎝

c p

Ê
(p− pz)

−c p

Ê
p+

p− pz
−p+

⎞

⎟⎟⎟⎟⎠
. (5.223)

The common eigen-spinors of the operators H
(0)
D and Ŝp are thus characterized

by the four possible combinations of the eigen-values E = ±Ep and mσ = ±1/2:
η = ±; σ =↑, ↓:

H
(0)
D |η, σ〉 = η Ep|η, σ〉 ,
Ŝp|η, σ〉 = �mσ|η, σ〉 . (5.224)

With the constant d from (5.214) the four eigen-states |η, σ〉 are each normalized
to one!

The considerations of this section, with the complete solution of the Dirac
equation (5.198) and the subsequent analysis of the degenerate eigen-states of
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the Dirac operator H
(0)
D by the use of the spin operator Ŝ (5.215), have brought

about distinct leads to the physical property spin. In any case, the relativis-
tic electron possesses besides the mass me and the charge −e another particle
property, namely the angular momentum 1/2. This property is intrinsic and is

for all electrons the same. It holds for the square of the Dirac spin operator Ŝ 2:

Ŝ 2 =
�
2

4

[(
σ2
x 0
0 σ2

x

)
+

(
σ2
y 0
0 σ2

y

)
+

(
σ2
z 0
0 σ2

z

)]

5.166
=

3�2

4

(
1l2 0
0 1l2

)
= �

2 1

2

(
1

2
+ 1

)
1l4 , (5.225)

so that it likewise follows for all basis states (5.220)–(5.223):

Ŝ 2|η, σ〉 = �
2S(S + 1)|η, σ〉 ; S =

1

2
. (5.226)

Any arbitrary, the Dirac-electron characterizing state in the space of solutions
can be written as linear combination of the |η, σ〉, therewith also possessing the
property S = 1/2.

We have gained the hints for this particle property, though, so far only
by a mathematically abstract evaluation of the Dirac equation. A pictorial
interpretation as intrinsic angular momentum actually did not suggest itself
anywhere. The physical equivalence of the spin Ŝ with the orbital angular
momentum L, which is familiar to us because it has a classical analog, is revealed
by the following consideration:

According to the discussion at the end of Sect. 5.1.3 (see (5.47)), we expect
non-relativistically, that the orbital angular momentum L is a constant of motion
in a central potential, and therefore commutes with the Hamilton operator.
That should then be valid especially for the free particle. This expectation is

not fulfilled, though, by the Dirac-operator H
(0)
D . It rather holds, as we will

explicitly check again as Exercise 5.3.3 (part 2.):
[
L, H

(0)
D

]

−
= i � c (α̂× p) . (5.227)

This non-commutability remains unchanged even in the non-relativistic limit
v � c. The orbital angular momentum L is obviously not at all the complete
angular momentum of the electron. Let us therefore consider, in addition, the

Dirac spin operator Ŝ. For the calculation of the commutator of Ŝ with H
(0)
D ,

done as Exercise 5.3.3 (part 1.), we exploit that all components of Ŝ commute
with those of the momentum operator p:

[
Ŝ, H

(0)
D

]

−
= −i � c (α̂× p) . (5.228)

We recognize that neither Ŝ nor L are conserved quantities, while the sum of
both of them is conserved:

[
L+ Ŝ, H

(0)
D

]

−
= 0 . (5.229)
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This suggests the following interpretation:

Ŝ ⇐⇒ spin operator with the character of an angular momentum,

J = L+ Ŝ ⇐⇒ total angular momentum operator of the electron.

There still remains, however, a problem: The empirically motivated theory of
the electron spin in Sect. 5.2, which finally led to the Pauli equation (5.190),

was a two-component theory. The Dirac spin operator Ŝ as well as H
(0)
D act,

however, on four-component spinors. That does not yet really fit! On the
other hand, we have established in this section a fully relativistic theory, while
all our previous considerations never left the framework of the non-relativistic
Quantum Mechanics. It thus suggests itself to analyze the statements of the
Dirac theory tentatively for the non-relativistic limit v � c.

5.3.3 Electron Spin (Pauli-Theory)

In order to demonstrate that a magnetic moment is also associated with the
quantity spin, introduced in the last section, we use for the following considera-
tions, directly the Dirac operator (5.204) for the electron in the electromagnetic
field. For this purpose, we restrict ourselves from now on to the subspace of
solutions with positive energies (electrons!).

We now decompose the general four-component Dirac spinor into two two-
component vectors :

|ψ〉 =

⎛

⎜⎝
ψ1

...
ψ4

⎞

⎟⎠ =

(
ψ̂
0

)
+

(
0
χ

)
, (5.230)

with

|ψ̂〉 =
(
ψ1

ψ2

)
; |χ〉 =

(
ψ3

ψ4

)
. (5.231)

This is, at first, only a slightly changed notation, which, however, will turn out
to be convenient under certain conditions. This is for instance the case when
the components of |ψ̂〉 and |χ〉 are of different orders of magnitude. We are, in
the last analysis, really interested in the non-relativistic Quantum Mechanics,
i.e., we are interested in the corresponding non-relativistic limiting case v � c
of the Dirac theory. In this limit, the energy-eigen value Ep of the free electron
(5.210) differs only slightly from its rest energy me c

2 ((2.55), Vol. 4). The
difference

T = Ep −me c
2 = me c

2

(√

1 +
p2

m2
ec

2
− 1

)
=

p2

2me

[
1 +O

(
v2

c2

)]
(5.232)

is then just the well-known expression of the kinetic energy of the electron. Let
us estimate therewith the relative orders of magnitude of the two components
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|ψ̂〉 and |χ〉. Since |ψ〉 can be written as linear combination of the basis states
(5.211) with coefficients of the order one, we can perform the intended estimation
also directly with the components in (5.211):

∣∣∣∣∣
â
(+)
13

â
(+)
11

∣∣∣∣∣

2

=

∣∣∣∣∣
â
(+)
24

â
(+)
22

∣∣∣∣∣

2

=
c2p2z

(Ep +me c2)2

≤ c2p2

(Ep +me c2)2
=

Ep −me c
2

Ep +me c2
=

T

T + 2me c2
= O

[(v
c

)2
]
.

Analogously, one finds:

∣∣∣∣∣
â
(+)
14

â
(+)
11

∣∣∣∣∣

2

=

∣∣∣∣∣
â
(+)
23

â
(+)
22

∣∣∣∣∣

2

=
c2(p2x + p2y)

(Ep +me c2)2
= O

[(v
c

)2
]
.

The components â
(+)
13 , â

(+)
14 and â

(+)
23 , â

(+)
24 thus become in the non-relativistic

limit negligibly small compared to â
(+)
11 and â

(+)
22 . That transfers immediately

to our general spinor (5.230). The magnitudes |ψ3,4| will be very much smaller
than |ψ1,2|. This fact, which we have estimated here for a free electron, will
not change substantially even when we switch on a ‘normal’ electromagnetic
field. Ultimately, this is the motive for the decomposition (5.230), because
therewith the Dirac-theory becomes in the non-relativistic limit equivalent to
a two-component theory, the so-called Pauli-theory, which we now want to deal
with.

We apply the Dirac operator HD from (5.204) to the four-component spinor

(5.230). If the actions of the Dirac matrices α̂ and β̂ are, according to (5.205),
already made, then it remains as an eigen-value equation:

HD

(
ψ̂
χ

)
= c(p+ eA) ·

(
σ χ

σ ψ̂

)
+me c

2

(
ψ̂
−χ

)
− e ϕ

(
ψ̂
χ

)
!
= E

(
ψ̂
χ

)
.

This leads to the following system of equations:

(
E −me c

2 + e ϕ
) |ψ̂〉 = c(p+ eA) · σ|χ〉 , (5.233)

(
E +me c

2 + e ϕ
) |χ〉 = c(p+ eA) · σ|ψ̂〉 . (5.234)

So far everything is exact. The last equation demonstrates once more the dif-
ferent orders of magnitude:

|χ〉 = (
E +me c

2 + e ϕ
)−1

c(p+ eA) · σ|ψ̂〉 . (5.235)

The eigen-value E of the Dirac-electron in a normal electromagnetic field is of
course, like that of the free electron Ep, also of the order of magnitude me c

2.
One can therefore estimate:

E ≈ me c
2 + e ϕ ≈ me c

2 ; E +me c
2 ≈ 2me c

2 .
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The still exact equation (5.235) can be therewith simplified:

|χ〉 ≈ 1

2me c
(p+ eA) · σ|ψ̂〉+O

(
v2

c2

)
. (5.236)

Because of |χ〉 ≈ O (v/c) |ψ̂〉 the notations small component for |χ〉 and large

component for |ψ̂〉 have established themselves in the literature.
For the Pauli-theory as the non-relativistic limiting case of the Dirac-

theory, the estimation (5.236) for the small component suffices. Inserting this
expression into (5.233) we obtain an eigen-value equation for the large compo-

nent |ψ̂〉:

Hp|ψ̂〉 = (E −me c
2)|ψ̂〉 ,

Hp =
1

2me
[(p+ eA) · σ] [(p+ eA) · σ]− e ϕ 1l2 . (5.237)

We call Hp the Pauli-Hamilton operator. Since the Pauli spin matrices commute
with p and A we can apply for a further reformulation the relation, which we
proved in part 2. of Exercise 5.2.2,

(σ · a) (σ · b) = a · b 1l2 + iσ · (a× b) . (5.238)

Thereby we still need:

(p+ eA)× (p+ eA) = e(p×A+A× p)

= e

(
�

i
curlA−A× p+A× p

)
= e

�

i
B .

B = curlA is as usual the magnetic induction. The Pauli-Hamilton operator,
which finally represents a 2× 2-matrix, has then the form:

Hp =

[
1

2me
(p+ eA)2 − e ϕ

]
1l2 +

e �

2me
σ ·B . (5.239)

That is the Hamilton operator of a particle of mass me, charge q = −e and the
magnetic moment

μS = −2
μB

�
S = − e �

2me
σ = −μBσ . (5.240)

We recognize that Hp agrees exactly with the Hamilton operator (5.191) from
the Pauli equation, which was empirically justified in Sect. 5.2. With the angular
momentum spin, derived from the Dirac-theory, there is an associated magnetic
moment μS, which has exactly the structure (5.183) required from experiment.
This perfect link of the non-relativistic limit of the Dirac-theory with the empir-
ical theory of Sect. 5.2.4, which was forced by experimental facts, now proves
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without any additional plausibility-assumption the following statements:

1. The spin S = (�/2)σ exists as a fundamental relativistic property of
the electron. It is an angular momentum with the eigen-values ± �/2 for
the z-component.

2. A magnetic moment μS = μS S is associated with the spin, which, in
the Hamilton operator couples linearly to the external magnetic field B
(5.239).

3. The Landé factor g of the electron, μS = −g(μB/�), is exactly equal to
two.

Two fundamental demands of the experiment are therewith theoretically
explained without any additional assumption.

5.3.4 Spin-Orbit Interaction

We had already conjectured in Sect. 5.2 that the Hamilton operator, derived in
(5.188), which agrees for V (r) = −e ϕ(r) with the Pauli-Hamilton operator Hp

from (5.239), is in this form perhaps not yet complete. If, in the last analysis,
orbital angular momentum L and spin S are congenial angular momenta, then
a mutual impact on each other should not be completely excluded. Such an
interference is indeed the case. One speaks of a spin-orbit interaction, which
is, however, a purely relativistic effect, and therefore needs for its investigation
the Dirac-theory of the last sections.

One realizes already the essential with a simple classical estimation, which
we will present here before the exact solution. The electron moves in the rest
system of the positively charged nucleus, which creates an electromagnetic field:

E = −∇ϕ(r) .

Since the electron moves relatively to the nucleus, it sees an electromagnetic
field E′, B′, for which the relativistic Electrodynamics ((2.142), (2.143), Vol. 4)
provides the expressions:

B′ = γ

[
B− 1

c
(β ×E)

]
− γ2

γ + 1
β(β ·B)

; β =
v

c

E′ = γ [E+ c(β ×B)]− γ2

γ + 1
β(β · E) .

Thereby, E and B = 0 are the fields in the rest system of the nucleus, E′ and
B′ those in the rest system of the electron, in which the positively charged
nucleus circulates around the electron. In the here interesting non-relativistic
limit v � c, γ ≈ 1. The relatively to the electron moving, positively charged
nucleus thus generates in the rest system of the electron a magnetic induction,

B′ ≈ − 1

c2
(v ×E) ,
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with which the electronic spin moment interacts. As derived in the last section,
in connection with (5.239), this interaction appears in the Hamilton operator of
the electron as an additional additive term:

Hcl
SO = 2

μB

�
S ·B′ =

2μB

� c2
(E× v) · S .

If we still assume that the potential of the nucleus is a central potential (ϕ(r) =
ϕ(r)), for which

E(r) = −dϕ

dr
er = −1

r

dϕ

dr
r ,

then we recognize in the vector product the orbital angular momentum L:

Hcl
SO = − e

m2
e c

2

(
1

r

dϕ

dr

)
(L · S) . (5.241)

This additional term expresses in direct manner the coupling of the electron
spin to the orbital motion in the field of the nucleus and therewith to the
orbital angular momentum. Except for a factor 2, (5.241) will even turn out to
be exact. We note in passing that this discrepancy can be traced back to the
fact that the rest system of the electron is not an inertial system. The above
transformation formulas (E,B) → (E′,B′), however, imply inertial systems.

For the rigorous derivation of the spin-orbit interaction we use again the
non-relativistic limiting case of the Dirac theory, where we, however,
have to develop the approximation one step further than in the preceding section
where we established the spin moment. There we had neglected already terms of
the order of magnitude O (

v2/c2
)
, in order to eliminate the small component |χ〉

and to come therewith from the original four-component theory to an effective
two-component theory. When neglecting |χ〉, i.e., at the transition from the

general four-component state |ψ〉 to the large component |ψ̂〉, we did not care
about, whether the normalization, important for the probability interpretation,
is conserved. We want to investigate this point now a bit more precisely:

|ψ〉 =
(
ψ̂
χ

)
=⇒ 〈ψ|ψ〉 = 〈ψ̂|ψ̂〉+ 〈χ|χ〉 .

We will take care of a conserved normalization during the transition to the
two-component theory by the following ansatz:

|ψ̂〉 = α|η〉 (5.242)

The quantity α will thereby be an operator. But we presume, what later has to
be explicitly checked, that it is an Hermitian operator with an existing inverse
α−1:

〈ψ|ψ〉 !
= 〈η|η〉 = 〈ψ̂|ψ̂〉+ 〈χ|χ〉 . (5.243)
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|η〉 is the new state of our non-relativistic two-component theory, which replaces

|ψ̂〉 and possesses the correct normalization.
Let us discuss the same situation as that of the preceding classical consider-

ation, which led to (5.241). In this sense, the electron moves in an electrostatic
potential ϕ(r), which may be generated by a positively charged nucleus. An
external magnetic field B is irrelevant for the spin-orbit interaction, which we
want to derive. It is therefore in this section not taken into consideration. Then
we have, at first, according to (5.235) with A ≡ 0, for the small component |χ〉:

|χ〉 = c

E +me c2 + e ϕ
(p · σ)|ψ̂〉 . (5.244)

The energy, which is small in the non-relativistic region, is, according to (5.232),
not E but

T = E −me c
2 . (5.245)

We substitute correspondingly and then expand (5.244) in powers of v/c. We
apply thereby the useful series expansion:

(1 + x)m = 1 +mx +
m(m− 1)

2!
x2 + . . .

. . .+
m(m− 1) · · · (m− n+ 1)

n!
xn + . . . (5.246)

(m integer or rational) ,

which for x � 1 can be terminated, according to the required accuracy, already
after a few terms.

|χ〉 =
1

2me c

(
1 +

T + e ϕ

2me c2

)−1

(p · σ)|ψ̂〉

=
1

2me c

[
1− T + e ϕ

2me c2
+O

(
v4

c4

)]
(p · σ)|ψ̂〉 . (5.247)

The expansion is therefore done one step further than in (5.236). However, the
decoupling of large component and small component is no longer so simple. By
insertion of (5.247) into (5.243) we fulfill the normalization condition up to the
terms of the order of magnitude O (

v2/c2
)
:

〈ψ|ψ〉 !
= 〈η|η〉 = 〈ψ̂|α−2|ψ̂〉 = 〈ψ̂|ψ̂〉+ 〈χ|χ〉

(5.247)
= 〈ψ̂|

[
1 +

1

4mec2
(p · σ)2 +O

(
v4

c4

)]
|ψ̂〉

� α ≈ 1− 1

8mec2
(p · σ)2 .
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According to the vector formula (5.238), (p · σ)2 is equal to p21l2. The nor-
malization condition is then obviously satisfied, in correspondence to our ansatz
(5.242), by

|ψ̂〉 =
(
1− p2

8m2
e c

2

)
|η〉 . (5.248)

By insertion into (5.247), the small component |χ〉, too, can be expressed by
the new state |η〉:

|χ〉 = 1

2me c

[
(p · σ)

(
1− p2

8m2
e c

2

)
− T + e ϕ

2me c2
(p · σ) +O

(
v4

c4

)]
|η〉 .

(5.249)

One should regard the non-commutability of ϕ(r) and p in the third summand.
This and also the second summand are new compared to the estimation (5.236)
in the last section. They are, compared to the first term in the square bracket,
smaller by a factor of the order v2/c2 and have therefore been irrelevant for the
considerations in Sect. 5.3.3.

We now insert the expressions (5.248) and (5.249) into the exact relation
(5.233):

(T + e ϕ)

(
1− p2

8m2
e c

2

)
|η〉 ≈

≈ 1

2me

[
p2

(
1− p2

8m2
e c

2

)
− (p · σ) T + e ϕ

2me c2
(p · σ)

]
|η〉 . (5.250)

Because of the non-commutability of ϕ(r) and p,

[p, ϕ(r)]− =
�

i
∇ϕ(r) ,

the last term on the right-hand side must be handled with special care:

(p · σ) (T + e ϕ) (p · σ) =
1

2

[
p2(T + e ϕ) + (T + e ϕ)p2

]

+
1

2

�

i
e [(∇ϕ · σ) (p · σ)− (p · σ) (∇ϕ · σ)] .

We have here (T + e ϕ) symmetrically commuted with (p · σ), once to the left,
once to the right, and then added the two equivalent results. The factor 1/2
guarantees the equality. For a further evaluation, we use once more the vector
identity (5.238):

(∇ϕ · σ) (p · σ)− (p · σ) (∇ϕ · σ)
= (∇ϕ · p) 1l2 − (p ·∇ϕ) 1l2 + iσ · (∇ϕ× p)− iσ · (p×∇ϕ)

=

3∑

i=1

[
∂ϕ

∂xi
, pi

]

−
1l2 + 2iσ · (∇ϕ× p)

= −�

i
Δϕ 1l2 + 2iσ · (∇ϕ× p) .
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Convince yourself (Exercise 5.3.6) that indeed (∇ϕ × p) = −(p × ∇ϕ), which
we have exploited for the transition from the second to the third line. With
these reformulations we eventually get from (5.250):

(
1 +

p2

8m2
e c

2

)
(T + e ϕ)|η〉 ≈ p2

2me

(
1− p2

8m2
e c

2

)
|η〉

+

[
e �2

8m2
e c

2
Δϕ− e �

4m2
e c

2
(∇ϕ × p) · σ

]
|η〉 .

We multiply this equation by
(
1 + (p2/8m2

e c
2)
)−1

, expand it according to for-
mula (5.246), and neglect terms of the order of magnitude v4/c4. Therewith
we have then formally constructed, similar to as in the last section, a two-
component theory as non-relativistic limiting case of the Dirac-theory, and that,
too, in form of the following eigen-value equation:

Hnr|η〉 = E|η〉 . (5.251)

The non-relativistic Dirac operator Hnr is composed of several characteristic
terms:

Hnr = me c
2 +

p2

2me
− p4

8m3
e c

2
− e ϕ(r) + VD +HSO . (5.252)

The first three terms are the rest energy of the electron, the normal kinetic
energy, and the first relativistic correction to the kinetic energy. These are
nothing else but the three leading terms of the expansion of the relativistic
kinetic energy (m2

e c
4 + c2 p2)1/2 in powers of v/c. Their appearance in Hnr is

therefore not astonishing. The same holds for the potential energy (−e ϕ(r))
of the electron in the electrostatic field of the nucleus. On the other hand, the
operator VD is intuitively very difficult to explain. This so-called Darwin term,

VD =
e �2

8m2
e c

2
Δϕ , (5.253)

can be interpreted as the first relativistic correction to the potential energy of
the electron.

As to our original intention, the last term in (5.252) is the most important
one,

HSO = − e �

4m2
e c

2
(∇ϕ× p) · σ , (5.254)

because it represents a spin-orbit interaction. If we use in (5.254) the spin
operator S = (�/2)σ, and if we assume, as for our classical estimation in (5.241),
a spherical-symmetric potential of the nucleus,

∇ϕ =
1

r

dϕ

dr
r ,
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then we get:

HSO = λ(L · S) ; λ = − e

2m2
e c

2

(
1

r

dϕ

dr

)
. (5.255)

We see that our classical result Hkl
SO (5.241) was indeed already correct except

for a factor 1/2. As a plausible approximation one may write ϕ(r) ∼ 1/r, and
therewith λ ∼ 1/r3. The spin-orbit interaction thus decreases with the third
power of the distance from the nucleus.

The operatorHSO brings about that, even in the absence of an external mag-
netic field, orbital angular momentum L and spin S do no longer commute with
the Hamilton operator of the electron, if this is subject to a nuclear potential
ϕ(r) �= 0. It namely holds (Exercise 5.3.5):

[L · S,L]− = i �(L× S) = − [L · S,S]− . (5.256)

The total angular momentum J = L+ S, however, which we introduced at the
end of Sect. 5.3.2, commutes obviously with HSO,

[HSO,J]− = 0 , (5.257)

and, consequently, with the total Hamilton operator (integral of motion). Fur-
thermore, we prove in Exercise 5.3.5 the following commutation relations:

[HSO,L
2]− = [HSO,S

2]− = [HSO,J
2]− = 0 . (5.258)

Hence, there must exist common eigen-states,

|x; j l S mj〉 ,
for the operators HD, J

2, L2, S2 and Jz , which we can specify by the angular-
momentum-quantum numbers j, l, S and mj . mj is here the magnetic quantum
number of the total angular momentum (Jz |x; j l S mj〉 = �mj |x; j l S mj〉;−j ≤
mj ≤ +j). In x we gather all the quantum numbers, which have nothing to
do with angular momenta, but are necessary via HD for the identification of
the states. The explicit appearance of the total angular momentum J in the
maximal set of compatible observables for the preparation of the pure states
of the atomic electron raise the question, important also in other connections,
what we know about the correct addition of angular momenta, which we will
therefore deal with extensively in the following Sect. 5.4.

The probably most important consequence of the spin-orbit interaction leads
to a

fine structure of the energy levels

which are available for the electrons in atoms (molecules). We anticipate here
the detailed considerations in Chap. 6, by which we want to give reasons for the
classically incomprehensible stationary electron states in the atom. We will be
able to show that, without spin-orbit interaction and without external magnetic
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field, the electrons in the atom will take discrete energies Exl. These will then
get after the switching on of the spin-orbit interaction HSO, because of

L · S =
1

2
(J2 − L2 − S2) ,

a fine structure, i.e., they split once more:

Exljs = 〈x; j l S mj |H |x; j l S mj〉
= Exl + 〈x; j l S mj |HSB|x; j l S mj〉
= Exl +

1

2
λ �2 [ j(j + 1)− l(l + 1)− S(S + 1)] . (5.259)

Because of the factor 1/c2 in λ the splitting is very small. It is, however, with
the today spectroscopic means definitely observable!

We want to finish our considerations on the relativistic theory of the elec-
tron with a final remark. In lowest order v/c Dirac-theory and Pauli two-
component theory are equivalent. The transition from the four- to the two-
component theory succeeds relatively simply by a decoupling of the large and
the small component of the Dirac spinor. In contrast, the justification of the
spin-orbit interaction, presented in this section, proves to be substantially more
involved, since it is a relativistic effect of higher order. Nevertheless, one can of
course derive by a systematic development of the exact equations (5.233) and
(5.234) the required relativistic corrections. An essentially more elegant pro-
cedure represents the so-called Foldy-Wouthuysen transformation (L.L. Foldy,
S.A. Wouthuysen, Phys. Rev. 78, 29(1950)). It is about a rather subtle unitary
transformation of the operators and spinors in the Dirac-theory, which takes care
in each order of v/c for a complete decoupling of the large and the small compo-
nent, so that one can simply disregard the latter reaching therewith directly a
two-component theory. A detailed investigation of this ansatz, though, exceeds
the limit of this ground course.

5.3.5 Exercises

Exercise 5.3.1
Show that the Dirac matrices (5.205)

α̂ =

(
0 σ
σ 0

)
; β̂ =

(
1l2 0
0 −1l2

)

fulfill the conditions (5.197):

[α̂i, α̂j ]+ = 2δij 1l4 ; [α̂i, β̂ ]+ = 0 ; β̂2 = 1l4 .

Exercise 5.3.2
Show that the Cartesian components of the Dirac spin operator (5.215),

Ŝ =
�

2

(
σ 0
0 σ

)
; (σ : Pauli spin operator) ,
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fulfill the fundamental commutation relations (5.14):

[Ŝx, Ŝy]− = i � Ŝz, . . . and cyclic .

Exercise 5.3.3
Calculate for a free Dirac electron the commutators

1. [Ŝ, H
(0)
D ]− ;

2. [L, H
(0)
D ] ,

where Ŝ is the Dirac spin operator and L the operator of the orbital angular
momentum.

Exercise 5.3.4
Calculate for a (relativistic) electron in an external electromagnetic field (vec-
tor potential A(r, t), scalar potential ϕ(r, t)) the equations of motion of the
observables position r and mechanical momentum pm = p + eA (Heisenberg
representation!). Show that the time-dependent operators fulfill the classical
Lorentz-force law

d

dt
pm = −e[E+ ṙ×B] .

(Ehrenfest theorem!)

Exercise 5.3.5
Calculate for the operator of the spin-orbit interaction

HSO = λ(L · S)
the following commutators:

1. [HSO,L]− ,

2. [HSO,S]− ,

3. [HSO,L
2]− ,

4. [HSO,S
2] ,

5. [HSO,J
2]− (J = L+ S) .

Exercise 5.3.6
Prove the relation, which was needed for the derivation of (5.251),

(∇ϕ× p) = − (p×∇ϕ) ,

in which p represents the momentum of the particle, and ϕ(r, t) the (twofold
continuously differentiable) scalar electric potential, in which the particle moves.
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5.4 Addition of Angular Momenta

5.4.1 Total Angular Momentum

We have seen in the last section that occasionally it can become necessary to
combine two individual angular momenta, whose eigen-values and eigen-states
are known, to a total angular momentum. For instance, according to (5.256)
and (5.257), neither the spin S nor the orbital angular momentum L of the
electron are integrals of motion, but, in contrast, the total angular momentum
J = L + S is a constant of motion. Considerations are therefore of course
interesting, how one can derive the properties of J from those of L and S. In
the following we will get to know further examples, which are concerned with the
necessity of adding angular momenta. The problem shall therefore be discussed,
at first, very generally, in order to be applied then in the form of exercises to
concrete problems.

Starting point shall be two vector operators J1 and J2, which commute with
each other,

[J1,J2]− = 0 , (5.260)

and whose components are Hermitian operators. They are assumed to fulfill the
fundamental commutation relations (5.14), so that, according to our previous
definition, J1 and J2 are angular momenta with all the properties derived in
Sect. 5.1.4. In this sense, J2

i and Jiz (i = 1, 2) possess common eigen-states
|jimi〉:

J2
1,2|j1,2 m1,2〉 = �

2j1,2 (j1,2 + 1)|j1,2 m1,2〉 , (5.261)

J1,2 z|j1,2 m1,2〉 = �m1,2|j1,2 m1,2〉 . (5.262)

We interpret J1 and J2 as the angular momenta of two partial systems 1 and 2.
The states of the system, which is composed by 1 and 2, can then be symbol-
ized by

|γ; j1 j2;m1 m2〉 ,
where γ gathers all quantum numbers, which are indispensable for the definition
of a pure state, but which have nothing to do with the angular momenta. They
are therefore the eigen-values of observables Γi, which build together with

J2
1,J

2
2, J1z, J2z (5.263)

a complete set of compatible observables, i.e. in particular, they commute with
the angular momenta. For each γ, the eigen-states of the operator set (5.263)
thus span a subspace Hγ , where each subspace Hγ can be treated separately.
Since we are interested here only in properties of the angular momentum, we
restrict our considerations to a fixed Hγ and drop from now on, for simplifying
the paperwork, the index γ from the state symbols. In the subspace Hγ , already
the operators (5.263) build a complete set. Their common eigen-states can be
built up as product states of the |j1,2 m1,2〉 in (5.261) and (5.262):

|j1 j2;m1 m2〉 ≡ |j1 m1〉|j2 m2〉 . (5.264)
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We call the vector sum of the two angular momenta J1 and J2

total angular momentum

J = J1 + J2 . (5.265)

The fact that J is really an angular momentum, is easily shown. Using (5.260)
one calculates, for instance:

[Jx, Jy]− = [J1x + J2x, J1y + J2y]− = [J1x, J1y]− + [J2x, J2y]−
= i � J1z + i � J2z = i � Jz .

Analogously, one checks the two other fundamental commutator relation (5.14).
J is thus an angular momentum!

One now realizes immediately that the states (5.264) are also eigen-states of
the z-component Jz of the total angular momentum:

Jz |j1j2;m1m2〉 = (J1z + J2z)|j1m1〉|j2m2〉
= �(m1 +m2)|j1j2;m1m2〉 . (5.266)

They are, though, not eigen-states of J2. Because

J2 = J2
1 + J2

2 + 2J1 · J2 (5.267)

J2 does not commute with J1z and J2z:

[J2, J1z]− = 2[J1xJ2x + J1yJ2y, J1z]−
= 2[J1x, J1z]−J2x + 2[J1y, J1z]− J2y

= 2i �(J1 × J2)z = −[J2, J2z ]− . (5.268)

On the other hand, we have:

[J2, Jz ]− = [J2,J2
1]− = [J2,J2

2]− = 0 . (5.269)

The observables

J2, Jz,J
2
1,J

2
2 (5.270)

thus represent also a maximal set of commuting observables. When we recall
once more the example of the electron, then we remember that J2, Jz, J

2
1 =

L2,J2
2 = S2 are the actual constants of motion. Their common eigen-states,

|j1j2; j mj〉 (−j ≤ mj ≤ +j) ,

are therefore possibly more interesting than the product states (5.264). They
are subject to the usual eigen-value equations of angular momenta:

J2|j1j2; j mj〉 = �
2j(j + 1)|j1j2; j mj〉 , (5.271)

Jz|j1j2; j mj〉 = �mj|j1j2; j mj〉 , (5.272)

J2
1,2|j1j2; j mj〉 = �

2j1,2 (j1,2 + 1)|j1j2; j mj〉 . (5.273)
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The product states (5.264) build in Hγ an orthonormal basis. Hence, the states
|j1j2; j mj〉 can in any case be expanded in these basis states:

|j1j2; j mj〉 =
∑

j′1j
′
2

∑

m′
1m

′
2

∣∣j′1j′2;m′
1m

′
2

〉〈
j′1j

′
2;m

′
1m

′
2|j1j2; j mj

〉
. (5.274)

It is now easy to realize that the expansion coefficients can be unequal zero
only if j1 = j′1 and j2 = j′2. For the proof one uses that J2

1, J
2
2 are Hermitian

operators with positive quantum numbers j1, j2:

0 = 〈j′1j′2;m′
1m

′
2|
(
J2
i − J2

i

) |j1j2; j mj〉
= �

2 [ j′i(j
′
i + 1)− ji(ji + 1)] 〈j′1j′2;m′

1m
′
2|j1j2; j mj〉 .

For ji �= j′i the matrix element must therefore vanish. The quadruple sum thus
simplifies to a double sum:

|j1j2; j mj〉 =
∑

m1m2

|j1j2;m1m2〉〈j1j2;m1m2|j1j2; j mj〉 .

The amplitudes of this expansion are called

Clebsch-Gordan coefficients:

Cj1j2 (m1m2; j mj) ≡ 〈j1j2;m1m2|j1j2; j mj〉 . (5.275)

Later they will be discussed in detail. Since, according to (5.274), states with
different ji do not mix, we can for the following considerations, without loss of
information, besides γ fix also j1 and j2. Each subspace Hγ(j1, j2) of Hγ can
be treated separately.

There remain two important questions to be clarified:

1. Which values can be adopted by j for given j1, j2?

2. How can the Clebsch-Gordan coefficients of the expansion law (5.274) be
explicitly calculated?

Question 1. will be the subject of the next subsection, while question 2. will be
answered in Sect. 5.4.3.

5.4.2 Quantum Numbers of the Total Angular Momentum

We first ask about the possible values of the magnetic quantum number mj .
Since Jz is a Hermitian operator, and both sets of states are, according to
(5.266) and (5.272), eigen-states of Jz, we see that:

0 = 〈j1j2;m1m2|(Jz − Jz)|j1j2; j mj〉
= � [(m1 +m2)−mj ] 〈j1j2;m1m2|j1j2; j mj〉 .
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Here we have let Jz act once to the left on the bra-state and once to the right
on the ket-state. We recognize that only for

mj = m1 +m2 (5.276)

the Clebsch-Gordan coefficient can be unequal zero. The multiple sum in the
expansion (5.274) therewith simplifies once more and becomes a simple sum.
By a given m1 the value for m2 = mj −m1 is fixed. Applying then Jz to the
state (5.274) makes clear that besides (5.276) no further values for mj exist.

The determination of the possible quantum numbers j proves to be more dif-
ficult. It is sure, according to the general properties of the angular momentum,
that j ≥ 0 and that there belong to each j-value altogether (2j + 1) magnetic
quantum numbers mj . All conceivable mj are, on the other hand, contained in
(5.276), i.e., being given by the (2j1+1) (2j2+1) possible (m1,m2)-combinations.
These combinations are of course not all pairwise different. We therefore think,
at first, about the degrees of degeneracy g(mj) of the various mj-values, i.e.,
about the number of different (m1,m2)-pairs, which fulfill (5.276) for a given
mj .

For the counting, the diagram sketched in Fig. 5.3 may provide a useful visual
help. We plot on the abscissam1 and on the ordinate m2. Each (m1,m2)-pair is
then represented by a point in the (m1,m2)-plane. The allowed (m1,m2)-pairs
build a rectangle with the edge lengths (2j1 + 1) and (2j2 + 1).

In Fig. 5.3 a situation is represented for which both j2 and j1 are half-integer.

The points on the dashed diagonals differ by Δm1 = −Δm2, having thus the
same mj-value. The number of points on such a diagonal thus corresponds to
the degree of degeneracy g(mj). mj increases thereby from diagonal to diagonal
in each step by +1, starting at −(j1+ j2) in the left lower corner up to +(j1+ j2)
in the right upper corner.

Figure 5.3: Scheme for the determination of the degree of degeneracy of the
magnetic quantum number of a total angular momentum composed by two
single angular momenta
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It holds for the diagonals in the region (A) in the sketched case (j1 > j2):

j2 − j1 ≤ mj ≤ j1 − j2 ,

or more generally:

−|j1 − j2| ≤ mj ≤ |j1 − j2| . (A)

On these diagonals we always find the same number of points, namely 2j2 + 1,
or more generally:

gA(mj) = j1 + j2 − |j1 − j2|+ 1 .

This is just the length of the smaller edge of the rectangle in units of the point
spacing. For the points in the region (B) we obviously have j1 + j2 ≥ mj ≥
j1 − j2 + 1, or more general:

j1 + j2 ≥ mj > |j1 − j2| . (B)

The degree of degeneracy increases in this region (B) from top right to down left
in each step by the value 1, starting with gB = 1 for mj = j1 + j2:

gB(mj) = j1 + j2 −mj + 1 .

Completely analogously we find for the situation in the region (C):

−|j1 − j2| > mj ≥ −(j1 + j2)

gC(mj) = j1 + j2 +mj + 1 . (C)

Let us collect all the results once more in the form of a table:

mj <−(j1 + j2) : g(mj) = 0 ,

−(j1 + j2) ≤ mj < −|j1 − j2| : g(mj) = j1 + j2 +mj + 1 ,

−|j1 − j2| ≤ mj ≤ |j1 − j2| : g(mj) = j1 + j2 − |j1 − j2|+ 1 ,

|j1 − j2| < mj ≤ j1 + j2 : g(mj) = j1 + j2 −mj + 1 ,

j1 + j2 < mj : g(mj) = 0 .

(5.277)

By means of this table we are now able to suggest the possible values of j. Let
us assume that for a given j there were n(j) sequences, each consisting of 2j + 1
states |j1j2; j mj〉. Certainly n(j) will take only the values 0 or 1. In each of
these sequences mj appears exactly once, if only j ≥ |mj |. Hence it follows for
the degree of degeneracy:

g(mj) =
∑

j′ ≥ |mj|
n(j′) ,

what is in particular valid for the maximal value mj = j. Therewith we can fix
n(j):

g(mj = j)− g(mj +1 = j + 1) = n(j) .
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When we still take into consideration that j cannot be negative then we read
off from the table (5.277):

0 ≤ j < |j1 − j2| ; n(j) = 0 ,
|j1 − j2| ≤ j ≤ j1 + j2 : n(j) = 1 ,
j1 + j2 < j : n(j) = 0 .

The values of j, to which states |j1j2; j mj〉 exist, fulfill the

triangle inequality

|j1 − j2| ≤ j ≤ j1 + j2 . (5.278)

In principle, that is a plausible result, because it corresponds exactly to the
classical vector model (Fig. 5.4). The parallel orientation of the vectors j1 and
j2 means j = j1 + j2, the antiparallel orientation j = |j1 − j2|.

We now know the quantum numbers of the total angular momentum and
want to calculate finally with this knowledge the total number N of states
|j1j2; j mj〉. To each j there are 2j + 1 different mj-values. Therewith, N is
calculated as follows:

N =

j1 + j2∑

j = |j1 − j2|
(2j + 1)

=
1

2
(j1 + j2 − |j1 − j2|+ 1) [2(j1 + j2) + 1 + 2|j1 − j2|+ 1]

= (j1 + j2 + 1)2 − |j1 − j2|2 = (2j1 + 1) (2j2 + 1) . (5.279)

But this corresponds exactly to the dimension of the subspace Hγ(j1, j2). Since
the states |j1j2; j mj〉 are surely linearly independent, they thus build, as the
|j1j2;m1m2〉, a basis of the Hγ(j1j2). The transition (5.274) from the one to
the other basis is done by a unitary transformation. The elements of the
transformation matrix are the Clebsch-Gordan coefficients (5.275), which we
will treat in more detail in the next section.

Figure 5.4: Vector model for the addition of two quantum-mechanical angular
momenta
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5.4.3 Clebsch-Gordan Coefficients

As before, the further considerations are also thought for fixed given quantum
numbers j1 and j2. We can therefore simplify a bit the state symbols,

|j1j2; j mj〉 −→ |j mj〉 ; |j1j2;m1m2〉 −→ |m1m2〉 ,

in order to save paperwork.
We investigate the relation (5.274):

|j mj〉 =
m1 +m2 =mj∑

m1,m2

〈m1m2|j mj〉|m1m2〉 . (5.280)

Many properties of the Clebsch-Gordan coefficients 〈m1m2|j mj〉 result already
from the fact that they are, as stated at the end of the last subsection, the
elements of a unitary matrix of the rank (2j1 + 1) (2j2 + 1). So it follows from
the orthonormality of the columns,

∑

m1m2

〈m1m2

∣∣j mj〉〈m1m2

∣∣∣j′ m′
j〉∗ = δjj′ δmjm′

j
, (5.281)

and from the orthonormality of the rows:

∑

j mj

〈m1m2

∣∣j mj〉〈m′
1m

′
2

∣∣∣j mj〉∗ = δm1m′
1
δm2m′

2
. (5.282)

By a proper choice of the phases of the states |j mj〉 one can always make the
Clebsch-Gordan coefficients real:

〈m1m2

∣∣j mj〉 = 〈j mj

∣∣m1m2〉 . (5.283)

We now want to think about how these Clebsch-Gordan coefficients can explic-
itly be calculated. The procedure consists of two essential partial steps:

(I) Let the starting point be, at first, j = j1 + j2 and mj = j1 + j2, i.e., the
highest possible j with maximal magnetic quantum number mj . The sum in
(5.280) can then consist only of one summand, because only the combination
m1 = j1 and m2 = j2 is possible. Since all participating states are normalized
to one, and the phase is fixed by (5.283), we have to assume:

|j1 + j2 j1 + j2〉 = |j1j2〉 . (5.284)

By means of the operator J− = J1− + J2−, which we apply, according to the
rules (5.64) in Sect. 5.1.4, to both sides of the equation, all states to j = j1 + j2
and −j ≤ mj ≤ +j can now be derived step by step. Let us perform that
explicitly here: From the left side of (5.284) we get after application of J−,

J−|j1 + j2 j1 + j2〉 = �

√
2(j1 + j2) |j1 + j2 j1 + j2 − 1〉 ,
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and from the right side:

J−|j1j2〉 = (J1− + J2−)|j1j2〉
= �

√
2j1|j1 − 1 j2〉+ �

√
2j2|j1j2 − 1〉 .

By equalizing these two equations it follows:

|j1 + j2 j1 + j2 − 1〉 =
√

j1
j1 + j2

|j1 − 1 j2〉+
√

j2
j1 + j2

|j1 j2 − 1〉 . (5.285)

We have therewith already found the first Clebsch-Gordan coefficient:

〈m1m2|j1 + j2 j1 + j2 − 1〉 =

√
j1

j1 + j2
δm1j1−1 δm2j2

+

√
j2

j1 + j2
δm1j1 δm2j2−1 . (5.286)

The procedure can be continued in this manner. As an exercising demonstration
we still execute the next step by applying J− to both sides of the Eq. (5.285):

J−|j1 + j2 j1 + j2 − 1〉 = �

√
2(2j1 + 2j2 − 1)|j1 + j2 j1 + j2 − 2〉 .

This is to be equated with

√
j1

j1 + j2
(J1− + J2−)|j1 − 1 j2〉+

√
j2

j1 + j2
(J1− + J2−)|j1 j2 − 1〉

= �

√
j1

j1 + j2

(√
2(2j1 − 1)|j1 − 2 j2〉+

√
2j2|j1 − 1 j2 − 1〉

)

+�

√
j2

j1 + j2

(√
2j1|j1 − 1 j2 − 1〉+

√
2(2j2 − 1)|j1 j2 − 2〉

)
.

We therewith obtain the representation of the state |j1 + j2 j1 + j2 − 2〉 in the
basis {|m1m2〉} with the following Clebsch-Gordan coefficients:

〈m1m2|j1 + j2 j1 + j2 − 2〉

=

√
j1(2j1 − 1)

(j1 + j2) (2j1 + 2j2 − 1)
δm1 j1−2 δm2j2

+2

√
j1j2

(j1 + j2) (2j1 + 2j2 − 1)
δm1 j1−1 δm2 j2−1

+

√
j2(2j2 − 1)

(j1 + j2) (2j1 + 2j2 − 1)
δm1j1 δm2 j2−2 . (5.287)
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The procedure can obviously be continued in this way until all 2(j1 + j2) + 1
states |j1 + j2 mj〉 are calculated.

(II) In the next step one investigates the states with j = j1+j2−1 and starts
again with the highest possible magnetic quantum number mj . According to
(5.280), this state consists of two summands:

|j1 + j2 − 1 j1 + j2 − 1〉 = α|j1 − 1 j2〉+ β|j1 j2 − 1〉 .

α and β are Clebsch-Gordan coefficients. The states |j mj〉 are orthonormalized.
The scalar product 〈j1 + j2 j1 + j2 − 1|j1 + j2 − 1 j1 + j2 − 1〉 must therefore be
zero, what leads with (5.285) to a conditional equation for α and β:

α

√
j1

j1 + j2
+ β

√
j2

j1 + j2
= 0 .

The in the intermediate result,

|j1 + j2 − 1 j1 + j2 − 1〉 = γ
(√

j2|j1 − 1 j2〉 −
√
j1|j1 j2 − 1〉

)
,

still remaining constant γ is fixed by the normalization (→ γ2((j1 + j2) = 1):

|j1+ j2− 1 j1+ j2− 1〉 =
√

j2
j1 + j2

|j1− 1 j2〉−
√

j1
j1 + j2

|j1 j2− 1〉 . (5.288)

We have therewith derived two further Clebsch-Gordan coefficients:

〈m1m2|j1 + j2 − 1 j1 + j2 − 1〉 =

√
j2

j1 + j2
δm1 j1−1 δm2j2

−
√

j1
j1 + j2

δm1j1 δm2 j2−1 . (5.289)

One obtains the other states |j1 + j2 − 1 mj〉 now again according to the pro-
cedure (I), i.e., by repeated application of J− = J1− + J2− to Eq. (5.288). The
procedure can be continued in this way until the determination of all Clebsch-
Gordan coefficients is completed. So one would make in the next step an ansatz
for the state |j1+j2−2 j1+j2−2〉, corresponding to (5.280), and then one would
fix the coefficients via orthogonality and normalization conditions as described
in (II). Then again procedure (I) comes into play to determine the other states
|j1 + j2 − 2 mj〉 for mj = j1 + j2 − 3, . . . ,−(j1 + j2 − 2), and so on.

For the addition of angular momenta with high quantum numbers j1, j2
the procedure becomes of course computationally rather demanding. Fortu-
nately, that does not bother us in the concrete case of our presentation here.
The Clebsch-Gordan coefficients of the most important (j1, j2)-combinations
are available in tabulated form, where such a tabulation strongly benefits from
group-theoretical considerations.
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5.4.4 Exercises

Exercise 5.4.1

Let S1 and S2 be the spin operators of two spin-1/2 particles, e.g. the two
electrons in the He-atom.

1. Find the common eigen-states |S1 S2;S ms〉 of the total spin operator S =
S1 + S2, its z-component Sz, and S2

1 and S2
2.

2. Show that these states are also the eigen-states of the operator S1 · S2.
Determine the eigen-values.

3. Show that the operator

P =
3

4
+

1

�2
S1 · S2

is a projection operator in the space of the spin states! Onto which sub-
space does P project?

Exercise 5.4.2

Let the Hamilton operator of two spin-1/2 particles be given by

H = −J S1 · S2 + μ(S1z + S2z) .

Calculate the eigen-values and find the eigen-states in the basis {|S1 S2;Sms〉}.
Exercise 5.4.3

Calculate for the total angular momentum of the electron,

J = L+ S

(
S =

1

2
, l ≥ 1

)
,

the common eigen-states |l(1/2); j mj〉 ≡ |j mj〉 of the operators J2, Jz,L
2,S2

as linear combinations of the eigen-states |l(1/2);mlms〉 ≡ |l ml〉|(1/2)ms〉 of
the operators L2, Lz,S

2, Sz. For this purpose perform the following steps:

1. Show that for the quantum number j only the values l+(1/2) and l−(1/2)
are possible.

2. Verify for the eigen-states the following expressions:

∣∣∣∣∣l ±
1

2
mj

〉
=

√
l ±mj + (1/2)

2l+ 1

∣∣∣∣∣l mj − 1

2

〉
|+〉

±
√

l∓mj + (1/2)

2l + 1

∣∣∣∣∣l mj +
1

2

〉
|−〉 .
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Exercise 5.4.4
Two angular momenta J1, J2 couple to a total angular momentum J = J1+J2.
Calculate for j1 = j2 = 1 all Clebsch-Gordan coefficients!

Exercise 5.4.5
Two angular momenta J1 and J2 with the quantum numbers j1 = 1/2 and
j2 = 3/2 are given.

1. Which quantum numbers j and mj are possible for the square and for the
z-component of the operator of the total angular momentum

J = J1 + J2 ?

2. Calculate, for the maximum value of j and all non-negative mj , all
Clebsch-Gordan coefficients!

5.5 Self-Examination Questions

To Section 5.1

1. Why is the classical angular momentum not a genuine property of the
particle?

2. Why is it not possible to measure two components of the orbital angular
momentum precisely at the same time?

3. How does the generalized uncertainty relation read for Lx and Lz?

4. Is it possible to measure precisely and simultaneously the observables L2

and Ly?

5. How are the ladder operators L± defined?

6. What is the result of the commutator of L+ with L−?

7. Which are the essential properties of the classical rotation matrix?

8. Why must the rotation operator D̂ be unitary?

9. What does one have to understand, pictorially, by the rotation of an
observable?

10. Which connection exists between the rotation operator and the operator
of the orbital angular momentum?

11. Let A be a vector operator. What can be said about the commutators
[Lz, Az]− and [Lz, Ax]−?

12. In a central field, why should the operators H, L2 and Lz possess a com-
mon set of eigen-states?
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13. Which properties of the angular-momentum operator are needed for the
solution of its eigen-value problem?

14. Let |j m〉 be an eigen-state of J2 and Jz. In which manner does the
application of J+ or J− change this state?

15. Which are the eigen-values of J2 and Jz? Which numerical values are
possible for j and m?

16. What does one understand by directional degeneracy?

17. Which eigen-values do the operators Jx and Jy have?

18. What is meant by directional quantization?

19. How can we understand the properties of the quantum-mechanical angular
momentum in the framework of the so-called vector model?

20. Which properties of the quantum-mechanical angular momentum are clas-
sically completely incomprehensible?

21. How do we get the matrix elements of the operators J+ and J− in the
{|j m〉}-representation?

22. Let J2 have the eigen-value 12�2. Which eigen-values are then possible
for Jz?

23. How does the position representation of the Cartesian components of the
orbital angular momentum look like?

24. Which structure does Lz have when spherical coordinates are applied?

25. When spherical coordinates are applied, what is the connection between
the square of the angular momentum L2 and the Laplace operator, ?

26. Why, at least for the general case, do L2 and Lz not represent a complete
set of compatible operators?

27. Why should the quantum number l of the orbital angular momentum be
an integer?

28. With which well-known differential equation can the eigen-value equation
of L2 be identified?

29. To which mathematical functions do the eigen-functions of L2 and Lz

correspond?

30. Which parity does the special eigen-function Y3−2(ϑ, ϕ) of the orbital
angular momentum have?
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To Section 5.2

1. How is the magnetic moment of a local current density j defined in Clas-
sical Electrodynamics?

2. How can the classical magnetic moment of a particle be derived from its
energy?

3. How is the observable magnetic moment defined in Quantum Mechanics?

4. What is the canonically conjugate variable to the position r of a particle
of mass m and charge q̂ in the electromagnetic field?

5. What does central-field approximation mean?

6. Which structure does the Hamilton operator of a particle with p electrons
(spin still excluded) have? How does the corresponding magnetic moment
look like?

7. Which term of the magnetic moment causes diamagnetism, and which
paramagnetism?

8. Which kind of splitting of energy levels is to be expected in the magnetic
field, when the magnetic moment of an atom is exclusively caused by the
orbital angular momenta of its electrons?

9. Which experimental observations enforce the introduction of the spin?

10. Which numerical values can be adopted by the spin quantum number S?

11. Is S changeable for a certain quantum-mechanical particle?

12. Explain, why the operator of the orbital angular momentum and that of
the spin commute.

13. What does one understand by a spinor?

14. Are the components μ̂x, μ̂y of the magnetic moment simultaneously pre-
cisely measurable?

15. Which important elementary particles possess a spin S = 1/2?

16. How are the Pauli spin matrices defined?

17. What can be said about the anticommutator [Sx, Sz]+ for a spin S = 1/2?

18. Why is (S+)
2 = 0 an operator identity in HS=1/2?

19. Which meaning do the squares of the absolute values |ψ±(r)|2 of the com-
ponents of the spinor |ψ1/2(r)〉 have?

20. What is ‖ψ1/2(r)‖2?
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21. What is the dimension of the spin space HS=1/2?

22. Which magnetic moment is generated by the spin?

23. In what do the spin moments of different spin-1/2 particles vary? Which
common features do they have?

24. What does one understand by the Landé factor of the electron?

25. What is the paramagnetic total moment of the electron? Which additional
term in the Hamilton operator is due to this moment after switching on a
homogeneous magnetic field?

26. Which form does the time-dependent Schrödinger equation of the two-
component spinor |ψ1/2(r, t)〉 have for an electron in the potential V (r)
and a homogeneous magnetic field B?

To Section 5.3

1. How does the relativistic, classical energy law read for a free electron?

2. What does one understand by covariance of relativistic equations?

3. How can the rule of correspondence be written in relativistic-covariant
form for the transition of classical equations into Quantum Mechanics?

4. How does one get the Klein-Gordon equation? Which basic problems arise
when solving it?

5. By which procedure does the Dirac equation of the free particle (electron)
follow from the classical energy law?

6. In which respect does the Dirac equation reflect the equivalence of space
and time coordinates, which is typical for the theory of relativity?

7. How does the Dirac equation of the electron in the electromagnetic field
read?

8. How are the Dirac matrices α̂ and β̂ built up?

9. Which structure does the eigen-solution function |ψ(r, t)〉 of the Dirac

operator H
(0)
D for the free particle have?

10. What are the energy-eigen values of H
(0)
D ? What is their degree of degen-

eracy?

11. What is the definition of the Dirac spin operator Ŝ?

12. Which component of Ŝ commutes with H
(0)
D ?
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13. Which eigen-values are found for this component?

14. With the aid of this component of the Dirac spin operator, how can one

explain the degeneracy of the energy-eigen values of H
(0)
D ?

15. Which property characterizes the (relativistic) electron besides mass me

and charge q = −e?

16. Is the orbital angular momentum L of the free Dirac-electron an integral
of motion?

17. Which angular momentum commutes with H
(0)
D ?

18. How is the Pauli-theory of the electron related to the fully relativistic
Dirac-theory?

19. What do we understand by the notations small and large component of
the Dirac spinor?

20. By which considerations does the existence of the angular momentum spin,
the spin moment, and the Landé factor g = 2 follow from the Dirac-theory
of the electron?

21. How can one find classical reasons for the spin-orbit coupling?

22. Up to what order of v/c has the non-relativistic limiting case of the Dirac-
theory to be correct, in order to exhibit the spin-orbit interaction?

23. Is it possible to find the spin-orbit interaction within the framework of the
Pauli’s two-component theory?

24. What is known as Darwin term?

25. How does the operator HSO of the spin-orbit interaction look like?

26. Do orbital angular momentum L and spin S commute with HSO?

27. Which important consequences of the spin-orbit interaction you know?

To Section 5.4

1. Let J1 and J2 be the commuting angular momentum operators of two
partial systems. Which complete sets of commuting angular momenta
exist for the composite system?

2. How does one show that the vector sum J = J1 + J2 is also an angular
momentum?

3. What is a Clebsch-Gordan coefficient?
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4. How can we derive the magnetic quantum number mj of the total angular
momentum J in relation to those of the single angular momenta J1, J2?

5. How does the triangle inequality look like for the possible quantum num-
bers j of the total angular momentum? How can the inequality be physi-
cally justified?

6. How can one explicitly calculate the Clebsch-Gordan coefficients?



Chapter 6

Central Potential

After the rather abstract considerations of the preceding chapter concerning the
observable angular momentum, now follows again a chapter, in which we want
to work out, by the use of concrete and important examples, practical solution
methods. The basic theoretical problem in Quantum Mechanics always consists
in solving the Schrödinger equation, i.e. in solving the eigen-value problem of
the Hamilton operator. The Schrödinger equation is normally a partial differ-
ential equation of second order, and therewith, hardly ever rigorously solvable.
In the case of one-dimensional problems, however, the partial differential equa-
tion turns into an ordinary differential equation, which can be mathematically
treated very much easier, and was indeed exactly solved in Chap. 4 (Vol. 6) for
some simple model systems. A sometimes successful solution method there-
fore tries to decompose complicated multi-dimensional Schrödinger equations,
by a clever choice of variables, into several independent ordinary differential
equations. This procedure is called ‘separation of the variables’, which, by the
way, we have already used in many places of this ground course in Theoretical
Physics. Needless to say that not all problems can be separated. That succeeds,
though, in particular for particle motions in a central field. By a central field
we understand a spherically symmetric potential,

V (r) = V (r) , (6.1)

in which the potential energy of a particle depends only on its distance r = |r|
from a fixedly given center of force, and not on the special direction of the
position vector r, if the origin of coordinates coincides with the center of force.
We will demonstrate in Sect. 6.1 how the application of spherical coordinates
reduces each central-field problem to a one-dimensional radial equation.

In the development and the structure of Quantum Mechanics, the theory of
the hydrogen atom has played a very decisive role. In our inductive reasons
of Quantum Mechanics in Chap. 1 (Vol. 6) we have discussed this fact in detail.
The incontrovertible experimental statements, e.g. about the discrete stationary
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energy levels, which were experimentally reflected in the spectroscopic combi-
nation principle ((1.102), Vol. 6), stood, at the beginning of the twentieth cen-
tury, in blatant contradiction to the classical understanding of physics. The
main objective of the protagonists of the pre-quantum-mechanical time there-
fore consisted indeed in the development of a new theory, by which especially
the properties of the hydrogen atom could be understood and explained. The
H-atom consists of an electron and a positively charged nucleus (proton), the
interaction of which follows the Coulomb law of Electrostatics. If one consid-
ers the approximately 2000-times heavier nucleus as point charge at rest, then
the electron moves in a central potential (V (r) ∼ 1/r), to which in Sect. 6.2
we will dedicate a relatively broad space, because of the mentioned historical
importance. As an example for a short-range central potential, the spherically
symmetric potential well will be discussed in Sect. 6.3, whose understanding
will become important above all for the scattering theory presented in Chap. 9.

6.1 General Statements

6.1.1 Radial Equation

The special symmetry of the central potential V (r) = V (r) suggests of course
the choice of spherical coordinates r, ϑ, ϕ (5.76), because then the potential
energy of the particle becomes a function of one single independent variable.
For the Hamilton operator of a particle of mass m in such a central potential,

H =
p2

2m
+ V (r) = − �

2

2m
Δ+ V (r) , (6.2)

it remains then to formulate, in particular, the Laplace operator Δ in spherical
coordinates. This we have already done in (5.83),

Δ =
1

r2
∂

∂r

(
r2

∂

∂r

)
+Δϑϕ , (6.3)

and we had found thereby that the angular part Δϑϕ can be expressed in a simple
manner by the operator of the square of the orbital angular momentum L2:

Δϑϕ = − 1

r2�2
L2 . (6.4)

The Hamilton operator therewith reads:

H = − �
2

2m

1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

2mr2
L2 + V (r) . (6.5)

The operators (6.2) and (6.5) are equivalent, but of course only without the crit-
ical point r = 0. Since, according to (5.80) and (5.82), the operators of angular
momentum L2 and Lz act only on the angles ϑ, ϕ, we recognize immediately
the important statement:

[H, Lz]− = [H,L2]− = 0 . (6.6)
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The three operators Lz, L
2 andH will thus possess a common set of eigen-states.

This means in particular that L2 and Lz are constants of motion (3.194) (Vol. 6),
which, anyway, does not surprise, though, because already in Classical Mechan-
ics the orbital angular momentum L remains, under the influence of central
forces, constant with respect to direction and magnitude. The Poisson brackets
of all components of L with the classical Hamilton function therefore vanish,
which, in turn, according to the principle of correspondence (Sect. 3.5, Vol. 6),
transfers to the corresponding quantum-mechanical commutators, finally lead-
ing to (6.6). But let us also recall once more the considerations in Sect. 5.1.3.
Since H is, in the case of a central potential, a scalar operator invariant with
respect to rotations, it must be commutable, according to (5.47) with each
component of the orbital angular momentum.

In order to illustrate the analogy to the corresponding classical problem,
we try to ascribe also a descriptive meaning to the first term in (6.5). This
succeeds with the aid of the radial momentum pr. This is defined in Classical
Mechanics as the radial component of the particle momentum (mṙ = (r/r) · p).
With the transition to Quantum Mechanics we have to bear in mind that p and
r are non-commutable operators. The classical expression therefore has to be
symmetrized, according to the prescriptions, developed in Chap. 2 (Vol. 6):

pr =
1

2

(r
r
· p+ p · r

r

)
. (6.7)

We prove as Exercise 6.1.1 that pr is the canonical-conjugate momentum to the
spherical coordinate r,

[r, pr]− = i � , (6.8)

which has in the position representation the following form:

pr =
�

i

(
∂

∂r
+

1

r

)
=

�

i

1

r

∂

∂r
r . (6.9)

It is a Hermitian operator if one allows only for such functions ψ(r) which fulfill
the following two conditions (Exercise 6.1.1):

lim
r→ 0

r ψ(r) = 0 , (6.10)

lim
r→∞ r ψ(r) = 0 . (6.11)

The second requirement is trivially fulfilled by square integrable wave functions.
(6.10) is somewhat more stringent. For this reason, the operator pr is in the
strict sense not an observable, because the eigen-value problem of pr has no
solution in the Hilbert space of the wave functions, which fulfill (6.10) and
(6.11) (see Exercise 6.1.3).
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When we build according to (6.9) the square of the radial momentum,

p2r = −�
2

(
∂

∂r
+

1

r

) (
∂

∂r
+

1

r

)

= −�
2

(
∂2

∂r2
− 1

r2
+

1

r

∂

∂r
+

1

r

∂

∂r
+

1

r2

)

= −�
2

(
∂2

∂r2
+

2

r

∂

∂r

)
= −�

2 1

r2
∂

∂r

(
r2

∂

∂r

)
, (6.12)

then the comparison with (6.3) and (6.4) leads to the operator identity,

p2 = p2r +
L2

r2
(r �= 0) , (6.13)

which is independent of the special potential, and can be also derived directly
from the representation-independent definitions of pr and L (Exercise 6.1.2).
With (6.13) the Hamilton operator of the particle in the central field now
reads:

H =
1

2m

(
p2r +

1

r2
L2

)
+ V (r) (r �= 0) . (6.14)

This expression strongly reminds of the energy law of Classical Mechanics
((2.260), Vol. 1), which can be broken down completely analogously. The
kinetic energy consists of a radial translation energy p2r/2m and a rotation
energy L2/2mr2. The term mr2 is identical to the moment of inertia with
respect to the origin of coordinates. Additionally we still have the potential
energy V (r).

The goal consists, also in the case of the central potentials, of solving the
time-independent Schrödinger equation, i.e., seeking out the eigen-values
and the eigen-states of the Hamilton operator:

[
− �

2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L2

2mr2
+ V (r)

]
ψ(r) = E ψ(r) . (6.15)

However, we can accept as solutions only those wave functions which fulfill the
condition (6.10). (6.15) is equivalent to the Schrödinger equation H ψ = E ψ
only for these functions in the entire space, the critical point r = 0 included. For
the practical solution of (6.15) the fact is helpful that because of (6.6) ψ(r) must
be simultaneous eigen-function of H, L2 and Lz. Since the angle contribution
in (6.15) is exclusively due to L2, the following separation ansatz appears to
be promising:

ψ(r) = R(r)Ylml
(ϑ, ϕ) . (6.16)

The Ylml
(ϑ, ϕ) are the spherical harmonics, introduced in Sect. 5.1.6 as common

eigen-functions of L2 and Lz. There is therefore of course no need to determine
them, instead they can be presumed to be known:

L2 Ylml
(ϑ, ϕ) = �

2l(l + 1)Ylml
(ϑ, ϕ) ,

Lz Ylml
(ϑ, ϕ) = �ml Ylml

(ϑ, ϕ) .
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Using the ansatz (6.16) in (6.15) we can replace the operator L2 by its eigen-
value �2l(l+1) and subsequently divide the equation by Ylml

(ϑ, ϕ). What is left
is a differential equation for R(r), which is referred to as the radial equation:

[
− �

2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

�
2l(l + 1)

2mr2
+ V (r)

]
R(r) = E R(r) . (6.17)

We see that the magnetic quantum number ml does not appear anywhere. The
resulting eigen-energies E will thus be in any case, i.e., for any arbitrary central
field, (2l+1)-fold degenerate, corresponding to the number of possible ml-values
(5.63). As a rule, however, they will depend on the quantum number l. The
Coulomb potential (∼ 1/r), however, represents an exception because the
related energy levels are degenerate even with respect to l (accidental degener-
acy, see Sect. 6.2).

In some cases it is still recommendable to substitute,

u(r) = r R(r) , (6.18)

so that, because of

d2

dr2
(r R(r)) =

d

dr
(R(r) + r R′(r)) = 2R′(r) + r R′′(r) ,

the radial equation (6.17) becomes a formally simple, one-dimensional
Schrödinger equation,

[
− �

2

2m

d2

dr2
+ Veff(r)

]
u(r) = E u(r) , (6.19)

which describes a particle of mass m in the effective central potential

Veff(r) = V (r) +
�
2l(l + 1)

2mr2
. (6.20)

One denotes the second summand as centrifugal barrier, which is in any case
repulsive, and which decreases quadratically with the distance from the center
of force (Fig. 6.1).

The structure of the effective potential deviates in general rather drastically
from the true potential. The concept of the effective potential in connection
with central-force problems has proven to be useful also in Classical Mechanics.
With this effective potential, the energy law for the three-dimensional motion
got mathematically the same structure as that of the always integrable one-
dimensional motion. The effective central potential ((2.255), Vol. 1) thereby
had just the form (6.20), where only �

2l(l+1) is of course to be replaced by the
classical square of the angular momentum L2 = const.

The condition (6.10) for solving for the wave function ψ(r) transfers with
(6.16) and (6.18) to u(r) in the form:

u(0) = 0 . (6.21)
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Figure 6.1: Two examples for the r-dependence of effective central potentials:
(a): Coulomb potential; (b): well potential

Furthermore, ψ(r) has to be square integrable, at least for bound states. Because
of (5.103), ∫

dΩ|Ylml
(ϑ, ϕ)|2 = 1 ,

this means for u(r):

∫
d3r|ψ(r)|2 =

∞∫

0

dr r2|R(r)|2 =

∞∫

0

dr|u(r)|2 < ∞ . (6.22)

This condition, which is sharper than (6.11), requires that |u(r)| approaches
zero for r → ∞ stronger than 1/

√
r.

With the important boundary condition (6.21), the eigen-value problem
(6.19) obviously becomes completely equivalent to the solution of a one-
dimensional Schrödinger equation with the potential:

V̂ (q) =

{
Veff(q) for q > 0 ,

∞ for q ≤ 0
(6.23)

Many of the statements, derived in Chap. 4 (Vol. 6) for one-dimensional potential
problems, can therefore be directly adopted.

6.1.2 Structure of the Solution

Before discussing in detail some special and concrete central potentials, we try to
provide ourselves a first, a general overview of the structures of the solutions to
be expected. We want to presume, though, that the potential rapidly vanishes
at infinity, at least like 1/r, and is at the zero point either regular or maybe
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divergent, but weaker than −1/r2 → −∞. For all 0 < r < ∞, V (r) ≤ 0:

lim
r→∞ r V (r) = 0 (or const) ,

lim
r→ 0

r2V (r) = 0 . (6.24)

For the most of the central potentials interesting to us, these are realistic
assumptions. The oscillator potential c r2, however, drops out. Because of
the first condition, due to our general considerations in Sect. 4.1 (Vol. 6), we
have to expect for E > 0 a continuous spectrum. Bound states with discrete
energy-eigen values can appear only for E < 0.

1. Behavior for r → 0

In the effective potential (6.20) for r → 0, because of (6.24), the centrifugal
term dominates, so that we have to solve approximately, instead of (6.19),
the following differential equation:

(
− d2

dr2
+

l(l+ 1)

r2

)
u(r) = 0 .

This has two linearly independent solutions:

u1(r) ∼ rl+1 ; u2(r) ∼ r−l .

With u2(r), however, the boundary condition (6.21) cannot be fulfilled
for l > 0. This solution therefore drops out (irregular solution). Even
for l = 0 u2(r) is unusable, because then the corresponding wave func-
tion (ψ(r) ∼ (1/r)u(r)) would contain a 1/r-term, by which, because of
Δ(1/r) = −4π δ(r) ((1.69), Vol. 3), the Schrödinger equation might not
be satisfiable. There remains therefore what is called the regular solution:

r → 0 : u(r) ∼ rl+1 . (6.25)

2. Behavior for r → ∞
In this case the full effective potential becomes negligible, and (6.19) sim-
plifies to: (

�
2

2m

d2

dr2
+ E

)
u(r) = 0 .

With the abbreviation

κ2 =
2m

�2
(−E) (6.26)

we get the two linearly independent solutions:

u1(r) ∼ e−κr ; u2(r) ∼ e+κr .

According to our assumptions (6.24) for the potential V (r), bound states
can be expected only for E < 0. κ is then positive-real, and u2(r) diverges
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for r → ∞. The solution u2(r) thus violates the normalization condition
(6.22):

r → ∞ : u(r) ∼ e−κr (E < 0) . (6.27)

For bound states (E < 0) the two asymptotic solutions (6.25) and (6.27)
suggest the following ansatz for the complete solution:

u(r) = e−κr rl+1 P (r) , (6.28)

P (r) =
∑

μ

αμ r
μ . (6.29)

We will come back to this ansatz in the next section when we treat the
Coulomb potential. Thereby it will have to be investigated, in partic-
ular, whether or not the series P (r) terminates after a finite number
of terms. The argumentation will refer to the Sommerfeld’s polynomial
method, which we have introduced in Sect. 4.4.5 (Vol 6) in connection
with the discussion of the harmonic oscillator.

For E > 0 the wave function can no longer be normalized in the strict sense. It
exhibits an oscillatory behavior (Sect. 4.1, Vol. 6: classically allowed region up
to r → ∞). The correct complete solution must be found, as performed several
times in Chap. 4 (Vol. 6), by continuous fitting to the for r → 0 regular solution
(6.25).

6.1.3 Exercises

Exercise 6.1.1

The classical definition of the radial momentum

pclr =
1

r
(r · p)

has to be symmetrized for the transition to Quantum Mechanics because of the
non-commutability of the operators r and p:

pr =
1

2

(r
r
· p+ p · r

r

)
.

1. Show that the radial momentum can be written as:

pr =
�

i

(
∂

∂r
+

1

r

)
=

�

i

1

r

∂

∂r
r .

2. Verify that pr is the canonical-conjugate momentum to r = |r|.

3. Show that pr is Hermitian. Which conditions must then be fulfilled by
the wave functions?
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Exercise 6.1.2
Verify, by using the general definitions of the orbital angular momentum L and
the radial momentum pr,

L = r× p ; pr =
1

2

[
1

r
(r · p) + (p · r) 1

r

]
,

the following operator identities:

1. L2 = i � (r · p) + r2p2 − (r · p)2 ,

2. pr =
1

r
(r · p) + �

i

1

r
,

3. p2 = p2r +
1

r2
L2 .

Exercise 6.1.3
Give reasons why the radial momentum pr can not be interpreted as observable.
For this purpose investigate the eigen-value problem of the operator pr.

Exercise 6.1.4

1. Prove the following assertion:

If H is a Hamilton operator with a discrete spectrum, bounded below,
then the state |ψ〉, which makes the expectation value

〈H〉 = 〈ψ|H |ψ〉
minimal, is just the eigen-state of H with the lowest eigen-value.

2. A particle moves in a central potential. The bounded eigen-states are
distinguished by the quantum number l of the orbital angular momentum.
Let E∗

l be the minimal eigen-value for a fixed l. With the use of part 1.
show that for l1 < l2, E

∗
l1
< E∗

l2
is always valid.

6.2 Coulomb Potential (H-Atom)

After our general considerations on the central potential we will now investi-
gate, as a first concrete application, the stationary states of an electron in the
Coulomb potential. For this purpose we insert into the Hamilton operator (6.5)
and into the radial equation (6.17) or (6.19), explicitly the potential energy:

V (r) = − Z e2

4π ε0 r
. (6.30)

e is the elementary charge. For Z = 1 (nucleus = single positively charged
proton) we have the situation of the hydrogen atom, and for Z > 1 that of
the so-called hydrogen-like ions (He+, Li++, . . .), which also possess only



100 CHAPTER 6. CENTRAL POTENTIAL

one electron. We assume, at first, that the atomic nucleus is, as positive point
charge (q = Z e), at rest, at the origin of coordinates. In the form of (6.30),
the Coulomb potential fulfills all pre-conditions, which we used in Sect. 6.1.2 for
the general discussion of the solution structure. In particular, bound states can
be expected only for E < 0. We are going to investigate these states in the
following section!

6.2.1 Discrete Energy Spectrum

We disregard, at first, the spin of the electron. Since the Hamilton operator
(6.5) does not contain any spin-dependent terms, the resulting wave function
will anyway factorize into a spin and a spatial part, where the spin part can be
assumed to be known according to the considerations in Sect. 5.2.4.

Following our pre-considerations in Sect. 6.1 we are obliged to solve the fol-
lowing radial equation (me: electron mass):

[
− �

2

2me

d2

dr2
− Z e2

4πε0r
+

�
2l(l + 1)

2me r2
− E

]
u(r) = 0 . (6.31)

This corresponds to (6.19) with (6.30) for V (r). The notation is of course the
same as in the preceding section. A scale transformation is recommendable:

ρ = Z
r

aB
; aB =

4π ε0�
2

me e2
= 0.529 Å . (6.32)

aB is the Bohr radius, which can be considered as the typical atomic length
scale. The corresponding characteristic energy scale is the Rydberg energy
(1.118):

ER =
�
2

2me a2B
=

me e
4

2�2(4π ε0)2
= 13.605 eV . (6.33)

We multiply the differential equation (6.31) by

2me a
2
B

Z2 �2
=

1

Z2ER

and further write for abbreviation with κ from (6.26):

η =
1

Z
κaB =

1

Z

√
− E

ER
(E < 0) . (6.34)

This yields the following equation:
[
d2

dρ2
+

2

ρ
− l(l + 1)

ρ2
− η2

]
u(ρ) = 0 . (6.35)

For the moment we are interested only in the discrete spectrum (E < 0). η is
therefore positive-real. Our reflections in Sect. 6.1.2 on the asymptotic behavior
of the solution function u make the following ansatz to be promising:

u(ρ) = e−ηρ ρl+1 P (ρ) . (6.36)
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Our further procedure now corresponds literally to the Sommerfeld’s poly-
nomial method, introduced in Sect. 4.4.5 (Vol. 6) for the case of the harmonic
oscillator. In the first step we transform (6.35) with (6.36) into a differential
equation for P (ρ):

P ′′(ρ) + 2P ′(ρ)
(
l + 1

ρ
− η

)
+ P (ρ)

2

ρ
[1− η(l + 1)] = 0 . (6.37)

Into this expression we insert the ansatz

P (ρ) =

?∑

μ=0

αμ ρ
μ (6.38)

and sort the individual terms according to powers of ρ. That leads after simple
manipulations to:

?∑

μ=0

{αμ+1 (μ+ 1) [μ+ 2(l + 1)] + 2αμ [1− η(μ+ l + 1)]} ρμ−1 = 0 .

This relation, in turn, can be fulfilled only when each summand by itself van-
ishes. This yields the following recursion formula for the coefficients αμ:

αμ+1 = 2
η(l + μ+ 1)− 1

(μ+ 1) (μ+ 2l+ 2)
αμ ; μ = 0, 1, 2, . . . (6.39)

In the next step we check whether we can consider P (ρ) in (6.38) as an infi-
nite series with the so determined coefficients αμ, without violating thereby
elementary boundary conditions for u(ρ) such as (6.21) and (6.22). That (6.21):
u(0) = 0 is fulfilled, is already guaranteed by the ansatz (6.36). The normaliza-
tion condition (6.22) in this connection is more problematic. Just like for the
harmonic oscillator (Sect. 4.4.5, Vol. 6), we therefore test at first the asymptotic
behavior of P (ρ). The high powers of ρ dominate for ρ → ∞. The correspond-
ing coefficients can, according to (6.39), be represented to a good approximation
by

αμ+1

αμ
≈ 2η

μ
; μ � l, 1 .

The same inspection we perform for the exponential function,

e2ηρ =

∞∑

μ=0

(2η)μ

μ!
ρμ ≡

∞∑

μ=0

βμ ρ
μ ,

and find that it exhibits the same asymptotic behavior of its coefficients:

βμ+1

βμ
=

2η

μ + 1
−→
μ
 1

2η

μ
.
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From that we conclude that, in the case of a non-terminating series P (ρ), for
ρ → ∞ the series would proceed like exp (2η ρ). But then, however, according
to (6.36),

u(ρ) ∼
ρ→∞ eηρ ρl+1 (η > 0)

would no longer be normalizable, because u(ρ) has to, at infinity, drop to zero
stronger than 1/

√
ρ. This problem enforces the conclusion that P (ρ) cannot

contain arbitrarily many summands, but instead has to terminate at a finite
μ = μ0. Then for ρ → ∞, the exponential function dominates in the ansatz
(6.36) and takes care for the correct asymptotic behavior. The recursion formula
(6.39), however, now makes it clear that such a truncation of the series P (ρ),

αμ0 �= 0 ; αμ0 + 1 = αμ0 + 2 = . . . = 0 ,

at a finite μ0 is possible only for very definite η-values:

η
!
=

1

μ0 + l + 1
. (6.40)

This transfers, according to (6.34), to the eigen-energies E, which thus build
a discrete spectrum. The so-called radial quantum number μ0, like the
quantum number of the orbital angular momentum l, is of course an integer
(μ0 = 0, 1, 2, . . .). This holds then also for the whole denominator in (6.40),
which for a given l can pass through the values

n ≡ μ0 + l + 1 = l + 1, l + 2, . . . . (6.41)

It has become conventional to use for the indexing of the energy levels primarily
the

principal quantum number

n = 1, 2, 3, . . . (6.42)

We then get with (6.40) and (6.34) for the energy levels the important result:

En = −Z2ER

n2
; n = 1, 2, 3, . . . (6.43)

Between the ground-state energy

E1 = −Z2 ER (6.44)

and E = 0 there are countably infinitely many discrete energies En, where the
distances between neighboring levels become smaller and smaller with increasing
principal quantum number. They accumulate at E = 0.

The eigen-energies En depend only on n, but not on the

secondary (orbital angular momentum) quantum number

l = 0, 1, 2, . . . , n− 1 (6.45)
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which for a fixed n can take, according to (6.41), one of the listed values. All
states with different l, but the same n, have the same energy. This degeneracy
with respect to l is a peculiarity of the Coulomb potential, and is not observed for
other central potentials. It vanishes, by the way, already for smallest deviations
of the Coulomb potential from the pure 1/r-form (see Exercise 6.2.2). Some-
times one speaks therefore of accidental degeneracy, because there is apparently
no compelling physical reason. The degeneracy with respect to the

magnetic quantum number

ml = −l,−l+ 1, . . . , l− 1, l , (6.46)

however, is typical for all central potentials. When we still add that the electron
has two different possibilities for the spin orientation (ms = ±(1/2)), which are
also degenerate in the Coulomb field, then the total degree of degeneracy
gn of the energy level En amounts to:

gn = 2

n−1∑

l=0

(2l + 1) = 2n2 . (6.47)

The Quantum Theory therefore provides, without any additional postulate, sim-
ply from the requirement of physically reasonable solutions of the Schrödinger
equation (unique, normalizable, . . .), the classically incomprehensible quantiza-
tion of the energy. In particular, the existence of a finite ground-state energy
E1 for the atomic electron has been substantiated. Classically, arbitrarily low
energies would be thinkable, at least in principle, because of V (r) −→

r→ 0
−∞.

Let us add some further discussion remarks. For a complete evaluation
and interpretation of the results of this section, however, we have to refer the
reader to the special literature on atomic physics.

1) Term scheme

The hydrogen spectrum (Fig. 6.2), following from (6.43) with Z = 1, is com-
pletely consistent with the semi-classical Bohr theory (Sect. 1.5.2, Vol. 6). The
principal quantum number n defines an electron shell, for which, first and fore-
most in X-ray spectroscopy, the following notation is conventional:

n = 1: K-shell,

n = 2: L-shell,

n = 3: M-shell,

n = 4: O-shell.

This is different from the classification of the (s, p, d, f, . . .)-orbitals, intro-
duced at the end of Sect. 5.1.6, which differ from each other by the secondary
quantum number l = (0, 1, 2, 3, . . .).

Transitions between the various energy levels explain the spectral series,
already discussed in Chap. 1 (Vol. 6), (Lyman ((1.98), Vol. 6), Balmer ((1.99),
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Figure 6.2: Schematic representation of the energy spectrum of the hydrogen
atom

Vol. 6), Paschen ((1.100), Vol. 6), Brackett ((1.101), Vol. 6)). The Ritz’s
combination principle ((1.102), Vol. 6), which was at first postulated on the
basis of experimental facts, turns out to be exact. At the transition of the
electron in the H-atom from an energetically higher to an energetically lower
level, the energy difference is emitted in form of a light quantum (photon) of
the energy

h νnm = −ER

(
1

n2
− 1

m2

)
.

Vice versa, the atom can of course also absorb a corresponding light quantum.
The electron is thereby elevated into an energy-richer level, and the atom is
then in an excited state.

Of course, the electron will not leave a stationary state without being forced
to do that. It must somehow be disturbed. In this connection, however, we will
restrict ourselves only to the remark that for light emission and light absorption,
respectively, this disturbance is caused by the coupling of the electron charge
to the electromagnetic field, known from Electrodynamics.

2) Fine structure

The quantum-mechanical theory of the hydrogen atom, which we developed
in this section, comes out in remarkably excellent agreement with experiment,
but it is not yet really exact. It is a non-relativistic theory, which is therefore
unable to explain the fine structure of the energy terms. The latter is mainly
caused by the spin-orbit interaction found in Sect. 5.3.4, which we have got
to know as purely relativistic effect. As we could estimate with (5.259), it
is a very small, nevertheless measurable correction of the order of magnitude
En/m c2 ≈ 10−4 − 10−5. The spin itself of course does not appear in the



6.2. COULOMB POTENTIAL (H-ATOM) 105

non-relativistic Quantum Mechanics. We had to justify its existence in Sect. 5.3
with the aid of the relativistic Dirac-theory.

A further order of magnitude smaller, but also measurable with the today
spectroscopic facilities, is the hyperfine structure which results from an inter-
action between electron spin and the spin of the nucleus. Furthermore, the
corrections are due to the fact that the assumption of an atomic nucleus at
rest at the origin of coordinates, strictly speaking, is of course no longer ten-
able. The hydrogen problem is, as a matter of course, a two-body problem. The
modifications due to the co-motion of the nucleus are, however, not typically
of quantum-mechanical nature. We have discussed them already in connection
with the semi-classical Bohr atom theory in Chap. 1 (Vol. 6). The main point
is simply to replace in the above formulas the bare electron mass me by the
reduced mass μ = (meM)/(me +M), where M is the mass of the nucleus. We
will inspect the two-body problem separately once more in Sect. 6.2.5.

3) Multiple-electron atoms

Multiple-particle systems are the matter of the considerations in Chap. 8. Here,
to begin with, we want to present only a few qualitative remarks. Because
of the electron-electron interaction, the potential, to which a single electron
is subjected, is of course not a pure 1/r-potential. The accidental degeneracy
with respect to the secondary quantum number l will in any case be removed.
The degeneracy with respect to ml is, however, lifted only when the spherical
symmetry is disturbed, e.g., by external magnetic fields. As a general rule,
however, the l-splitting remains small compared to the level splitting given by
(6.43), so that the term scheme maintains essentially its structure. The so-called
central field approximation represents a useful starting point for the theoreti-
cal treatment of the multiple-electron atom, which simulates the complicated
electron-electron interactions together with the 1/r-Coulomb potential of the
nucleus by an effective central potential Veff(r) (Hartree potential, Sect. 7.1.3).
The electrons then move in this effective field practically independent of each
other. According to the Pauli principle, explicitly introduced only in Chap. 8,
each resulting energy state is occupied by at most one electron. The ground
state of a Z-electron system then corresponds to the situation where the Z
electrons are distributed over the Z energetically lowest energy levels.

4) Periodic table

The periodic table is better understandable now, on the basis of the in the
meantime known shell-structure of the electronic states in the atoms, together
with the at present still anticipated Pauli principle, than the picture of Chap. 1
(Vol. 6), which was based on pre-quantum-mechanical, semi-classical theories. In
a period of the periodic table the atomic number Z increases by 1 from element to
element (from the left to the right) and therewith the number of orbital electrons,
up to 2n2 steps until the n-the shell is completely filled. Therewith, 2n2 is
exactly the number of elements per period. Completely filled electron shells
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are distinguished by spherically symmetric charge distributions which prove
to be especially stable against external disturbances. The physical-chemical
properties of the elements are therefore almost exclusively determined by the
electrons in the outermost, not completely filled shells. That explains why the
properties of the elements, ordered in the periodic table one below the other in a
column, are so similar. All elements within such a column have the same number
of electrons in the not closed, outermost shell. That this principle of construction
is interrupted at certain positions of the periodic table (transition elements, rare
earths, . . .) has special reasons. To understand the deep connection, we have to
refer to the special literature of atomic physics.

6.2.2 Eigen-Functions of the Bound States

We now want to look at the eigen-functions which belong to the spectrum (6.43).
Thereby we already know that the series P (ρ) in the ansatz (6.36) terminates
at a finite μ0:

P (ρ) =

μ0∑

μ=0

αμ ρ
μ ; μ0 = n− (l + 1) . (6.48)

The coefficients αμ are determined by the recursion formula (6.39), which can
be reformulated with η = 1/n as follows:

αμ+1 = − 2

n

n− (l + μ+ 1)

(μ+ 1) (μ+ 2l+ 2)
αμ

=

(
− 2

n

)μ+1

α0

[
n− (l+μ+1)

(μ+ 1) (μ+ 2l+ 2)
· n− (l + μ)

μ(μ+ 2l+ 1)
· · · n− (l+1)

2l + 2

]
.

From this one reads off:

αμ = α0 (−1)μ
(
2

n

)μ
(2l + 1)! (n− (l + 1))!

μ! (μ+ 2l+ 1)!(n− (l + μ+ 1))!
.

α0 remains, at first, undetermined. The homogeneous differential equation
(6.37) fixes P (ρ) of course only up to a constant factor, by which we will later
fulfill the normalization condition of the resulting wave function. When we
recall the definitions (6.32) and (6.34) of ρ and η, respectively,

η ρ =
r Z

n aB
= κ r , (6.49)

we can write for the polynomial P (r):

P (r) = α0

n−(l+1)∑

μ=0

(−1)μ (2κ r)μ
(2l + 1)!(n− (l + 1))!

μ!(μ+ 2l+ 1)!(n− (l + μ+ 1))!
. (6.50)

Let us recall once more the ‘mathematically somewhat sloppy’ way of writing,
which we agreed upon, namely, to use for functions, even after substitution
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of variables, the same letter (here: P (ρ) → P (r)), as long as there are no
misinterpretations. The sum on the right-hand side of (6.50) is, except of a
constant factor, just the associated Laguerre polynomial,

Lk
p(z) = (−1)k

p− k∑

μ=0

(−1)μ
(p!)2

(p− k − μ)! (k + μ)!μ!
zμ , (6.51)

for p = n + l and k = 2l + 1. In the next subsection we will gather some
properties of the Laguerre polynomials, which are extensively discussed in the
mathematical textbooks. Here we will, however, at first, follow through the just
started line of thought. The sought-after radial function is with

P (r) ∼ L2l+1
n+ l (2 κ r)

as well as the ansatzes (6.18) and (6.28) already determined except for a con-
stant:

Rnl(r) = Dnl e
−κr (2κ r)l L2l+1

n+ l (2κ r) . (6.52)

Since Rnl(r) has to fulfill (6.22),

∞∫

0

dr r2|Rnl(r)|2 = 1 , (6.53)

we can fix Dnl via the normalization integral of the Laguerre polynomials, which
we take over here, without proof, from mathematics literature:

∞∫

0

dz zk+1 e−z
[
Lk
p(z)

]2
=

(2p− k + 1) (p!)3

(p− k)!
. (6.54)

The normalization condition (6.53) reads, if we assume the Dnl to be real:

1 =
D2

nl

(2κ)3

∞∫

0

dz e−z z2l+2
[
L2l+1
n+ l (z)

]2
.

It follows with (6.54):

Dnl = ±
(

Z

aB

)3/2
2

n2(n+ l)!

√
(n− l − 1)!

(n+ l)!
. (6.55)

With the separation ansatz (6.16) we have now found with (6.52) and (6.55) the
complete system of eigen-functions of the bound states (E < 0) for the Coulomb
potential:

ψnlml
(r) = Dnl exp

(
− Z r

n aB

) (
2Z r

n aB

)l

L2l+1
n+ l

(
2Z r

n aB

)
Ylml

(ϑ, ϕ)

≡ Rnl(r)Ylml
(ϑ, ϕ) . (6.56)
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Figure 6.3: Qualitative behavior of the radial function for the case of a maximal
secondary quantum number l = n− 1

As eigen-functions of a Hermitian operator they are orthogonal; the normaliza-
tion also we have ensured:

∫
d3r ψ∗

n′l′ml′ (r)ψnlml
(r) = δnn′ δll′ δmlml′ . (6.57)

Because of
Lp
p(z) = (−1)p p! (6.58)

the radial function exhibits an especially simple structure when the secondary
quantum number l takes its maximal value n− 1 (Fig. 6.3):

Rnn− 1(r) = ∓
(

2Z

naB

)3/2
√

1

(2n)!
e−(Z r)/(naB)

(
2Z r

n aB

)n− 1

. (6.59)

Rnn−1(r) does not have a zero (Fig. 6.3). Because the associated Laguerre
polynomial Lk

p(z) possesses in the region z > 0 p−k zeros, the radial function
Rnl(r) has (n− 1− l) zeros on the positive-real r-axis. We choose the positive
sign in (6.59).

We show explicitly the first few radial functions, where, according to (6.56),
the corresponding spherical harmonics are listed in (5.108)–(5.113):

R10(r) = 2

(
Z

aB

)3/2

e−Z r/aB , (6.60)

R20(r) = 2

(
Z

2aB

)3/2 (
1− Z r

2aB

)
e−Z r/2aB , (6.61)

R21(r) =
1√
3

(
Z

2aB

)3/2
Z r

aB
e−Z r/2aB , (6.62)

R30(r) = 2

(
Z

3aB

)3/2 (
1− 2Z r

3aB
+

2(Z r)2

27a2B

)
e−Z r/3aB , (6.63)

R31(r) =
4
√
2

3

(
Z

3aB

)3/2
Z r

aB

(
1− Z r

6aB

)
e−Z r/3aB , (6.64)

R32(r) =
2
√
2

27
√
5

(
Z

3aB

)3/2 (
Z r

aB

)2

e−Z r/3aB . (6.65)
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It is a remarkable fact that all radial functions Rnl with l = 0 (s-states) are
unequal zero at r = 0, while all Rnl with l > 0 vanish at this point. That means,
in particular, that the electron in the s-state has a finite probability density at
the position of the nucleus!

6.2.3 Laguerre Polynomials

Let us briefly interrupt our considerations on the Coulomb potential, in order
to list, as an insertion, some properties of the Laguerre polynomials, which we
did not meet so far in this ground course of Theoretical Physics. The strict
mathematical derivations, however, we have to leave, to a large extent, to the
special literature of mathematical physics.

The ordinary Laguerre polynomials Lp(z) are defined by

Lp(z) = ez
dp

dzp
(zp e−z) ; p = 0, 1, . . . . (6.66)

One recognizes that this expression starts with the lowest power p!z0, when
one performs the p differentiations on the first factor zp , and ends with the
highest power (−1)pzp, when the exponential function is p-times differentiated.
Lp(z) is thus a polynomial of the degree p. Equivalent to (6.66) there is the
representation by the generating function:

1

1− t
exp

(
−z

t

1− t

)
=

∞∑

p=0

Lp(z)
tp

p!
. (6.67)

The associated Laguerre polynomials are derived from the ordinary ones
by k-fold differentiation:

Lk
p(z) =

dk

dzk
Lp(z) ; k ≤ p . (6.68)

One easily verifies (complete induction) with the aid of (6.66):

Lk
p(z) =

p!

(p− k)!
ez

dp

dzp
(
zp−ke−z

)
. (6.69)

From that immediately follows, in particular, the special case (6.58). Lk
p(z) is

a polynomial of (p − k)-th degree with just as many zeros on the positive-real
axis.

When one differentiates (6.67) with respect to t,

1

(1− t)2

(
1− z

1− t

)
exp

(
−z

t

1− t

)
=

∞∑

p=1

Lp(z)
tp−1

(p− 1)!
=

∞∑

p=0

Lp+1(z)
tp

p!
,

and uses for the left-hand side once more (6.67),

∞∑

p=0

Lp(z)
tp

p!
(1− t− z) =

∞∑

p=0

Lp+1(z)
tp

p!
(1 − t)2 ,
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then one obtains by arranging according to powers of t an expression,

∞∑

p=0

tp

p!

[
Lp+1(z)− (2p+ 1− z)Lp(z) + p2Lp−1(z)

]
= 0 ,

which in this form can be valid only if each summand by itself vanishes. This
yields a useful recursion formula for the ordinary Laguerre polynomials:

Lp+1(z)− (2p+ 1− z)Lp(z) + p2 Lp−1(z) = 0 . (6.70)

One easily gets a second recursion formula from the definition equation (6.66),
if one differentiates this once with respect to z:

d

dz
Lp(z) = Lp(z) + ez

dp+1

dzp+1
(zp e−z) = p ez

dp

dzp
(zp−1 e−z) .

It namely follows therewith:

d

dz
Lp(z)− p

(
d

dz
Lp−1(z)− Lp−1(z)

)
= 0 . (6.71)

We show in Exercise 6.2.1 that one obtains by combination of the two recursion
formulas (6.70) and (6.71) the following Laguerre differential equation:

[
z

d2

dz2
+ (1− z)

d

dz
+ p

]
Lp(z) = 0 . (6.72)

This equation has the special peculiarity to change, after a further differentiation
with respect to z, into a differential equation of the same kind for the derivative
of Lp(z), with only slightly changed coefficients:

[
z

d2

dz2
+ (2− z)

d

dz
+ (p− 1)

]
d

dz
Lp(z) = 0 .

The procedure can obviously be arbitrarily continued and yields after k-fold dif-
ferentiation together with (6.68) a differential equation for the associated
Laguerre polynomials:

[
z

d2

dz2
+ (k + 1− z)

d

dz
+ (p− k)

]
Lk
p(z) = 0 . (6.73)

We now will find out that the conditional equation (6.37) for the polynomial
P (ρ) is exactly of the type (6.73). To see this we substitute in (6.37)

ρ = 2ρ η = 2κ r

and obtain then, at first:

4η2 P ′′(ρ) + 4η P ′(ρ)
(
2η(l + 1)

ρ
− η

)
+ P (ρ)

4η

ρ
[1− η(l + 1)] = 0 .
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We multiply this equation by ρ/4η2 and exploit η = 1/n:
[
ρ

d2

dρ2
+ (2l + 2− ρ)

d

dρ
+ (n− l − 1)

]
P (ρ) = 0 . (6.74)

This differential equation is now indeed, for k = 2l + 1 and p = n+ l, identical
to (6.73). We have therewith reproduced, in a different way, the old solution
(6.52):

P (ρ) ∼ L2l+1
n+ l (ρ) = L2l+1

n+ l (2κ r) .

6.2.4 Probabilities, Expectation Values

The probability density of the electron in the volume element d3r at r in the case
of the Coulomb potential is also of course given by the square of the absolute
value of the wave function corresponding to the quantum state n, l,ml:

|ψnlml
(r)|2d3r .

Sometimes it is convenient to introduce a radial position probability as the prob-
ability to find the particle, independently of the angle, at the distance between
r and r + dr from the origin. For this purpose one integrates the normal prob-
ability density over its angle part:

wnl(r) dr = r2 dr

π∫

0

sinϑdϑ

2π∫

0

dϕ|ψnlml
(r)|2 = r2dr|Rnl(r)|2 . (6.75)

The zeros of the Rnl define spherical surfaces with certain radii, on which the
position probability of the electron is zero. These are called nodal planes. Their
number is identical to the radial quantum number μ0 = n − l − 1. Between
these nodal planes wnl(r) has n − l humps. For l = n − 1 (maximal secondary
quantum number) the radial position probability does not possess any node.
According to (6.59) it behaves like:

wnn−1(r) ∼ r2n exp

(
−2Z r

n aB

)
.

We obtain the maximum of this special radial distribution by setting the first
derivative equal to zero. It is at

(rnn−1)max =
n2 aB
Z

, (6.76)

and increases quadratically with the principal quantum number. Classically,
the orbital angular momentum L determines the semiminor axes of the elliptic
paths. Maximal L leads to circular paths. When one evaluates (6.76) for the
ground state (n = 1, l = 0) of the hydrogen atom (Z = 1), then (r10)max is
identical to the Bohr radius aB. This corresponds to the semi-classical Bohr-
theory (Sect. 1.5.2, (Vol. 6)), according to which in the ground state the electron
moves on a stationary circular path of the radius aB.
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Figure 6.4: Radial probability density of the electron in the hydrogen atom as
function of the distance from the nucleus

Figure 6.4 shows some lower-indexed radial position probabilities. One rec-
ognizes that with increasing n the distributions shift to larger r-values.

The expectation values of some powers of r in the bound states turn out to
be rather revealing. They are defined by:

〈rk〉nl =
∞∫

0

dr r2+ k [Rnl(r)]
2
. (6.77)

In this context we derive the rather useful Kramers relation as Exercise 6.2.7:

k + 1

n2
〈rk〉nl − (2k + 1)

aB
Z

〈rk− 1〉nl +
k

4
[(2l+ 1)2 − k2]

a2B
Z2

〈rk− 2〉nl = 0 ,

k + 2l+ 1 > 0 . (6.78)

From this, if one inserts subsequently k = 0, 1, 2, one gets:

〈r−1〉nl =
Z

aB n2
, (6.79)

〈r〉nl =
aB
2Z

[3n2 − l(l + 1)] , (6.80)

〈r2〉nl =
n2 a2B
2Z2

[5n2 − 3l(l+ 1) + 1] . (6.81)

The orbit radii 〈r〉nl are of special interest, where the term path (orbit) is of
course somewhat problematic, because, according to (6.75), the probability den-
sity wnl(r) of the electron is, except for the nodal planes, in principle in the entire
space unequal zero. The average distance 〈r〉nl of the electron from the nucleus
increases quadratically with the principal quantum number n, which we already
realized in the wnl(r)-Fig. 6.4. The decrease proportional to 1/Z explains itself
by the increasing attractive force of the nucleus with rising Z. For the maximum
angular momentum l = n− 1 it holds in particular:

〈r〉nn−1 =
aB
2Z

(2n2 + n) . (6.82)

The average value is thus not identical to the maximal value (rnn−1)max in
(6.76).
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We interpret, as radial uncertainty of the particle position, themean square
deviation of the particle-nucleus distance:

Δrnl ≡
√
〈r2〉nl − 〈r〉2nl .

This can be calculated with (6.80) and (6.81):

Δrnl =
aB
2Z

√
n2(n2 + 2)− l2(l + 1)2 . (6.83)

The mean square deviation for the special case l = n− 1, corresponding to the
classical circular paths,

Δrnn−1 =
n aB
2Z

√
2n+ 1 ,

grows with n beyond all limits. The relative fluctuation, however, becomes
negligible for large n:

Δrnn− 1

〈r〉n n− 1
=

1√
2n+ 1

−→
n→∞ 0 . (6.84)

This fits the rule of correspondence (Sect. 1.5.3), according to which for large
quantum numbers the classical concept of a path should become acceptable.

By the use of (6.79) it is eventually possible to make an interesting state-
ment on the expectation value of the potential energy in the eigen-states of the
Coulomb-Hamilton operator:

〈V 〉nl = − Z e2

4π ε0

〈
1

r

〉

nl

= − Z e2

4π ε0

Z

aB n2
.

With the definitions (6.32) for the Bohr radius aB and (6.33) for the Rydberg
energy ER it follows:

〈V 〉nl = −2
Z2 ER

n2
= 2En . (6.85)

Therefore for all stationary states in the Coulomb field, the energy-eigen
value En is equal to the half of the expectation value of the potential energy.
When one still uses En = 〈H〉nl = 〈T 〉nl + 〈V 〉nl, then it follows with

〈T 〉nl = −1

2
〈V 〉nl (6.86)

the analog to the classical virial theorem ((3.39), Vol. 1).
So far we have discussed only the radial position probability wnl(r). The

angle distribution of the eigen-functions ψnlml
(r) is also interesting. In analogy

to (6.75) one integrates for this purpose the full probability density |ψnlml
(r)|2

with respect to the radial component r:

ŵlml
(ϑ, ϕ) dΩ = dΩ

∞∫

0

r2 dr|ψnlml
(r)|2 = dΩ|Ylml

(ϑ, ϕ)|2 . (6.87)
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Figure 6.5: Polar diagrams for s- and p-states of the electron in the hydrogen
atom as illustration of the angular distribution of the position probability

dΩ = sinϑ dϑ dϕ is the solid angle element. In (6.87) we have already exploited
the normalization (6.53) of the radial function Rnl(r). Because of (5.103) we
can also write:

ŵl ml
(ϑ, ϕ) = Nl ml

|Pml

l (cosϑ)|2 ≡ ŵl ml
(ϑ) ,

Nlml
=

2l + 1

4π

(l −ml)!

(l +ml)!
. (6.88)

There is no ϕ-dependence; the angle distributions are rotational-symmetric
around the z-axis! Because of (5.104) it further follows:

ŵl ml
(ϑ) = ŵl−ml

(ϑ) . (6.89)

For the representation of such angle distributions (probability densities) one
uses the so-called polar diagrams, in which the quantity ŵl ml

is plotted as
radius vector.

The s-states (l = 0, ml = 0) are because of (5.108),

ŵ00(ϑ) ≡ 1

4π
, (6.90)

distinguished by spherical symmetry (Fig. 6.5). There does not exist a corre-
sponding semi-classical Bohr orbit. l = 0 would classically mean a straight-line
motion through the center of force.

For the p-states (l = 1, ml = 0,±1) we have because of (5.109) and (5.110):

ŵ10(ϑ) =
3

4π
cos2 ϑ ; ŵ1±1(ϑ) =

3

8π
sin2 ϑ . (6.91)

The agreement with the semi-classical Bohr paths consists in the fact that these
are running for ml = ±1 in the xy-plane (ϑ = π/2) and for ml = 0 in the
zy-plane (ϑ = 0), i.e., there, where ŵ1ml

(ϑ) becomes maximal (Fig. 6.5).
For the d-states (l = 2, ml = 0,±1,±2) we take from ((5.111) to (5.113)):

ŵ20(ϑ) =
5

16π
(3 cos2 ϑ− 1)2 , (6.92)

ŵ2± 1(ϑ) =
15

8π
sin2 ϑ cos2 ϑ , (6.93)

ŵ2± 2(ϑ) =
15

32π
sin4 ϑ . (6.94)
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Figure 6.6: Polar diagrams as in Fig. 6.5, but here for d-states

Generally, all the distributions ŵl ml =±l(ϑ) are tightly concentrated around the
xy-plane (Fig. 6.6).

At the end, let us recall once more that we have restricted the discussion
of the Coulomb potential, so far, exclusively to the case E < 0. For E >
0 one finds a continuous energy spectrum. This one realizes already by
inspecting the asymptotic behavior (6.27) of the radial function. For E > 0
κ is purely imaginary so that the radial function R(r) ≈ exp(±i|κ|r) exhibits
asymptotically an oscillatory behavior. Since the differential equations to be
solved are for E > 0 of course the same as for E < 0, one can naturally try the
same ansatzes for the solution, which, however, here do not lead to a truncation
condition for the series P (ρ) because η is, according to (6.34), purely imaginary.
We do not want to follow this aspect here, though, but content ourselves with
the statement that there are for E > 0 no selection criteria for the energy. The
spectrum is thus continuous.

6.2.5 Co-Motion of the Nucleus; Two-Body Problem

For the discussion of the electron motion in the Coulomb potential we have, up
to now, assumed that the nucleus as the center of force is at rest at the origin of
coordinates. This is certainly an acceptable approximation because in compari-
son to the electron mass me, the mass of the nucleus mN ≈ 1836me is relatively
large. However, the assumption is of course not exact. The hydrogen-like atom
presents, strictly speaking, just like the planetary motion of Classical Mechan-
ics, a two-body problem. How many-particle systems are to be treated is
described in Chap. 8, and especially in Vol. 9 of this ground course in The-
oretical Physics. But let us work out, already now, the issue a bit with the
present relatively simple two-particle problem. The full Hamilton operator of
the hydrogen-like particle reads:

H =
p2
N

2mN
+

p2
e

2me
+ V (rN, re) . (6.95)
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The indexes N and e refer to the nucleus and the electron, respectively. V is
the Coulomb potential which depends only on the position distance:

V (rN, re) ≡ V (|rN − re|) = − Z e2

4π ε0|rN − re| . (6.96)

When we continue to neglect, as hitherto, any spin-orbit interaction, then we
can presume, in this case also, that the spin parts of the resulting wave function
can be separated. It is therefore sufficient to discuss only the orbital motion.
Using the position representation we then get the following time-independent
Schrödinger equation:

(
− �

2

2mN
ΔN − �

2

2me
Δe − Z e2

4π ε0|rN − re|
)

ψ(rN, re) = E ψ(rN, re) . (6.97)

The wave function will in any case of course depend on the coordinates of both
the particles, so that the eigen-value problem to be solved looks rather com-
plicated. In Classical Mechanics we could solve the analogous problem quite
elegantly by introducing relative coordinates and center-of-mass coordinates
((3.41) and (3.42), Vol. 1). It thus suggests itself to try the same procedure
here:

R =
1

M
(mN rN +me re) ≡ (X,Y, Z) ,

r = rN − re ≡ (x, y, z) . (6.98)

M denotes the total mass
M = mN +me .

We recognize that the potential V (6.96) depends only on the relative coordinate
r. With the resolution of (6.98) for rN and re,

rN = R+
me

M
r ; re = R− mN

M
r , (6.99)

the wave function ψ can be formulated with the coordinates r and R:

ψ(rN, re) = ψ[rN(r,R), re(r,R)] ≡ ψ̂(r,R) .

That, of course, makes sense only if we can also transform the Laplace operators
in (6.97),

ΔN,e =
∂2

∂x2
N,e

+
∂2

∂y2N,e

+
∂2

∂z2N,e

,

to the new set of coordinates. For this purpose we can apply the known rules
for the transformation of variables (Vol. 1) or, in the present simple case, we
can perform the transformation simply directly step by step. So we obtain, e.g.,
with the chain rule:

∂

∂xe
=

∂X

∂xe

∂

∂X
+

∂x

∂xe

∂

∂x
=

me

M

∂

∂X
− ∂

∂x
.
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This leads in the next step to

∂2

∂x2
e

=
me

M

(
∂X

∂xe

∂2

∂X2
+

∂x

∂xe

∂2

∂x ∂X

)
− ∂X

∂xe

∂2

∂X ∂x
− ∂x

∂xe

∂2

∂x2

=
m2

e

M2

∂2

∂X2
− 2

me

M

∂2

∂X ∂x
+

∂2

∂x2
.

Analogous expressions come out for the other two components so that it follows
altogether:

Δe =
m2

e

M2
ΔR − 2

me

M
(∇r ·∇R) + Δr . (6.100)

In the same way we find ΔN:

ΔN =
m2

N

M2
ΔR + 2

mN

M
(∇r ·∇R) + Δr . (6.101)

Here ΔR and Δr are the Laplace operators acting, respectively, on the center-of-
mass and the relative coordinate, while ∇R, ∇r are the corresponding gradients.
When inserting (6.100) and (6.101) into the Schrödinger equation (6.97), the
mixed terms drop out:

(
− �

2

2M
ΔR − �

2

2μ
Δr − Z e2

4π ε0r

)
ψ̂(r,R) = E ψ̂(r,R) . (6.102)

μ is the reduced mass :

μ =
mN me

mN +me
. (6.103)

Equation (6.102) corresponds to a Hamilton operator of the form:

H =
P2

2M
+

p2

2μ
+ V (r) , (6.104)

P = M Ṙ , p = μ ṙ . (6.105)

It can quite easily be shown (Exercise 6.2.10) that the components of P and R
as well as those of p and r are indeed canonically conjugate variables, which
ultimately justifies the position representation (6.102).

Since the differential operators, which act on the coordinates r andR, respec-
tively, do not mix, but rather appear additively in the Schrödinger equation
(6.102), a separation ansatz for ψ̂ would be appropriate:

ψ̂(r,R) = χ(R)ϕ(r) . (6.106)

When one inserts this ansatz into (6.102) and multiplies from the left by ψ̂−1,
then one gets:

1

χ(R)

(
− �

2

2M
ΔR χ(R)

)
= − 1

ϕ(r)

(
− �

2

2μ
Δr + V (r)

)
ϕ(r) + E .
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The left-hand side depends only on R and the right-hand side only on r. In
similar situations, we have already used several times the conclusion that, in
such a case, both sides by themselves must already be constant:

− �
2

2M
ΔR χ(R) = λχ(R) , (6.107)

(
− �

2

2μ
Δr + V (r)

)
ϕ(r) = (E − λ)ϕ(r) . (6.108)

The center-of-mass motion and the relative motion are therewith completely
decoupled. In addition, we have already solved the corresponding eigen-value
problems. The center-of-mass motion is especially simple:

λ =
�
2K2

2M
; χ(R) = exp(iK ·R) . (6.109)

The wave number K is by �K = P connected to the center-of-mass momentum.
The center-of-mass motion therefore corresponds to that of a free particle.

The remaining effective one-particle problem (6.108) comprises the motion
of a particle of the charge (−e) and the mass mass μ in the Coulomb field of
a nucleus of the charge (+Z e) fixed in space, where the position vector of
the particle is given by the relative coordinate r. The respective eigen-value
problem we have completely solved just in the preceding subsections. We can
therefore take over all the results, where we have simply to replace everywhere
the electron mass me by the reduced mass μ. We thus obtain as eigen-energies:

En =
�
2K2

2M
+ Ên . (6.110)

Ên are the energies (6.43), where only in the Rydberg energy ER me is substi-
tuted by μ:

Ên = −Z2 ÊR

n2
; n = 1, 2, 3, . . . , (6.111)

ÊR =
μ e4

2�2 (4π ε0)2
. (6.112)

The co-motion correction treated here is of course not at all a typical quantum-
mechanical effect. We have already in Chap. 1 (Vol. 6), in the framework of the
semi-classical Bohr theory, corrected the Rydberg constant (1.125) and pointed
out that actually due to this correction the heavy hydrogen isotope ‘deuterium’
was discovered. Because of mN ≈ 1836me μ is for the hydrogen atom of course
only slightly different from me. This changes, however, enormously when the
masses of the two interaction partners are of the same order of magnitude.

It goes without saying that the simple decoupling of a two-particle problem
into two effective one-particle problems, as presented in this subsection, cannot
always be executed so smoothly. We will therefore have to come back to the
relevant considerations in Chap. 8 and to deepen them.
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6.2.6 Exercises

Exercise 6.2.1

Derive with the recursion formulas (6.70) and (6.71) for the ordinary Laguerre
polynomials Lp(z) the Laguerre differential equation (6.72).

Exercise 6.2.2

Calculate the eigen-energies of an electron in the central potential

V (r) = − Z e2

4π ε0r
+

ĉ

r2
; ĉ =

�
2

2me
c !

Let the second term thereby be a weak correction to the actual Coulomb poten-
tial (c � 1). Show that this additional term removes the accidental degeneracy
of the Coulomb potential with respect to the secondary quantum number l.

Exercise 6.2.3

Let the electron in the H-atom be in the eigen-state |n lml ms〉 with the energy-
eigen value En.

1. How do the eigen-state and the eigen-value change, when a constant mag-
netic field B is applied in z-direction? Spin-orbit interaction and diamag-
netic contributions are to be disregarded.

2. How high are the degrees of degeneracy before and after the switching on
of the magnetic field?

Exercise 6.2.4

Given

ψ(r, ϑ, ϕ) = α r exp

(
− r

2aB

)
Y11(ϑ, ϕ) .

Show by a direct solution of the time-independent Schrödinger equation that
ψ(r, ϑ, ϕ) is an eigen-function of the (spinless) electron in the hydrogen atom.
Find the corresponding energy-eigen value. By which quantum numbers is the
state of the electron specified?

aB =
4π ε0 �

2

me e2
(Bohr radius) .

Exercise 6.2.5

Let the electron (mass m, charge -e) of the hydrogen atom be in the eigen-state
ψnlml

(r).

1. Calculate the current density due to the electron. Disregard the spin of
the electron!

2. Determine the magnetic moment produced by this current!
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Exercise 6.2.6
Let the electron of the hydrogen atom be in a state which is described by the
wave function

ψ(r) =
1

5
(3ψ100(r) − 2ψ211(r) +

√
12ψ21−1(r)) .

Calculate the expectation value of the energy in units of Rydberg energy ER

as well as the expectation values of L2 and Lz. (ψnlml
(r): hydrogen eigen-

functions)

Exercise 6.2.7
Prove the Kramers relation (6.78):

k + 1

n2
〈rk〉nl − (2k + 1)

aB
Z

〈rk−1〉nl + k

4
[(2l + 1)2 − k2]

(aB
Z

)2

〈rk−2〉nl = 0

(2l + k + 1 > 0) .

It might be recommendable to start with the radial equation (6.35), and to
multiply this by [

ρk+1 u′(ρ)− 1

2
(k + 1) ρk u(ρ)

]

and then to integrate from 0 to ∞ over ρ!

Exercise 6.2.8
Consider the electron in the hydrogen atom, disregarding spin and relativistic
corrections. Calculate for the ground state

1. the most probable value for the distance of the electron from the nucleus,

2. the expectation value and the mean square deviation of this distance,

3. the probability to find the electron at a distance r > aB,

4. the most probable value for the magnitude of the momentum.

Exercise 6.2.9
A particle of charge q moves in a central potential V (r). The operator of the
electric dipole moment is defined by

p̂ = q z = q r cosϑ .

Let ψnlml
(r) = Rnl(r)Ylml

(ϑ, ϕ) be the eigen-states of the Hamilton operator.

1. Show: ∫
d3r ψ∗

nlml
(r) · p̂ · ψnlml

(r) = 0 .

2. For which pairs l′m′
l; l,ml is the matrix element

∫
d3r ψnl′m′

l
(r) · p̂ · ψnlml

(r)
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unequal zero? Which meaning do these transitions have? Use the recur-
sion formula for the associated Legendre polynomials:

(2l+1) z Pml

l (z) = (l+1−ml)P
ml

l+1(z)+(l+ml)P
ml

l−1(z)(0 ≤ ml ≤ l−1) .

3. With the known eigen-functions of the hydrogen atom construct an eigen-
state to n = 2, for which the expectation value of p̂ does not vanish
(contradiction to 1.?) and calculate this value!

Exercise 6.2.10
Show that the relative momentum (6.105) of the two-body problem (Sect. 6.2.5),

p = μ ṙ ; μ =

(
1

m1
+

1

m2

)−1

,

and the relative coordinate,

r = r1 − r2 ,

are canonical-conjugate variables. Demonstrate the same for the center-of-mass
coordinate R (6.98) and the center-of-mass momentum P = M Ṙ (6.105).

Exercise 6.2.11

1. For the Hamilton operator of the electron in the hydrogen atom calculate
the commutator

i

�
[H, r · p]− !

2. Let 〈T 〉 = 〈ψ|T |ψ〉 and 〈V 〉 = 〈ψ|V |ψ〉 be the expectation values of the
kinetic energy T and the potential energy V in an eigen-state |ψ〉 of the
hydrogen atom. Use 1. to justify the so-called virial theorem

2〈T 〉+ 〈V 〉 = 0 .

Give explicit expressions for 〈T 〉 and 〈V 〉!
3. How does the virial theorem read for the spherical harmonic oscillator?

6.3 Spherical Symmetric Potential Well

6.3.1 Radial Equation

As a further example of a central potential we now investigate the spherically
symmetric potential well (Fig. 6.7):

V (r) =

{
−V0 for r ≤ a ,

0 for r > a .
(6.113)
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Figure 6.7: Radial form of the spherical-symmetric of the potential well

We have elaborately discussed in Sect. 4.2 (Vol. 6) the one-dimensional analog.
The potential well is a simple model for short-range attractive forces, as for
instance the nuclear forces.

We have of course already done, for the solution of this problem, a lot of
preparatory work. So we can directly start with the radial equation (6.17),
which is valid for all central potentials:

{
− �

2

2m

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
+ V (r) − E

}
R(r) = 0 .

The potential is piecewise-constant. Therefore

k2 =
2m

�2
(E − V (r))

is also in principle a constant. The space-dependence only concerns the discon-
tinuity at r = a. With the exception of this point we can therefore substitute
in the radial equation z = k r:

[
d2

dz2
+

2

z

d

dz
− l(l + 1)

z2
+ 1

]
R(z) = 0 . (6.114)

We therewith have to deal again with a differential equation, which is extensively
discussed in the textbooks of mathematical physics, the solutions of which are
therefore well-known. It is the Bessel differential equation, with which we
will first familiarize ourselves a bit in the next subsection.

The explicit solution of the problem will then later be carried out in the
same manner as that for the one-dimensional potential well in Sect. 4.2 (Vol. 6).
At first, we will seek general solutions in the regions 0 ≤ r < a and r > a, and
thereby take into account in particular the behavior for r → 0 and r → ∞,
and subsequently fit properly the partial solutions by the use of the continuity
conditions for wave functions and their derivatives.

6.3.2 Bessel Functions

We discuss some partial aspects of the differential equation (6.114), of course
focused on that which is of importance for the following physical considerations.
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We present this discussion in form of a list:
1) Inflection point

When we take u(z) = z R(z), then:

u′′(z) = 2R′(z) + z R′′(z) .

(6.114) becomes therewith:

u′′(z) +
(
1− l(l + 1)

z2

)
u(z) = 0 . (6.115)

But this means that u(z) = z R(z) has an inflection point at z =
√
l(l + 1).

2) Special case: l = 0
In this case, (6.115) can easily be solved:

u′′
0(z) + u0(z) = 0 =⇒ u0(z) ∼ sin z, cos z .

For the radial function this means:

R0(z) ∼ sin z

z
; R0(z) ∼ cos z

z
. (6.116)

The first solution is regular at the origin (z → 0), the second diverges at this
point.
3) Explicit solution

We want to trace back in the following the solutions of the Bessel differential
equation (6.114) by a recursion formula to R0(z). Thereby the following ansatz
helps:

Rl(z) = zl fl(z) . (6.117)

With

2

z

d

dz
Rl(z) = zl

(
2l

z2
fl(z) +

2

z

d

dz
fl(z)

)
,

d2

dz2
Rl(z) = zl

(
l(l − 1)

z2
fl(z) +

2l

z

d

dz
fl(z) +

d2

dz2
fl(z)

)

we can rewrite (6.114) at first into a differential equation for fl(z):

[
d2

dz2
+

2(l + 1)

z

d

dz
+ 1

]
fl(z) = 0 . (6.118)

In order to get a recursion formula, we differentiate (6.118) once more with
respect to z:

[
d3

dz3
+

2(l+ 1)

z

d2

dz2
+

(
1− 2(l + 1)

z2

)
d

dz

]
fl(z) = 0 .

When we insert

d

dz
fl(z) = z g(z)
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into this equation, then we reach eventually a differential equation for g(z):

[
d2

dz2
+

2(l + 2)

z

d

dz
+ 1

]
g(z) = 0 .

Comparing this with (6.118) we recognize that g(z) must be proportional to
fl+1(z):

g(z) =
1

z

d

dz
fl(z) ∼ fl+1(z) .

This can be iterated and leads then to:

fl(z) ∼
(
1

z

d

dz

)l

f0(z) .

f0(z) is according to (6.117) identical to R0(z), and is therewith known. There is
an expression, which is regular at the origin, and another one which is irregular.
We obtain hence with (6.117) for the radial function the two special solutions:

jl(z) = (−z)l
(
1

z

d

dz

)l
sin z

z
(6.119)

spherical Bessel function ,

nl(z) = −(−z)l
(
1

z

d

dz

)l
cos z

z
(6.120)

spherical Neumann function .

The sign factors are of course arbitrary. The above choice, however, is the con-
vention. The Bessel functions jl(z) are regular at the origin, but the Neumann
functions nl(z) are not. They are linearly independent sets of functions. The
general solution of the radial equation (6.114) therefore reads:

Rl(z) = al jl(z) + bl nl(z) . (6.121)

The coefficients al, bl have to be fixed by boundary conditions.

4) Behavior for z → 0
Let us analyze the solutions (6.120) and (6.121) further in some detail. The

behavior at the origin turns out to be important. This is most easily investigated
by the use of the series expansions of the trigonometric functions:

sin z

z
=

∞∑

s=0

(−1)s
z2s

(2s+ 1)!
,

cos z

z
=

∞∑

s=0

(−1)s
z2s−1

(2s)!
.

We apply to these expressions the operator ((1/z) (d/dz))l and sort out the term
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which dominates in the limit z → 0:

(
1

z

d

dz

)l
sin z

z
=

∞∑

s=0

(−1)s
2s(2s− 2) · · · (2s− 2l+ 2)

(2s+ 1)!
z2s− 2l

−→
z→ 0

(−1)l
2l(2l− 2) · · · 2

(2l + 1)!
+O(z2) ,

(
1

z

d

dz

)l
cos z

z
=

∞∑

s=0

(−1)s
(2s− 1) (2s− 3) · · · [2s− (2l − 1)]

(2s)!
z2s− (2l+1)

−→
z→ 0

(−1)l (2l− 1) (2l − 3) · · · 1 · z−(2l+1) (1 +O(z2)) .

In the last expression we have taken out the for z → 0 most divergent summand
(s = 0). With the definition of the so-called double factorial,

(2l + 1)!! = 1 · 3 · 5 · · · (2l + 1) , (6.122)

one then finds the following asymptotic behavior patterns for the solutions
(6.120) and (6.121):

jl(z) −→
z→ 0

zl

(2l + 1)!!
(1 +O(z2)) , (6.123)

nl(z) −→
z→ 0

− (2l + 1)!!

(2l+ 1)zl+1
(1 +O(z2)) . (6.124)

By taking into consideration the next terms of the above expansions, one can
of course easily extend these formulas to higher accuracy.

5) Behavior for z → ∞
For z → ∞ such terms in jl(z) and nl(z), respectively, dominate, for which

all the l differentiations are applied to the sine and the cosine, respectively.
Because of

cos z = − sin
(
z − π

2

)

we can estimate,

(
1

z

d

dz

)l
sin z

z
−→
z→∞ (−1)l

sin (z − (lπ/2))

zl+1
,

and because of

sin z = cos
(
z − π

2

)

it follows: (
1

z

d

dz

)l
cos z

z
−→
z→∞ (−1)l

cos (z − (lπ/2))

zl+1
.
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Figure 6.8: Qualitative curve of the spherical Bessel function for l > 0

The Bessel and Neumann functions therefore exhibit the following asymptotic
behavior:

jl(z) −→
z→∞

1

z
sin

(
z − lπ

2

)
, (6.125)

nl(z) −→
z→∞ −1

z
cos

(
z − lπ

2

)
. (6.126)

6) Examples
For the spherical Bessel function we now expect a curve as qualitatively

plotted in Fig. 6.8. Essential deviations from the asymptotic behavior appear
only in the region around the inflection point z =

√
l(l+ 1) of z jl(z). (6.125)

can be used to represent jl(z), without remarkable mistake, already for z > 2l,
which turns out to be advantageous for respective estimations. The l = 0 Bessel
function, however, is in the region of small z, different from the others. It starts
for z = 0 at the value 1.

The following examples of Bessel and Neumann functions are directly derived
from (6.120) and (6.121):

j0(z) =
sin z

z
,

n0(z) = −cos z

z
,

j1(z) =
sin z

z2
− cos z

z
,

n1(z) = −cos z

z2
− sin z

z
,

j2(z) =

(
3

z3
− 1

z

)
sin z − 3

z2
cos z ,

n2(z) = −
(

3

z3
− 1

z

)
cos z − 3

z2
sin z .

7) Hankel functions
Another fundamental system for the solution of the Bessel differential equa-

tion (6.114) is represented by the Hankel functions of the first and the second
kind, which are defined as follows:

h
(±)
l (z) = jl(z)± i nl(z) = ∓i (−z)l

(
1

z

d

dz

)l
e±iz

z
. (6.127)
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Instead of (6.121) we can use as ansatz for the solution of (6.114) just as well:

Rl(z) = α
(+)
l h

(+)
l (z) + α

(−)
l h

(−)
l (z) . (6.128)

The actual choice of the ansatz, (6.121) or (6.128), is of course decided, according
to expedience, by the boundary conditions to be fulfilled.

The behavior of the Hankel functions for z → 0 corresponds to that of the
Neumann functions, diverging at the origin. On the other hand, it holds for
large z:

h
(±)
l (z) −→

z→∞ ∓ i
1

z
e±i(z−(lπ/2)) . (6.129)

We list some examples:

h
(+)
0 (z) = − i

z
eiz =

(
h
(−)
0 (z)

)∗
,

h
(+)
1 (z) = −1

z
eiz

(
1 +

i

z

)
=
(
h
(−)
1 (z)

)∗
,

h
(+)
2 (z) =

i

z
eiz

(
1 +

3i

z
− 3

z2

)
=
(
h
(−)
2 (z)

)∗
.

Further formulas in connection with the Bessel differential equation are collected
in Sect. 7.4.6.

6.3.3 Bound States

After this mathematical interlude we now come back again to the actual physical
problem and search at first for the bound states in the spherically symmetric
potential well. It is clear that these can exist only for

−V0 < E < 0 .

We write

k2 =

⎧
⎨

⎩

k20 = 2m
�2 (E + V0) for r < a ,

−κ2 = 2m
�2 E for r > a

(6.130)

and solve the eigen-value problem, in principle, by using the same algorithm
that was already applied successfully in connection with the one-dimensional
potentials in Chap. 4 (Vol. 6).
r < a

In this region: k2 = k20 . We have to require that the radial function is regular
at the origin of coordinates, which is guaranteed only by the Bessel function.
The solution ansatz (6.121) is therefore appropriate, where the coefficients bl
must all be zero:

Rl(r) = aljl(k0r) . (6.131)

r > a
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This is the classically forbidden region. The wave number k is purely imagi-
nary: k = i κ. We must expect an exponential decay of the wave function. Only
the Hankel function of the first kind (6.129) offers this. Therefore we choose
here the ansatz (6.128) for the radial function, where it is clear, right from the

start, that all the α
(−)
l vanish, because h

(−)
l (i κ r) diverges for r → ∞:

Rl(r) = α
(+)
l h

(+)
l (i κ r) . (6.132)

The radial function and its derivative have to be continuously matched :

al jl (k0a)
!
= α

(+)
l h

(+)
l (i κ a) , (6.133)

al
d

dr
jl (k0r)|r= a

!
= α

(+)
l

d

dr
h
(+)
l (i κ r)|r= a . (6.134)

These two conditions can be combined as follows:

k0
d

dz
ln jl(z)|z= k0a

!
= i κ

d

dz
lnh

(+)
l (z)|z= i κ a , (6.135)

from which we get a rather complicated transcendental equation, which, for
given V0 and l, can be fulfilled only for a definite E. According to (6.130) E
appears in k0 and κ. A general analytic solution, though, is not possible. We
therefore restrict our further considerations to the special case l = 0 (s-state).
The evaluation for l = 1 is performed as Exercise 6.3.2.

When we insert

j0(z) =
sin z

z
; j′0(z) =

1

z2
(z cos z − sin z) ,

h
(+)
0 (z) =

eiz

i z
;

(
h
(+)
0 (z)

)′
=

z + i

z2
eiz (6.136)

into (6.135), we obtain after simple manipulations

k0 cot k0 a = −κ . (6.137)

This is an energy condition, which we got, in exactly the same form, for the
one-dimensional potential well (Sect. 4.2, Vol. 6). There it was the energy con-
dition for the antisymmetric solution wave functions. The agreement of (4.43)
(Vol. 6) and (6.137) is not accidental! We had already realized in connection
with (6.23) that the solution of the radial equation for central potentials is
equivalent to a one-dimensional Schrödinger equation, if one only replaces
V (r) by

V̂ (q) =

⎧
⎨

⎩
V (q) +

�
2l(l + 1)

2mq2
for q > 0 ,

∞ for q ≤ 0

(We had always used in Chap. 4 (Vol. 6) the letter q for the one-dimensional

position variable.) For l = 0, however, on the positive axis, V̂ is identical
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Figure 6.9: Two possible solutions for the radial function of the spherical-
symmetric potential well, which correspond to bound states

to V , while the condition V̂ ≡ ∞ for q = r ≤ 0 restricts, in the equivalent
one-dimensional potential problem, the solution ansatz to the antisymmetric
eigen-functions, because only those vanish for q = 0.

The further analysis of (6.137) can be taken over from Sect. 4.3 (Vol. 6)
almost without any modification. Here also holds, e.g., the statement (4.49)
(Vol. 6), according to which a bound state can exist only if the depth of the well
V0 exceeds a certain minimal value V ∗

0 :

V0 > V ∗
0 =

π2
�
2

8ma2
. (6.138)

In Fig. 6.9 there are plotted, qualitatively, two solutions of the radial function,

where for (k
(1)
0 , κ1) V0 permits just one bound state, and for (k

(2)
0 , κ2) two bound

states are possible.
In Exercise 6.3.4 we investigate the limiting case of the very deep spherically

symmetric potential well, for which the energy spectrum of the bound states
can be estimated for arbitrary l.

6.3.4 Continuum States

We finally discuss the case
E > 0 ,

for which the entire r-axis represents the classically allowed region. The solution-
wave function will exhibit oscillatory behavior everywhere. We write

q =

√
2mE

�2
; k0 =

√
2m

�2
(E + V0) , (6.139)

and choose for the entire r-axis the solution ansatz (6.121). Hee also, of course,
the regularity of the radial function at the origin has to be respected:

r < a : Rl(r) = al jl(k0r) ,
r > a : Rl(r) = αl jl(q r) + βl nl(qr) .

(6.140)
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The continuity conditions at r = a now deliver conditions for the coefficients in
these solutions, i.e., ultimately there exists for each energy E a possible wave
function and there are no selection conditions for the energy itself. We thus
obtain a continuous energy spectrum. The explicit evaluation of the fitting
condition

k0
(d/dz) jl(z)

jl(z)

∣∣∣∣
z= k0a

= q

(
αl (d/dz) jl(z) + βl (d/dz)nl(z)

αl jl(z) + βl nl(z)

)

z= q a

, (6.141)

is somewhat cumbersome. We therefore restrict ourselves here again to the
special case l = 0 (s-state). With (6.136) we find for the left-hand side of
equation (6.141):

k0
(d/dz) jl(z)

jl(z)

∣∣∣∣
z= k0a

=
1

a
(k0a cotk0a− 1) .

For the right-hand side we still need:

n0(z) = −cos z

z
; n′

0(z) =
1

z2
(z sin z + cos z) .

Therewith we have:

q

(
α0 j

′
0(z) + β0 n

′
0(z)

α0 j0(z) + β0 n0(z)

)

z= q a

=
1

a

(
q a

cos q a+ x0 sin q a

sin q a− x0 cos q a
− 1

)
.

Here we have written for abbreviation:

x0 =
β0

α0
= − tan δ0 . (6.142)

We get therewith the following l = 0-fitting condition:

k0 cotk0a = q
cos q a cos δ0 − sin q a sin δ0
sin q a cos δ0 + cos q a sin δ0

= q
cos(q a+ δ0)

sin(q a+ δ0)
= q cot(q a+ δ0) .

The phase δ0 determines, according to (6.142) the ratio of the coefficients β0/α0:

δ0 = arctan

(
q

k0
tan k0 a

)
− q a = δ0 (E, V0) . (6.143)

The physical meaning of the phase δ0, one understands as follows: For V0 = 0
it is of course q = k0 and therewith δ0 = 0. Because of the still to be fulfilled
condition of regularity at r = 0 we have:

R
(0)
0 (r) ∼ j0(q r) −→

q r
 l

1

q r
sin q r . (6.144)

For V0 �= 0 and r > a it holds according to (6.140), (6.125), (6.126):

R0(r) ∼ j0(q r) + x0 n0(q r) −→
q r
 l

1

q r
[sin(q r) − x0 cos(q r)]

∼ 1

q r
[sin(q r) cos δ0 + cos(q r) sin δ0] .
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It therefore results the following asymptotic behavior:

R0(r) −→ 1

q r
sin(q r + δ0) . (6.145)

When we compare this result with (6.144), then we recognize that the asymptotic
influence of the potential well on the radial function consists in a phase shift
δ0(E, V0) with respect to the free solution. We have calculated this phase in
(6.143).

These considerations are not restricted, of course, only to l = 0, but are
valid for arbitrary l,

Rl(r) −→ 1

q r
sin

(
q r − lπ

2
+ δl

)
. (6.146)

The point is, however, that the phase

δl = δl(E, V0)

is no longer so easily calculated for l ≥ 1 (see Chap. 9: scattering theory).

6.3.5 Exercises

Exercise 6.3.1
A particle of mass m moves freely in a spherical hollow. The potential reads
correspondingly:

V (r) =

{
0 for r ≤ a ,

∞ for r > a .

1. Calculate the energy-eigen functions.

2. Which condition determines the energy-eigen values? Discuss these values
for l = 0.

3. How do the energy-eigen values look like for k a � l
(
k2 = (2m/�2)E

)
?

Exercise 6.3.2
A particle moves in the spherical potential well:

V (r) =

{
−V0, V0 > 0 for r < a ,

0 for r ≥ a .

Which equation determines the energy-eigen values of the bound states for l = 1?

Exercise 6.3.3
A particle of the mass m moves in the field of the central potential

V (r) =
c

r2
+

1

2
mω2r2 ; c > 0 .
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Solve the corresponding time-independent Schrödinger equation H ψ = E ψ,
where the angle part is given by the spherical harmonics Ylml

(ϑ, ϕ), and is
therefore already known:

ψ(r) = R(r)Ylml
(ϑ, ϕ) .

1. Formulate the radial equation and discuss it for r → 0 and r → ∞. Show
that

u(r) = r R(r) = rx e−γr2 g(r)

is a suitable ansatz, which accommodates these limiting cases. What are
the meanings of x and γ?

2. With the ansatz from 1. derive a conditional equation for g(r).

3. Choose for g(r) the ansatz

g(r) =
∑

μ

αμ r
μ

and give reasons why the series must terminate at a finite μ0.

4. Determine the spectrum of the energy-eigen values!

5. For which value of r is the density of the position probability maximal in
the ground state? Does this coincide with the minimum of the potential?

Exercise 6.3.4
Calculate, for the limiting case of a very deep spherically symmetric potential
well, approximately the energy spectrum of the bound states. Investigate for
this purpose the fitting condition (6.135) for the case k0a � l.

Exercise 6.3.5
A particle of mass m and charge q̂ moves in a constant magnetic field B, whose
vector potential is given, by the use of cylindrical coordinates ρ, ϕ, z, by

Aϕ =
1

2
B ρ , Aρ = Az = 0 .

1. For this problem find the time-independent Schrödinger equation written
in cylindrical coordinates.

2. Which equation is fulfilled by the radial parts of the eigen-functions?

3. What are the energy-eigen values?

Exercise 6.3.6
A particle of the mass m moves in an attractive, at infinity sufficiently fast
decaying cylindrical potential :

V (r) ≡ V (ρ) = − c

ρα
; α > 1 (ρ, ϕ, z : cylindrical coordinates) .
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1. Write down the time-independent Schrödinger equation!

2. Decompose this equation into an axial, a radial, and an angular equation!

3. The radial equation has the structure:

(
d2

dρ2
+

1

ρ

d

dρ
+ F (ρ)

)
R(ρ) = 0 .

By which substitution for R(ρ) can the linear term (1/ρ) (d/dρ) be elimi-
nated?

4. Discuss the behavior of the radial function of a bound state for ρ → 0 and
ρ → ∞, where 1 < α < 2.

Exercise 6.3.7
The potential of a molecule with a long extension in z-direction can be approx-
imately represented as independent of z, when one uses cylindrical coordinates
(ρ, ϕ, z):

V (r) = V (ρ) = − Z e2

4π ε0ρ
(Ze : charge of the molecule) .

Calculate the eigen-functions and the energy-eigen values of an electron bound
by this potential.

Exercise 6.3.8
An electron (spin 1/2) occupies a bound state in the field of a central potential.
Let the radial function R(r) of this state be known. Moreover, one knows
that the wave function ψ(r) is an eigen-function of the operators L2, J2 and Jz
(J = L+ S). Determine ψ(r)!

6.4 The Free Particle

We want to complete this chapter with the discussion of a special case, which
will become important later, namely, for the scattering theory in Chap. 9. Here
we get it, in a certain sense, as a bi-product. Let us investigate the free particle:

H0 ψ0(r) = E ψ0(r) ; H0 =
p2

2m
; E > 0 .

The solution of the eigen-value problem is of course well-known. The (non-
normalized) plane wave,

ψ0(r) = eik·r ; E =
�
2k2

2m
, (6.147)

is a common eigen-function of the components px, py, pz of the operator of the
momentum, and therewith also an eigen-function of the Hamilton operator H0.
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In this state the particle has a precise momentum �k and a precise energy E,
but, on the other hand, not a well-defined angular momentum.

However, we can consider the free particle motion formally also as the limit-
ing case of a motion in a ‘central potential of the strength zero’, and can therefore
directly apply the so far derived results of the present chapter. So it is clear
that with

k =

√
2mE

�2
; z = k r

the radial equation (6.114) remains valid:

(
d2

dz2
+

2

z

d

dz
+ 1− l(l+ 1)

z2

)
Rl(z) = 0 .

The potential V (r) is zero but the centrifugal barrier (6.20) is still present. The
general solution of this Bessel equation is given in (6.121), where, because of the
required regularity at the origin, all the coefficients of the Neumann functions
must be zero:

Rl(r) ∼ jl(k r) .

The angle part of the wave function is, according to (6.16), a spherical harmonic
Ylml

(ϑ, ϕ). We have therewith found for the free particle with

jl(k r)Ylml
(ϑ, ϕ) (r : r, ϑ, ϕ)

a common eigen-function of the operatorsH0, L
2 and Lz. These functions build

a complete system. The plane wave (6.147) can therefore be expanded in these
functions:

ψ0(r) =

∞∑

l=0

+l∑

ml =−l

clml
jl(k r)Ylml

(ϑ, ϕ) . (6.148)

The remaining task consists in fixing the coefficients clml
. For this purpose

we consider at first the special case that the direction of the wave vector k
defines the z-axis of the system of coordinates. The left-hand side of the equa-
tion (6.148) then no longer contains the angle ϕ (k · r = k r cosϑ). The same
must therefore hold for the right-hand side, and that has the consequence that
ml =0 or

clml
= cl δml0 .

Since, according to (5.103), the ml = 0-spherical harmonics are proportional to
the Legendre polynomials,

Yl0(ϑ, ϕ) =

√
2l + 1

4π
Pl(cosϑ) ,

we have the intermediate result:

eikr cosϑ =

∞∑

l=0

√
2l+ 1

4π
cl jl(k r)Pl(cosϑ) . (6.149)
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It follows, with the orthogonality relation (5.98) for Legendre polynomials, when
we multiply the last equation by Pn(x) and then integrate over x = cosϑ from
−1 to +1:

2n+ 1

2

+1∫

−1

dx eikrx Pn(x) = cn

√
2n+ 1

4π
jn(k r) . (6.150)

The actual goal is the determination of the cn, which are independent of r. We
can therefore, during the evaluation, ascribe the coordinate r to an especially
‘handy’ region, for instance to the asymptotic limit r → ∞. The left-hand side
of the above equation can then be estimated as follows:

+1∫

−1

dx eikrx Pn(x) =
1

ikr

[
eikrx Pn(x)

]+1

−1
− 1

ikr

+1∫

−1

dx eikrx P ′
n(x)

=
1

ikr

[
eikrx Pn(x)

]+1

−1
+O

(
1

r2

)
.

The last step one understands when one integrates eikrx P ′
n(x) once more by

parts. With Pn(±1) = (±1)n one thus can write:

+1∫

−1

dx eikrx Pn(x) =
1

ikr

(
eikr − (−1)n e−ikr

)
+O

(
1

r2

)

=
in

ikr

(
ei(kr−n(π/2)) − e−i(kr−n(π/2))

)
+O

(
1

r2

)

=
2in

kr
sin

(
k r − n

π

2

)
+O

(
1

r2

)
. (6.151)

The comparison with (6.125) shows that the integral behaves for large r almost
like the spherical Bessel function:

+1∫

−1

dx eikrx Pn(x) ≈ 2in jn(k r) .

With (6.150) the coefficients cn are then determined:

cn = in
√
4π(2n+ 1)

Inserting them into (6.149) we finally get the following expansion of the plane
wave:

eikr cosϑ =

∞∑

l=0

il(2l+ 1) jl(k r)Pl(cosϑ) . (6.152)
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When we still apply, at the end, the addition theorem for spherical harmonics
((2.161), Vol. 3),

Pl(cos γ) =
4π

2l+ 1

∑

ml

Y ∗
lml

(ϑk, ϕk)Ylml
(ϑr, ϕr) ,

γ = �(r,k) ,

in which ϑk, ϕk are the polar angles of k and ϑr, ϕr those of r, then we can
generalize our result for the plane wave to arbitrary space directions of the
wave vector k:

ψ0(r) = eik·r = 4π
∑

l,ml

il jl(k r)Y
∗
lml

(ϑk, ϕk)Ylml
(ϑr, ϕr) . (6.153)

6.5 Self-Examination Questions

To Section 6.1

1. What is the physical reason for the fact that in the case of a central
potential the Hamilton operator H commutes with L2 and Lz?

2. How is the radial momentum pr defined in Quantum Mechanics? Which
form does this operator take in the position representation?

3. Under which conditions is pr Hermitian?

4. Why, in a strict sense, pr is not an observable?

5. What is the connection between particle momentum p, radial momentum
pr and square of the angular momentum L2?

6. Which separation ansatz recommends itself for the wave function ψ(r) of
a particle in a central field?

7. What is understood by the radial equation?

8. With respect to which quantum number are the energies of a particle in
an arbitrary central field in any case degenerate?

9. What does one understand by the centrifugal barrier?

To Section 6.2

1. What is the potential energy of an electron in a hydrogen-like ion?

2. Which structure does the radial equation have for the electron in the
hydrogen atom?

3. Which ansatz is recommendable for the solution function of the radial
equation?
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4. Illustrate on the example of the H-atom the idea of the Sommerfeld’s
polynomial method!

5. Which discrete energy levels come into question for the electron in the
H-atom?

6. To what degree are these degenerate? How does one calculate the degree
of degeneracy?

7. Which ground state energy does the electron possess in the hydrogen
atom? Give the approximate numerical value in eV !

8. How is the principal quantum number defined?

9. Which values can the secondary quantum number assume?

10. What is called accidental degeneracy?

11. Explain the term electron shell for the H-atom.

12. What is an L-shell and what is a d-orbital?

13. How can the Ritz’s combination principle be explained by the example of
the hydrogen atom?

14. Which type of function determines the radial part of the bound states in
the Coulomb potential?

15. How many zeros does the radial function Rnl(r) possess in the Coulomb
potential?

16. Which of the Rnl(r) are unequal zero at r = 0?

17. What does one understand by radial position probability?

18. What are nodal planes?

19. Where does one find the maximum of the radial position probability for
the electron in the ground state (n = 1, l = 0) of the hydrogen atom?

20. How does the maximum of the density of the radial position probability
shift with increasing principal quantum number and maximal secondary
quantum number l = n− 1?

21. How do the orbital radii 〈r〉nl in the bound states of the Coulomb potential
behave as functions of the principal quantum number n and the atomic
number Z?

22. In which sense does the quantum-mechanical treatment of the electron
motion in the Coulomb potential fulfill the rule of correspondence, accord-
ing to which for large quantum numbers n the classical concept of a path
(an orbit) should be approximately valid?
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23. For the Coulomb potential, how does the quantum-mechanical analog of
the classical virial theorem read?

24. How does one plot a polar diagram?

25. By which special symmetry are the s-states characterized?

26. Which angle distribution characterizes p-states?

27. Why is the hydrogen problem actually a two-body problem? By which
‘trick’ can it be reduced to an effective one-particle problem?

28. How do the solutions of the hydrogen problem differ, when, on the one
hand, one considers the nucleus to be ‘at rest’, and on the other hand,
when one includes its motion?

29. What is the canonically conjugate momentum which belongs to the rela-
tive coordinate r?

30. How does the center of gravity of the hydrogen atom move, when the
Coulomb attraction between the proton and the electron is the only force
acting?

To Section 6.3

1. For which type of forces can the spherically symmetric potential well serve
as a simple model?

2. Which structure does the Bessel differential equation have?

3. Which special sets of functions solve the Bessel differential equation?

4. How do the spherical Bessel and Neumann functions (jl(z), nl(z)) behave
close to the origin of coordinates z = 0? Which curve do they exhibit for
z → ∞?

5. Which connection exists between the Hankel functions of first and second
kind and the spherical Bessel and Neumann functions?

6. How do the Hankel functions behave for large z?

7. Why should the radial function of a bound state, within the spherically
symmetric potential well, behave like a spherical Bessel function?

8. Why does the energy condition for bound s-states (l = 0) in the spherically
symmetric potential well agree with that for antisymmetric eigen-functions
of the one-dimensional potential well?

9. Are bound states possible for arbitrary depths V0 of the spherically sym-
metric potential well?
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10. How does the presence of the potential well asymptotically influence the
radial functions of the continuum states?

To Section 6.4

1. In which manner are the general results for the problems of central poten-
tials transferable to the case of the non-interacting (free) particle?

2. Does the centrifugal barrier exist also for the free particle?

3. What is the structure of the common eigen-functions of the operators H0,
L2 and Lz in the case of the free particle?



Chapter 7

Approximation Methods

Only very few problems of Theoretical Physics can be really solved in a mathe-
matically rigorous sense. In order to be able to understand experimental obser-
vations and to describe them realistically the theoretician needs an as wide as
possible repertoire of approximation methods. He (she) is obliged to replace
not achievable exact solutions by well-founded approximations, which do not
adulterate the essential physical aspects. He (she) will therefore try to free the
original problem from unnecessary ‘baggage’. i.e., to stress the important facts,
and to suppress marginal phenomena in favor of mathematical simplicity. It
would be desirable, but unfortunately not always satisfactorily accessible, to
find a way to estimate the error, which by definition is always associated with
such an approximation.

In this chapter we present four conceptionally rather different methods, the
variational method (Sect. 7.1), the time-independent Schrödinger perturbation
theory (Sect. 7.2), the Dirac (time-dependent) perturbation theory (Sect. 7.3)
as well as the quasi-classical WKB-method (Wentzel, Kramers, Brillouin).
All these approximation procedures can rather easily be abstract-theoretically
understood; the application to actual problems, however, may sometimes turn
out to be somewhat more demanding. Therefore, especially in this chapter, the
offer of exercises should be accepted by the reader for an in-depth understanding
of the underlying theory.

The variational method can be especially used sometimes for astonishingly
excellent estimations of the ground-state energy of a physical system. It is based
on a general extremal principle, according to which each state |ϕ〉, for which
the expectation value 〈ϕ|A|ϕ〉 of the Hermitian operator A is extremal, is an
eigen-state of A.

The time-independent Schrödinger perturbation theory is specific to
systems, the Hamilton operator of which can be additively decomposed into an
unperturbed operatorH0 and a perturbation H1. The eigen-value problem forH0

shall thereby be exactly solvable, while H1 represents a relatively small quantity.
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Systematic expansions of physically relevant terms in powers of the perturbation
can then be terminated approximately after a finite number of summands.

The statement of the problem for the Dirac perturbation theory is some-
what different. This theory is focused on the temporal evolution of a physical
system under the influence of a time-dependent external perturbation. For real-
istic systems, however, that is again only approximately determinable.

While perturbation theory is applied to problems, for which the solution to
be found differs only slightly from that of a known, precisely tractable prob-
lem, the WKB-method can be used always when the quantum-mechanical
system is still rather similar to the corresponding classical � → 0-limiting case.
That presumes an only weakly position-dependent de Broglie-wave length. In
particular, the de Broglie wavelength should be small compared to all the geo-
metric dimensions, over which the potential of the system changes appreciably.
For bound states the wave length scales with the distance of the nodes. For
large quantum numbers there are many nodes, and the system then behaves
quasi-classically. There lies the scope of application of the WKB-method.

7.1 Variational Method

Let A be an arbitrary Hermitian operator (observable), whose eigen-value prob-
lem,

A|a〉 = a|a〉 ,
is too complicated for an exact solution to be available. We therefore have
to be content with an approximate solution. One possibility to find such an
approximate solution represents the variational method, which is based on a
generally valid extremal principle.

7.1.1 Extremal Principle

Let H be the Hilbert space of the considered physical system and |ϕ〉 ∈ H a
state with a finite norm. Then one can interpret the expectation value of A in
the state |ϕ〉,

〈A〉ϕ ≡ 〈ϕ|A|ϕ〉
〈ϕ|ϕ〉 , (7.1)

as a functional of the state vector |ϕ〉. First we want to investigate how 〈A〉ϕ
reacts on a variation of |ϕ〉, i.e., on an infinitesimal change of |ϕ〉 onto |ϕ+ dϕ〉.
The variation of a functional is mathematically treated in the same manner as
the normal differentiation (see calculus of variation: Sect. 1.3.2, Vol. 2):

δ〈A〉ϕ =
1

〈ϕ|ϕ〉 δ〈ϕ|A|ϕ〉 −
1

〈ϕ|ϕ〉2 〈ϕ|A|ϕ〉δ〈ϕ|ϕ〉

=
1

〈ϕ|ϕ〉 [〈δϕ|(A − 〈A〉ϕ1l)|ϕ〉+ 〈ϕ|(A − 〈A〉ϕ1l)|δϕ〉] .
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The extremal behavior of 〈A〉ϕ is especially important:

δ〈A〉ϕ !
= 0 . (7.2)

Condition for this is obviously:

〈δϕ|(A − 〈A〉ϕ1l)|ϕ〉+ 〈ϕ|(A − 〈A〉ϕ1l)|δϕ〉 = 0 . (7.3)

|δϕ〉 and 〈δϕ|, which are variations of the dual ket- and bra-vectors |ϕ〉 und 〈ϕ|,
are certainly not independent of each other. So we cannot conclude immediately
that the two summands in (7.3) by themselves are already zero. Nevertheless,
the conclusion is correct. |δϕ〉 is an infinitesimally small state deviation. The
same holds of course also for i|δϕ〉 = |δ(i ϕ)〉. Any arbitrary infinitesimal
deviation from the extremum of 〈A〉ϕ leads to (7.2), thus also |δ(i ϕ)〉. Because
of

|δ(i ϕ)〉 = i|δϕ〉 ; 〈δ(i ϕ)| = −i〈δϕ|
it follows then instead of (7.3):

−i〈δϕ|(A− 〈A〉ϕ1l)|ϕ〉 + i〈ϕ|(A− 〈A〉ϕ1l)|δϕ〉 = 0 .

If one multiplies this equation by i and, respectively, adds it to (7.3) and sub-
tracts it from (7.3), then one recognizes that indeed both the summands in (7.3)
by themselves are already zero. But that is equivalent to :

(A− 〈A〉ϕ1l)|ϕ〉 = 0 ; 〈ϕ|(A − 〈A〉ϕ1l) = 0 . (7.4)

The second equation is identical to

(A+ − 〈A〉∗ϕ 1l)|ϕ〉 = 0 .

A is Hermitian according to the premises. In addition, the expectation values of
Hermitian operators are always real ((3.64), Vol. 6). The two equations in (7.4)
are therefore identical. We have therewith derived the important extremal
principle:
Each state |ϕ〉 of the Hilbert space, for which the expectation value 〈A〉ϕ of the
Hermitian operator A becomes extremal,

δ〈A〉ϕ = 0 ,

is an eigen-state of A. The eigen-values of A are just the extremal values of the
functional 〈A〉ϕ.

By this generally valid principle, practical methods for the approximate
determination of eigen-values and eigen-states can be developed. This may
happen, for instance, by restricting the space of the states from H, which are
allowed to participate in the variation, to those for which the extremal condition
(7.2) is mathematically easy to evaluate. Is the actual eigen-state not within
this restricted space, then the evaluation of (7.2) will result in an approximate
solution. The disadvantage of such methods lies on hand. It is not always pos-
sible to judge the quality of the approximation, i.e., to estimate its deviation
from the exact solution.
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7.1.2 Ritz’s Method

Variational procedures concerning the eigen-value problem of the Hamilton oper-
ator (A = H) of course are of special interest. The so-called Ritz’s method aims
at the approximate calculation of the levels of the discrete spectrum and can
lead, in particular, to astonishingly close to the exact results for the ground-
state energy. If the spectrum is bounded below, i.e., if there is a ground-state
energy E0, then we have for arbitrary ‘test states’ |ϕ〉 ∈ H:

〈H〉ϕ =
〈ϕ|H |ϕ〉
〈ϕ|ϕ〉 ≥ E0 . (7.5)

We have presented the proof already as solution to Exercise 6.1.4. If we use

H |En〉 = En|En〉 ; En ≥ E0 ; |ϕ〉 =
∑

n

αn|En〉 ,

then we can easily estimate:

〈H〉ϕ =

∑
n,m

α∗
n αm〈En|H |Em〉

∑
n,m

α∗
n αm〈En|Em〉 =

∑
n
En|αn|2

∑
n
|αn|2

≥ E0

∑
n
|αn|2

∑
n
|αn|2 = E0

We obtain therewith the important statement that 〈H〉ϕ in any case represents
an upper bound for the ground-state energy. In the case of A = H the extremum
of 〈A〉ϕ is thus a minimum.

Ritz’s method is based on (7.5):

1. One chooses a test state,

|ϕ〉 = f (|χ1〉, . . . , |χm〉; α1, . . . , αn) , (7.6)

as function of certain fixedly given states |χ1〉, . . . , |χm〉, which need not
necessarily be orthogonal to each other. They should not be, though,
mathematically too complicated, so that 〈H〉ϕ can be relatively easily cal-
culated with them. On the other hand, one tries to fit them as well as pos-
sible to the actual physical problem by taking into account, e.g., obvious
symmetries of the system, special boundary conditions (asymptotic
or zero-point behavior) or precisely solvable limiting cases. The |χi〉 are
fixedly given, and are thus not to be varied.

In addition, the test state |ϕ〉 contains a set of real, independent parame-
ters α1, . . . , αn as the actual variational variables.
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2. One calculates with the ansatz (7.6) the energy functional,

〈H〉ϕ =
〈ϕ∣∣H∣∣ϕ〉
〈ϕ∣∣ϕ〉 ≡ g(α1, . . . , αn) , (7.7)

which then becomes a function of the parameters α1, . . . , αn.

3. By the requirement

∂

∂αi
〈H〉ϕ !

= 0 ; i = 1, 2, . . . , n (7.8)

one gets a system of equations by which an optimal set of parameters

α∗
1, α

∗
2, . . . , α

∗
n

can be derived. It is quite possible that there exist more than one solution
ansatzes for (7.8). One chooses then the one which leads to the lowest
〈H〉ϕ.

4. Finally, with these parameters one calculates

|ϕ∗〉 = f (|χ1〉, . . . , |χm〉; α∗
1, . . . , α

∗
n) (7.9)

as approximation for the ground state and

〈H〉ϕ∗ = g (α∗
1, α

∗
2, . . . , α

∗
n) ≥ E0 (7.10)

as an estimation for the ground-state energy.

It is clear, according to (7.5) that the estimation (7.10) is the better the lower
〈H〉ϕ∗ is. With a large number of variational parameters astonishingly good
approximate values for the ground-state energy can be achieved by this method.
For the ground state wave function itself, however, the procedure is normally
far from being as good.

The variational technique becomes especially simple for the frequently
applied special case that the test state |ϕ〉 in (7.6) depends linearly on the αi:

|ϕ〉 =
m∑

i=1

αi|χi〉 . (7.11)

The extremal condition (7.8) can then be further evaluated:

∂

∂αi
(〈H〉ϕ 〈ϕ|ϕ〉) = 〈H〉ϕ ∂

∂αi
〈ϕ|ϕ〉 = ∂

∂αi
〈ϕ∣∣H∣∣ϕ〉 .

When one inserts here (7.11),

∂

∂αi

∑

n,m

αn αm (〈χn|H |χm〉 − 〈H〉ϕ 〈χn|χm〉) = 0 ,
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then there results a linear homogeneous system of equations,
∑

n

αn (Re〈χn|H |χm〉 − 〈H〉ϕ Re 〈χn|χm〉) = 0 ,

the solution of which requires the vanishing of the secular determinant:

det{Re〈χn|H |χm〉 − 〈H〉ϕ Re〈χn|χm〉} !
= 0 . (7.12)

From all the possible solutions of this relation one again picks up the one with
the minimal 〈H〉ϕ. When one inserts this into the above homogeneous system
of equations, the optimal α∗

i are also determined, which lead via (7.11) to an
approximation for the ground state |E0〉.

It should also be mentioned that with the Ritz’s variational method one can
find approximate solutions also for excited states and their energies. When one
starts from the spectral representation of the Hamilton operator,

H =
∑

n

En|En〉〈En| , (7.13)

then one can define an Hermitian operator H1 by:

H1 = H − E0|E0〉〈E0| . (7.14)

If now E0 and |E0〉 are exactly known, then the Ritz’s method delivers accord-
ing to the extremal principle an upper bound for the first excited energy level
E1:

〈H1〉ϕ ≥ E1 . (7.15)

As a rule, though, the exact solutions for E0 and |E0〉 will not be available, but
rather, if at all, approximations, e.g. from a preceding variational procedure. If
one uses such approximations, then, of course, the statement (7.15) that 〈H1〉ϕ
represents in any case an upper bound for E1, is no longer proven. The by
far most applications of the variational method are therefore focused on the
determination of the ground-state energy only.

We still want to talk a bit about a variant of the Ritz’s method, which
consists in the fact that in the test state |ϕ〉 not the real parameters αi, but the
states |χi〉 are to be considered as the free variables (7.6). The extremal principle
then yields a system of equations for optimal |χi〉. A practically important
example of application, which leads to the so-called Hartree equations for many-
electron systems, explains, in the next section, details about the procedure.

7.1.3 Hartree Equations

The subject matter of the following considerations is a system of N > 2 elec-
trons. They can be the shell electrons of an atom, but also can be the electrons
in an energy band of a solid. We describe them by the Hamilton operator:

HN =
N∑

i=1

(
p2
i

2m
+ Vi(ri)

)
+

1

2

i �= j∑

i, j

e2

4π ε0|ri − rj | . (7.16)



7.1. VARIATIONAL METHOD 147

ri and pi are position and momentum of the ith particle. Let Vi(ri) be the
potential energy of the electron in the field of the positively charged nucleus and
in the field of periodically arranged lattice ions, respectively. An exact solution
of the eigen-value problem for N > 2 is prevented by the second summand in
(7.16), which represents the interaction of the electrons with each other. We
look for a well approximated value of the ground-state energy of the N -electron
system.

The special form of the Hamilton operator makes the position representation
to be convenient. Let ψi(ri) be the wave function of the ith electron with

∫
d3ri ψ

∗
i (ri)ψi (ri) = 1 ∀i . (7.17)

For simplicity we disregard the spin of the electron since we are here more
interested in the representation of the technical algorithm, and not so much in
the details of the physical result. Of course, the inclusion of the spin according
to Sect. 5.2.4 would not create any principle problem.

The product of the N one-particle wave functions presents itself as simplest
test wave function:

ϕ(r1, . . . , rN ) ≡ ψ1 (r1)ψ2 (r2) · · ·ψN (rN ) , (7.18)∫
d3r1 . . . d

3rN ϕ∗ (r1, . . . , rN )ϕ(r1, . . . , rN ) = 1 . (7.19)

Because of the interaction term in the Hamilton operator, ϕ is surely not an
eigen-function of HN . However, we will frequently meet such product wave
functions in Chap. 8, where we treat systematically the quantum theory of
many-particle systems. It is a matter of course that the ansatz for our variational
procedure must contain the coordinates of all the N electrons. We want to
achieve with this ansatz an estimation for the ground-state energy by choosing
an optimal set of one-particle functions in (7.18). For this purpose we build the
energy functional :

〈HN 〉ϕ =

∫
d3r1 . . . d

3rN ϕ∗ HNϕ

=
N∑

i=1

∫
d3ri ψ

∗
i (ri)

{
− �

2

2m
Δi + Vi (ri)

}
ψi (ri) (7.20)

+
1

2

i �= j∑

i, j

∫
d3ri d

3rj ψ
∗
i (ri)ψ

∗
j (rj)

e2

4π ε0|ri − rj | ψj (rj)ψi (ri) .

Here we have already exploited the normalization (7.17). In order to find the
optimal one-particle wave functions we vary the energy functional with respect
to ψ∗

i (r) and set the first variation equal to zero. ψ∗
i (r) possesses, as a com-

plex function with its real and imaginary parts, in principle two independent
variational degrees of freedom. That we can exploit also in such a way that
we consider ψ∗

i (r) and ψi (r) as independent variational variables. But then we
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have to still incorporate the boundary conditions (7.17) for i = 1, 2, . . . , N into
the main variational equation by the use of Lagrange multipliers λi (as to the
method of Lagrange multipliers see Vol. 2, Sect. 1.2.5):

δ

(
〈HN 〉ϕ −

N∑

i=1

λi

∫
d3r ψ∗

i (r)ψi (r)

)
!
= 0 . (7.21)

This means with (7.20):

N∑

i=1

∫
d3ri δψ

∗
i (ri)

[
− �

2

2m
Δi + Vi (ri)

+

�= i∑

j

∫
d3rj ψ

∗
j (rj)

e2

4π ε0|ri − rj | ψj (rj)− λi

]
ψi (ri)

!
= 0 .

The factor 1/2 in front of the third term in the bracket vanishes because ψ∗
i

appears twice in the double sum (7.20). After coupling the boundary conditions
by the multipliers λi the variations δψ∗

i are completely arbitrary. We can, e.g.,
put all δψ∗

n (rn) = 0 for n �= i, and furthermore assume the ri-dependence of
the δψ∗

i to be arbitrary. That leads then to the Hartree equations:

[
− �

2

2m
Δi + Vi (ri)

+

�= i∑

j

∫
d3rj ψ

∗
j (rj)

e2

4π ε0|ri − rj | ψj (rj)− λi

]
ψi (ri) = 0 ;

i = 1, 2, . . . , N . (7.22)

These have the form of eigen-value equations where the Lagrange multipliers
λi play the role of the energy-eigen values and the optimal ψi (ri) that of the
eigen-functions:

[
− �

2

2m
Δi + Vi (ri) + V

(i)
eff (ri)

]
ψi (r) = λi ψi (ri) ,

i = 1, 2, . . . , N . (7.23)

The meaning of the terms can be easily interpreted. The first term is the
kinetic energy of the ith electron, the second its potential energy in the external
potential (nuclear potential or periodic lattice potential). The third summand
represents a repulsive potential which arises from the interaction with the N−1
other electrons:

V
(i)
eff (ri) =

e2

4π ε0

�= i∑

j

∫
d3rj

|ψj (rj)|2
|ri − rj | . (7.24)
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It is about an effective potential, which is actually determined by the still
to be found one-electron wave functions, and therefore, as one says, has to
be calculated self-consistently. This is effected by iteration. One first solves

the problem without the repulsive term V
(i)
eff and obtains therewith in zeroth

order ψ
(0)
i (ri), λ

(0)
i , for instance just the solutions of the hydrogen problem

from Sect. 6.2. With the ψ
(0)
i (ri) one calculates then V

(i)
eff (ri) and solves sub-

sequently the eigen-value anew. The procedure is continued until the solutions,
within certain pre-given accuracy-limits, do no longer change (‘method of the
self-consistent field’). It goes without saying that the practical execution needs
a high-power computer. After finishing the iteration one obtains as an esti-
mation for the ground-state energy, when one multiplies from the left the
Hartree equations (7.22) by ψ∗

i (ri), integrates over ri, sums over i, and finally
compares the result with (7.20):

E0 ≤ 〈HN 〉ϕ =

N∑

i=1

λi −

− e2

8π ε0

i �= j∑

i, j

∫∫
d3ri d

3rj ψ
∗
i (ri)ψ

∗
j (rj)

1

|ri − rj | ψj (rj)ψi (ri) .

(7.25)

The approximate ground state comes out by insertion of the optimal ψi (ri) into
the product ansatz (7.18).

It will be clearly demonstrated in Chap. 8, though, that the Hartree ansatz
(7.18) is acceptable actually only for the spinless and the so-called distinguish-
able particles. Electrons are neither the one nor the other. They obey the fun-
damental Pauli principle, which requires an antisymmetrized N -particle wave
function built up by pairwise-different one-particle functions. This fact is taken
into account by the later to be discussed Hartree-Fock method (Sect. 8.4.1).
We therefore cannot expect that the wave function (7.18), determined by the
Hartree method, will turn out to be physically convincing. On the other hand,
the estimation of the ground-state energy by (7.25) appears pretty much more
realistic!

7.1.4 Exercises

Exercise 7.1.1
A particle moves in the potential

V (q) =

{
1
2 mω2q2 for q > 0 ,

∞ for q ≤ 0 .

1. Verify (without explicit calculation!) that the exact ground-state energy
amounts to E0 = (3/2) �ω.
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2. Use the variational ansatz

ϕ(q) =

{
0 for q ≤ 0 ,

c q e−αq for q > 0

(α = variational parameter) ,

in order to estimate, according to the Ritz’s variational procedure, the
ground-state energy. Discuss the choice of this ansatz.

3. What would be the result with the variational ansatz:

ϕ(q) =

{
0 for q < 0 ,

c q e−αq2 for q ≥ 0 ?

Formulas:

∞∫

0

dq qn e−γq =
Γ(n+ 1)

γn+1
,

∞∫

0

dq qn e−γq2 =
(1/2) Γ ((n+ 1)/2)

γ(n+1)/2
,

Γ(n+ 1) = nΓ(n) ; Γ(1) = 1 ; Γ

(
1

2

)
=

√
π .

Exercise 7.1.2
Use the Ritz’s variational method for the estimation of the ground-state energy
of the linear harmonic oscillator by means of the ansatz:

ϕ(q) =
1

α2 + q2
.

Formulas:

∞∫

0

dq

(α2 + q2)2
=

π

4α3
;

∞∫

0

dq
q2

(α2 + q2)2
=

π

4α
,

∞∫

0

dq

(α2 + q2)3
=

3π

16α5
;

∞∫

0

dq
q2

(α2 + q2)4
=

π

32α5
.

Exercise 7.1.3
A linear harmonic oscillator

H =
p2

2m
+

1

2
mω2q2

is in a force field of the form:

F (q) = f − 2γ q ; (f, γ : real constants)
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1. With the variational ansatz (α: variation parameter),

ϕ(q) = c exp

(
−1

2
αq2

)
,

find an estimation for the ground-state energy!

2. Try to solve exactly the eigen-value problem and compare the ground-state
energy with the variational result from part 1.

Exercise 7.1.4

1. For the ground state of the hydrogen atom we choose the normalized test-
wave function

ψα(r) =
(α
π

) 3
4

exp

(
−1

2
αr2

)
.

Calculate therewith, according to the variational principle, an upper
bound for the ground-state energy. Compare this with the exact result!

2. What would the ansatz

ψβ(r) = γ exp(−βr)

yield? (γ: normalization constant, β: variational parameter)

Exercise 7.1.5
We describe the interaction between a neutron and a proton, at a distance r,
by an attractive Yukawa potential

V (r) = −V0
exp (−r/a)

r/a
(V0 > 0) .

1. Formulate the time-independent Schrödinger equation and separate this
equation with respect to relative and center-of-mass coordinates (cf.
Sect. 6.2.5).

2. Solve the equation for the center-of-mass motion and find the angle-
dependence of the eigen-functions of the relative motion.

3. Choose and motivate the variational ansatz

ϕ(r) = c exp
(
−α

r

a

)

and calculate the energy functional.

4. At which value of α is this energy functional minimal (Ritz’s variational
method!)?
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Figure 7.1: Simple one-dimensional potential curve with linear space-
dependence for q > 0 and infinitely high wall for q < 0

5. For a = 1.4 · 10−13 cm, V0 = 50MeV, q = 2μV0 a
2/�2 = 2.46 (μ: reduced

mass), the optimal α from 4. has the numerical value 0.85. Estimate
therewith the binding energy of the deuterium.

6. Define, as reasonably as possible, the average radius of the deuterium, and
calculate this radius by the use of the numerical values given in part 5.

Exercise 7.1.6
A particle of mass m performs a one-dimensional motion in the potential
(Fig. 7.1)

V (q) =

{
γ q for q ≥ 0 ,

+∞ for q < 0

1. With the variational ansatz

ϕ(q) =

{
q e−αq for q ≥ 0 ,

0 for q < 0

calculate the energy functional 〈H〉ϕ. Give reasons for the ansatz.

2. Find by means of the Ritz’s variational method an upper bound for the
ground-state energy.

Exercise 7.1.7
A particle of mass m moves in a one-dimensional potential V = V (q). Let this
be a homogeneous function of q of the degree n, i.e.,

V (αq) = αnV (q) ∀α ∈ R.

Prove by means of the extremal principle of the variational method that for the
expectation values of the kinetic and potential energy, built with energy-eigen
states, the ‘quantum-mechanical virial theorem’ is valid:

2〈T 〉 = n · 〈V 〉
(T : kinetic energy).
Hint: Let |ψ(q)〉 be a normalized eigen-state of H = T + V . Investigate the
energy functional 〈H〉ψ(αq)!
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7.2 Time-Independent Perturbation Theory

The Schrödinger perturbation theory aims at systems, whose Hamilton
operators can be decomposed in such a way,

H = H0 +H1 , (7.26)

that the eigen-value problem of H0 is exactly solvable, and the perturbation H1

represents only a small correction term. The goal is to find for the not exactly
solvable full problem,

H |En〉 = En|En〉 , (7.27)

as good an approximation as possible. For this purpose, in the first step, one
rigorously solves the unperturbed problem:

H0|E(0)
n 〉 = E(0)

n |E(0)
n 〉 (7.28)

The eigen-states of the Hermitian operatorH0 represent a complete orthonormal
system:

〈E(0)
n

∣∣∣E(0)
m 〉 = δ (n,m) , (7.29)

1l =
∑∫

n

|E(0)
n 〉〈E(0)

n | . (7.30)

We have introduced the symbol δ(n,m) in (3.49) (Vol. 6). In the discrete part
of the spectrum it has the meaning of the Kronecker-delta δnm, and in the

continuum part it represents the δ-function δ
(
E

(0)
n − E

(0)
m

)
. For the following

we will assume that the eigen-value, whose shift due to the perturbation H1 shall
be investigated, is discrete, which, however, need not necessarily be the case
for the entire spectrum of H0.

Since, according to (7.27), the eigen-states |En〉, we are looking for, are fixed
except for an arbitrary constant factor, we can agree upon the following special
normalization:

〈E(0)
n

∣∣∣En〉 !
= 1 . (7.31)

After having completed the perturbative procedure the resulting state |En〉 can
of course be easily re-normalized.

The concept of the Schrödinger perturbation theory is based on the idea
that the perturbation H1 is switched on by means of a real parameter 0 ≤ λ ≤ 1:

H1 −→ λH1 . (7.32)

For that it is presumed that it holds for λ → 0 (Fig. 7.2):

Enα −→ E(0)
n ,

|Enα〉 −→ |E(0)
n 〉 .
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Figure 7.2: Schematic behavior of the eigen-energies of the Hamilton operator of
a physical system, which can be treated by the Schrödinger perturbation theory,
in dependence of a continuous switching on of the perturbation

The systems, described by H and H0, respectively, will, because of the pertur-
bation, in general quantitatively differ, but they should qualitatively be rather
similar. This fact is, however, not at all always guaranteed. Certain phenomena,
as e.g. superconductivity, for which the transition from the unperturbed to the
perturbed system can not be achieved by a continuous change of the parameter
λ, and therefore can not be treated perturbatively. The perturbation H1 can
possibly lift, though, certain degeneracies in the unperturbed system.

The parameter λ in (7.32) can, in concrete cases, also be a real physical
quantity (coupling constant). For the following rather abstract considerations,
however, it is introduced only due to expedience. The method consists namely
in the expansion of the unknown quantities En and |En〉 as power series in
λ with coefficients which are built up exclusively by the known unperturbed

quantities E
(0)
n and |E(0)

n 〉. By sorting with respect to the powers of λ one can,
in a convenient manner, expand the approximation in powers of the perturbation
H1 up to the desired accuracy. At the end of the calculation, of course one takes
λ = 1. Thereby the convergence of the series will always be implicitly assumed,
though without any explicit proof!

7.2.1 Perturbation of a Non-degenerate Energy Level

We assume at first that the level E
(0)
n , which we want to investigate, is not

degenerate. This presumption concerns only this level, and need not neces-
sarily be valid for all the other levels of the system. We start with the following
expansions:

En = E(0)
n + λE(1)

n + λ2 E(2)
n + . . . (7.33)

|En〉 = |E(0)
n 〉+ λ|E(1)

n 〉+ λ2|E(2)
n 〉+ . . . (7.34)

Because of the special normalization (7.31) and because of (7.29) we have:

λ〈E(0)
n

∣∣∣E(1)
n 〉+ λ2〈E(0)

n

∣∣∣E(2)
n 〉+ . . . = 0 .
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This, in turn, has the consequence

〈E(0)
n

∣∣∣E( j)
n 〉 = δ0j . (7.35)

We now insert the ansatz-functions (7.33) and (7.34) into the exact eigen-value
equation (7.27):

H |En〉 = H0|E(0)
n 〉+ λ

(
H1|E(0)

n 〉+H0|E(1)
n 〉

)

+λ2 (H1|E(1)
n 〉+H0|E(2)

n 〉) + . . .

= H0|E(0)
n 〉+

∞∑

p=1

λp (H1|E(p−1)
n 〉+H0|E(p)

n 〉) ,

En|En〉 = E(0)
n |E(0)

n 〉+ λ (E(1)
n |E(0)

n 〉+ E(0)
n |E(1)

n 〉)
+λ2 (E(2)

n |E(0)
n 〉+ E(1)

n |E(1)
n 〉+ E(0)

n |E(2)
n 〉) + . . .

= E(0)
n |E(0)

n 〉+
∞∑

p=1

λp

⎧
⎨

⎩

p∑

j =0

E( j)
n |E(p− j)

n 〉
⎫
⎬

⎭ .

By arranging with respect to powers of λ we get the different orders of the
Schrödinger perturbation theory. In the zeroth order (∼ λ0) we obtain the
unperturbed eigen-value equation (7.28), which we consider as already solved.
For p ≥ 1 it follows from the last two equations:

H1|E(p− 1)
n 〉+H0|E(p)

n 〉 =
p∑

j =0

E( j)
n |E(p− j)

n 〉 . (7.36)

When we multiply this expression from the left by the bra-state 〈E(0)
n |, and take

into consideration (7.35) as well as

〈E(0)
n |H0|E(p)

n 〉 = E(0)
n 〈E(0)

n

∣∣∣E(p)
n 〉 = 0 (p ≥ 1) ,

then we get the following general expression for the

energy correction

E(p)
n = 〈E(0)

n |H1|E(p−1)
n 〉 . (7.37)

In order to find also the state corrections, we multiply (7.36) from the left by

〈E(0)
m |, where m �= n:

〈E(0)
m |(H0 − E(0)

n )|E(p)
n 〉 = (E(0)

m − E(0)
n )〈E(0)

m

∣∣∣E(p)
n 〉

= −〈E(0)
m |H1|E(p−1)

n 〉+
p∑

j =1

E( j)
n 〈E(0)

m

∣∣∣E(p− j)
n 〉
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As presumed, the level E
(0)
n is not degenerate. We therefore can divide the

last equation by
(
E

(0)
m −E

(0)
n

)
, and can further exploit the completeness of the

unperturbed eigen-states (7.30):

|E(p)
n 〉 =

∑∫

m

|E(0)
m 〉〈E(0)

m

∣∣∣E(p)
n 〉 .

One realizes that, because of (7.35), the m = n-summand of this expansion
vanishes (p ≥ 1). Therewith we get the following expression for the

state correction

|E(p)
n 〉 =

∑∫

m
(m �=n)

|E(0)
m 〉

〈
E

(0)
m

∣∣∣H1

∣∣∣E(p− 1)
n

〉

E
(0)
n − E

(0)
m

−
p∑

j =1

E( j)
n

∑∫

m
(m �=n)

|E(0)
m 〉

〈
E

(0)
m

∣∣∣ E(p− j)
n

〉

E
(0)
n − E

(0)
m

. (7.38)

With (7.37) and (7.38) the corrections can be calculated successively up to
arbitrary order. However, with increasing order the expressions become very
soon so complicated that for concrete applications one has to normally restrict
oneself for the energy levels to the first two corrections, and for the states to the
first one. We therefore write down, at the end of these considerations, explicitly
the first two orders.

The perturbation theory of first order delivers to the unperturbed eigen-

values E
(0)
n and eigen-states |E(0)

n 〉 the following corrections:

E(1)
n = 〈E(0)

n |H1|E(0)
n 〉 , (7.39)

|E(1)
n 〉 =

1�=n∑∫

m

|E(0)
m 〉 〈E

(0)
m |H1|E(0)

n 〉
E

(0)
n − E

(0)
m

. (7.40)

The expectation value of the perturbation operatorH1 in the unperturbed eigen-

state |E(0)
n 〉 thus yields already the energy correction of first order. This means

especially for the ground state (n = 0), according to the variational principle

(7.5), that E
(0)
0 + E

(1)
0 represents an upper bound for the true ground-state

energy. If the second order perturbation theory shall lead to an improvement

in this respect, then E
(2)
0 should not be positive. As to the state correction

(7.40), it is often sufficient, because of the energy-denominator, to include in

the expansion only those levels which are closely adjacent to E
(0)
n .
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The perturbation theory of second order accounts for the following
correction:

E(2)
n =

�=n∑∫

m

|〈E(0)
m |H1|E(0)

n 〉|2
E

(0)
n − E

(0)
m

, (7.41)

|E(2)
n 〉 =

�=n∑∫

m

�=n∑∫

q

|E(0)
m 〉 〈E

(0)
m |H1|E(0)

q 〉〈E(0)
q |H1|E(0)

n 〉
(E

(0)
n − E

(0)
m ) (E

(0)
n − E

(0)
q )

−E(1)
n

�=n∑∫

m

|E(0)
m 〉 〈E

(0)
m |H1|E(0)

n 〉
(E

(0)
n − E

(0)
m )2

. (7.42)

We recognize that the second order correction E
(2)
0 of the ground-state energy

is indeed negative.

Unfortunately, there exist hardly any useful criteria to judge the quality
of the perturbation approximation, i.e., to predict at which order the required
degree of accuracy is reached. But it can be expected that one can be content
with (7.42), if one finds for all m:

|〈E(0)
m |H1|E(0)

n 〉| � |E(0)
n − E(0)

m | . (7.43)

Hence, the perturbation H1 should be as small as possible and the distance of
the levels as large as possible.

7.2.2 Perturbation of a Degenerate Level

Our considerations so far hold only for the non-degenerate unperturbed energy

levels. If, in contrast, the level E
(0)
n is degenerate, then the up to now developed

theory has obviously to be extended, because the correction terms (7.40) to
(7.42) would be divergent in such a case.

We still assume that the energy level E
(0)
n belongs to the discrete part of the

spectrum, but that it is now gn-fold degenerate:

(H0 − E(0)
n )|E(0)

nα 〉 = 0 , α = 1, 2, . . . , gn . (7.44)

Since each linear combination of the |E(0)
nα 〉 is also an eigen-state of H0 with the

eigen-value E
(0)
n , it is not at all clear from the beginning, which are the ‘correct’

states of zeroth order for the perturbation theory. When we evaluate the
basic formula (7.36) for p = 1,

H1|E(0)
n 〉+H0|E(1)

n 〉 = E(0)
n |E(1)

n 〉+ E(1)
n |E(0)

n 〉 , (7.45)

then it remains at first undetermined what is to be inserted for |E(0)
n 〉. Now

that will be investigated in more detail.
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Let
{|E(0)

nα 〉
}
be an orthonormal basis of the gn-dimensional eigen-space of

the eigen-value E
(0)
n . A general state of this space can then be written as a

linear combination:

|E(0)
n 〉 =

gn∑

α=1

cα|E(0)
nα 〉 . (7.46)

Let us for the moment assume that this state is the ‘correct’ state of zeroth
order. Then it must fulfill (7.45):

∑

α

cα

(
H1 − E(1)

n

)
|E(0)

nα 〉+
(
H0 − E(0)

n

)
|E(1)

n 〉 = 0 .

When we multiply this expression from the left by the bra-state 〈E(0)
nβ | then the

second summand vanishes because of the degeneracy:

∑

α

cα

(
Hβα

1n − E(1)
n δβα

)
= 0 . (7.47)

Hβα
1n is here an element of the so-called perturbation matrix:

Hβα
1n ≡ 〈E(0)

nβ |H1|E(0)
nα 〉 . (7.48)

Equation (7.47) represents a linear homogeneous system of equations for the
‘correct’ expansion coefficients cα in (7.46). It has a non-trivial solution only if
the secular determinant vanishes:

det(Hβα
1n − E(1)

n δβα) = 0 . (7.49)

This is a polynomial of gnth degree with respect to E
(1)
n , with gn possibly

different solutions:

E(1)
n −→ E(1)

nx ; x = 1, 2, . . . , gn . (7.50)

In the next step we now solve for each x the homogeneous system of equations
(7.47):

cα −→ cαx ; x = 1, 2, . . . , gn . (7.51)

Then two cases are to be distinguished:

1. All E
(1)
nx pair-wise different, degeneracy completely removed.

2. E
(1)
nx still totally or partially degenerate.

Let us treat case 1 at first. The cαx then uniquely define the ‘correct’ states of
zeroth order:

|E(0)
nx 〉 =

gn∑

α=1

cαx|E(0)
nα 〉 . (7.52)
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Equation (7.47) represents, ultimately, the eigen-value equation of the operator

H1 in the eigen-space of E
(0)
n . The |E(0)

nx 〉 and E
(1)
nx are the corresponding eigen-

states and eigen-values, respectively. As eigen-states of a Hermitian operator

the |E(0)
nx 〉 can be seen as orthonormalized:

〈E(0)
nx

∣∣∣E(0)
ny 〉 =

gn∑

α=1

c∗αx cαy = δxy . (7.53)

In particular, H1 is of course diagonal in these ‘correct’ states:

〈E(0)
nx |H1|E(0)

ny 〉 = E(1)
nx δxy . (7.54)

Up to the first order of degenerate perturbation theory we now have found the
following energy-eigen value of the full problem:

Enx ≈ E(0)
n + E(1)

nx . (7.55)

Let us now still derive the state corrections of first order and the energy correc-
tions of second order.

Since the unperturbed energy-states build a complete system, one can start
with:

|E(1)
nx 〉 =

�=n∑∫

m,y

|E(0)
my〉

〈
E(0)

my

∣∣∣ E(1)
nx

〉
+

�= x∑

y

|E(0)
ny 〉

〈
E(0)

ny

∣∣∣ E(1)
nx

〉
. (7.56)

Because of the special agreement (7.35) on the normalization, the (x = y)-term
in the second summand drops out. When we multiply (7.45),

(H0 − E(0)
n )|E(1)

nx 〉 = (E(1)
nx −H1)|E(0)

nx 〉 ,

from the left by 〈E(0)
my | then it follows for m �= n:

〈E(0)
my

∣∣∣E(1)
nx 〉 =

〈E(0)
my|H1|E(0)

nx 〉
E

(0)
n − E

(0)
m

. (7.57)

The first summand in (7.56) is therewith completely determined.

To get also the second summand under control, we have to evaluate (7.36)
for p = 2:

H1|E(1)
nx 〉+H0|E(2)

nx 〉 = E(0)
n |E(2)

nx 〉+ E(1)
nx |E(1)

nx 〉+ E(2)
nx |E(0)

nx 〉 . (7.58)

This is multiplied from the left by 〈E(0)
nz |:

〈E(0)
nz |H1|E(1)

nx 〉 − E(1)
nx 〈E(0)

nz

∣∣∣E(1)
nx 〉 = E(2)

nx δxz . (7.59)
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We now insert into this equation the ansatz (7.56):

∑∫

m, y
(m �=n)

〈
E(0)

nz

∣∣∣H1

∣∣∣E(0)
my

〉〈
E(0)

my

∣∣∣ E(1)
nx

〉
+

�= x∑

y

〈
E(0)

nz

∣∣∣H1

∣∣∣E(0)
ny

〉〈
E(0)

ny

∣∣∣ E(1)
nx

〉

−E(1)
nx

⎛

⎜⎜⎝
∑∫

m, y
(m �=n)

〈
E(0)

nz

∣∣∣ E(0)
my

〉〈
E(0)

my

∣∣∣ E(1)
nx

〉
+

�= x∑

y

〈
E(0)

nz

∣∣∣ E(0)
ny

〉〈
E(0)

ny

∣∣∣ E(1)
nx

〉
⎞

⎟⎟⎠

= E(2)
nx δxz .

Because of (7.53) and (7.54), this expression further simplifies substantially:

∑∫

m, y
(m �=n)

〈
E(0)

nz

∣∣∣H1

∣∣∣E(0)
my

〉〈
E(0)

my

∣∣∣ E(1)
nx

〉
+ (E(1)

nz −E(1)
nx )

〈
E(0)

nz

∣∣∣ E(1)
nx

〉
= E(2)

nx δxz .

(7.60)
For x = z it follows immediately with (7.57) the energy correction of second
order:

E(2)
nz =

∑∫

m, y
(m �=n)

∣∣∣
〈
E

(0)
my

∣∣∣H1

∣∣∣E(0)
nz

〉∣∣∣
2

E
(0)
n − E

(0)
m

. (7.61)

This expression agrees formally with the result (7.41) of the non-degenerate
perturbation theory of second order.

For the state correction of first order we still need the second summand in
(7.56). This we get from (7.60) for x �= z:

〈
E(0)

nz

∣∣∣ E(1)
nx

〉
=

1

E
(1)
nx − E

(1)
nz

∑∫

m, y
(m �=n)

〈
E

(0)
nz

∣∣∣H1

∣∣∣E(0)
my

〉〈
E

(0)
my

∣∣∣H1

∣∣∣E(0)
nx

〉

E
(0)
n − E

(0)
m

.

(7.62)
When one inserts this, together with (7.57), into (7.56), then the state correction
of first order, too, is completely determined. We have used thereby in (7.62) that
in first order perturbation theory the energy degeneracy is completely removed.

Otherwise we could not have divided by E
(1)
nx − E

(1)
nz .

It can also be (case 2.), though, that the perturbation H1 removes the degen-
eracy in first order only partially or even not at all. The energy-eigen value

E
(0)
n + E

(1)
nx thus remains to be gnx-fold (1 ≤ gnx ≤ gn) degenerate. Then the

gnx correct states of zeroth order belonging to the eigen-value E
(0)
n remain unde-

termined. The removal of this indeterminacy needs the second or even a still
higher order perturbation theory. It can of course also be that in no order the
degeneracy is completely lifted. The eigen-value En of the full problem (7.27)
itself can be degenerate.
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Let us finally inspect briefly the special case where the degeneracy is still
completely retained in first order. The correct states of zeroth order have
even now to fulfill (7.54). They represent a basis of the eigen-space. But because

all of the E
(1)
nx are equal, each state of the eigen-space is also eigen-state of H1.

Each arbitrary basis of the eigen-space diagonalizes H1. The correct states of
zeroth order, however, have to now fulfill additionally, besides (7.57), also (7.60)
in the form

E(2)
nx δxz =

∑∫

m, y
(m �=n)

〈
E

(0)
nz

∣∣∣H1

∣∣∣E(0)
my

〉〈
E

(0)
my

∣∣∣H1

∣∣∣E(0)
nx

〉

E
(0)
n − E

(0)
m

. (7.63)

If, however, the degeneracy is completely removed in second order then only a

very special basis of the E
(0)
n -eigen space can provide that. Its elements are then

the sought-after correct states of zeroth order, by the use of which, in addition,

E
(2)
nx takes again exactly the form (7.61).
These last considerations have, however, shown that with increasing order, in

particular in the presence of degeneracies, the Schrödinger perturbation theory
can become very soon rather complicated.

Let us finally add some further remarks:
For the evaluation of the secular determinant (7.49) it is recommendable to

exploit the free choice of the basis {|E(0)
nα〉} of the eigen-space of the degenerate

eigen-value E
(0)
n in such a way that the perturbation matrix (7.48) becomes

especially simple, i.e., that as many elements as possible of the matrix are zero.
By a skillful utilizing of the symmetries of the considered physical system (group-
theoretical considerations!) the calculation effort can be sometimes substantially
lowered. In particular, such situations are convenient for which one can find an
observable A, which commutes with H0 as well as with H1. In such a case,
one represents the perturbation matrix advantageously by using as basis the
common eigen-states of H0 and A.

If A has in the eigen-space of E
(0)
n several different eigen-values a1n, a2n,

a3n, . . . ,, then the perturbation matrix will split into several blocks because it
holds:

0 = 〈E(0)
nα |[A,H1]−|E(0)

nβ 〉 = (aαn − aβn)H
αβ
1n . (7.64)

For aαn �= aβn Hαβ
1n thus must be zero:

(Hαβ
1n ) ≡

⎛

⎜⎝
0

0
. . .

⎞

⎟⎠
←− a1n←− a2n←− a3n

...

.

Since the full Hamilton operator H commutes with A, it will be possible to
classify also the full eigen-states |En〉 with respect to the corresponding eigen-
values of A. In a way, it suffices then to perform the perturbative calculations
separately in the subspaces belonging to the given different eigen-values of A.
These subspaces are orthogonal to each other.
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Figure 7.3: Energy spectrum of an unperturbed system with two quasi-
degenerate levels

7.2.3 Quasi-Degeneracy

An energy level E
(0)
n , which is not degenerate in the unperturbed system, will be

shifted by the perturbation H1 in the second order perturbation theory according
to (7.39) and (7.41) as follows:

En ≈ E(0)
n + 〈E(0)

n |H1|E(0)
n 〉+

∑

m
(m �=n)

|〈E(0)
n |H1|E(0)

m 〉|2
E

(0)
n − E

(0)
m

. (7.65)

In most cases the expansion can not be driven very much further. The decisive
question therefore is, whether these first correction terms are sufficient at all

to yield a reasonable approximation for (En − E
(0)
n ). For that we had found a

rough criterion with (7.43). The perturbation H1 should be as small as possible

and the level distance |E(0)
n − E

(0)
m | as large as possible.

But how should one treat systems, which are in the unperturbed case indeed
not degenerate, but for which certain levels lie so closely together (Fig. 7.3)
that the energy denominator in the perturbation correction of second order is
so small that the concept of perturbation theory becomes questionable? Such
cases obviously need a special treatment. The first order correction of the eigen-

value E
(0)
n is still brought about by the corresponding eigen-state |E(0)

n 〉 itself
and is independent of the other levels. The second order correction, on the other
hand, contains, in additive form, contributions of all the other levels. Let us
assume that the energies of two unperturbed states

|E(0)
n 〉 , |E(0)

m 〉 ,
lie very closely to each other, while the energies of the other states are energeti-
cally far away, then we can neglect the latter, at least to a good approximation.
We therefore choose for the quasi-degenerate effective two-level system the fol-
lowing ansatz,

|E 〉 = αn|E(0)
n 〉+ αm|E(0)

m 〉 , (7.66)
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and determine the coefficients by the requirement that |E〉 is an eigen-state of
the full Hamilton operator H = H0 +H1:

H |E 〉 = E|E 〉 . (7.67)

With the abbreviations

Hxy = 〈E(0)
x |H |E(0)

y 〉 = E(0)
x δxy +Hxy

1 ,

Hxy
1 = 〈E(0)

x |H1|E(0)
y 〉

we get from (7.67) a linear system of equations, when we insert (7.66) and

multiply from the left by the bra-states 〈E(0)
n | and 〈E(0)

m |:
(Hnn − E) αn +Hnm αm = 0 ,

Hmn αn + (Hmm − E)αm = 0 .

The vanishing of the secular determinant

det

(
Hnn − E Hnm

Hmn Hmm − E

)
= 0 ,

fixes the corrected energy-eigen values:

E± =
1

2

(
(Hnn +Hmm)±

√
(Hnn −Hmm)2 + 4|Hnm|2

)
. (7.68)

The mapping

E(0)
n ⇐⇒ E+ ; E(0)

m ⇐⇒ E−

becomes clear by the limiting processH1 → 0, where we assume, w.l.o.g., E
(0)
n >

E
(0)
m . The splitting of E+ and E− is possibly distinctly larger than that of E

(0)
n

and E
(0)
m .

Also the coefficients αn and αm of the ansatz (7.66) are now fixed by (7.68).
From

(Hnn − E±)α(±)
n +Hnm α(±)

m = 0

it follows:

|α(±)
n |2 =

|Hnm|2
(Hnn − E±)2

|α(±)
m |2 .

The normalization of the state |E〉 yields:
|α(±)

m |2 = 1− |α(±)
n |2 (7.69)

This leads eventually to:

|α(±)
n |2 =

|Hnm|2
(Hnn − E±)2 + |Hnm|2 . (7.70)
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The states |E±〉 and the corrected energies E± are therewith completely deter-
mined. In order to demonstrate that the so found results represent good inter-
polation formulas for the transition degeneracy ⇐⇒ non-degeneracy, we dis-
cuss two limiting cases:

1) |Hnn − Hmm| � |Hnm| = |Hnm
1 |

This can be realized for instance by a level distance E
(0)
n − E

(0)
m , which is

still small compared to the distances to the other levels, but already large in
comparison to the off-diagonal elements of the perturbation matrix. But then
the non-degenerate perturbation theory of Sect. 7.2.1 should work. We expand
the root in (7.68):

E+ =
1

2
(Hnn +Hmm) +

1

2
(Hnn −Hmm)

(
1 +

4|Hnm|2
(Hnn −Hmm)2

)1/2

≈ 1

2
(Hnn +Hmm) +

1

2
(Hnn −Hmm)

(
1 +

2|Hnm|2
(Hnn −Hmm)2

)

= Hnn +
|Hnm|2

(Hnn −Hmm)
.

In this limit we thus have:

E+ ≈ E(0)
n + 〈E(0)

n |H1|E(0)
n 〉+ |〈E(0)

n |H1|E(0)
m 〉|2

E
(0)
n − E

(0)
m

.

In the denominator of the third summand we still could neglect
(
Hnn

1 −Hmm
1

)
in

relation to
(
E

(0)
n − E

(0)
m

)
. The result indeed corresponds to the non-degenerate

perturbation theory of second order (7.41) for a two-level system, and also for
an arbitrary system in the case that the other levels are far away.

The weight factors can be estimated in this case as follows:

|α(+)
n |2 ≈ 1

|Hnm|2
(Hnn −Hmm)2

+ 1

≈ 1 ; |α(+)
m |2 ≈ 0 .

The admixture of the state |E(0)
m 〉 thus becomes unimportant. (That one can

also consider as a retroactive justification for the neglect of ‘farther’ levels in
the ansatz.) The same considerations can be applied to E− and |E−〉 with fully
analogous results.

2) Degeneracy: E(0)
n = E(0)

m

In this case, because of

Hnn +Hmm −→ 2E(0)
n +Hnn

1 +Hmm
1 ,

Hnn −Hmm −→ Hnn
1 −Hmm

1 ,

one can directly read off from (7.68):

E± −→ E(0)
n +

1

2

(
(Hnn

1 +Hmm
1 )±

√
(Hnn

1 −Hmm
1 )2 + 4|Hnm

1 |2
)

.
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That is exactly the result of the perturbation theory of first order for a twofold
degenerate level (see Exercise 7.2.9).

The results (7.68)–(7.70) for E± and |E±〉, respectively, are obviously good
interpolation formulas for quasi-degenerate levels.

7.2.4 Perturbation-Theoretical Basic Formula

The so far applied perturbation ansatzes are not the only possible ones. The
problem can be also formulated more generally. That will be demonstrated in
this and the next subsections. We presume thereby that the system to be inves-
tigated is non-degenerate and lies in the discrete part of the spectrum.
Furthermore, also now the special normalization (7.31) shall be valid.

From the eigen-value equations (7.27) and (7.28) it follows by multiplication
by the bra-state 〈En| taking into account (7.31):

〈En|H0|E(0)
n 〉 = E(0)

n 〈En

∣∣∣E(0)
n 〉 = E(0)

n ,

〈En|H |E(0)
n 〉 = En〈En

∣∣∣E(0)
n 〉 = En .

From these equations one gets the still exact level shift:

En − E(0)
n = 〈En|H1|E(0)

n 〉 = 〈E(0)
n |H1|En〉 . (7.71)

This is so of course not yet directly evaluable because of the unknown eigen-state
|En〉 on the right-hand side.

We define the projection operator,

Pn = |E(0)
n 〉〈E(0)

n | , (7.72)

for which, because of the special normalization (7.31), it holds:

Pn|En〉 = |E(0)
n 〉 . (7.73)

Hence, Pn projects the full eigen-state onto the corresponding eigen-state of
the unperturbed system. Analogously to that, we still need the orthogonal
projector

Qn = 1l− Pn =
∑∫

m
(m �=n)

|E(0)
m 〉〈E(0)

m | . (7.74)

Pn commutes with H0 and the same holds also for Qn:

[Pn, H0]− = [Qn, H0]− = 0 . (7.75)

We can now rewrite the eigen-value equation (7.27) at first with an arbitrary
real constant D as follows:

(D −H0)|En〉 = (D −H +H1)|En〉 = (D − En +H1)|En〉 .
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The operator (D−H0) possesses a unique inverse operator if H0 does not have
as eigen-value just the constant D:

|En〉 = 1

D −H0
(D − En +H1)|En〉 .

We use now for a further rearranging the above introduced projection operators

|En〉 = Pn|En〉+Qn|En〉 = |E(0)
n 〉+Qn

1

D −H0
(D − En +H1)|En〉 .

This equation can obviously be iterated and then leads to the

perturbation-theoretical basic formula

|En〉 =
∞∑

m=0

{
Qn

1

D −H0
Qn (D − En +H1)

}m

|E(0)
n 〉 . (7.76)

Here we have exploited the commutability of Qn with (D−H0)
−1 as well as the

idempotency Q2
n = Qn of the projector. This representation makes us aware

that for the choice of the constant D we do not have to exclude all eigen-values

of H0. D = E
(0)
n is, because of (7.74), obviously allowed (see (7.78)). On the

right hand side there still appear only the unperturbed states |E(0)
n 〉, however

also the unknown eigen-value En. On the other hand, the constant D is still
free. Insertion of the basic formula into (7.71) yields the level shift:

En − E(0)
n =

∞∑

m=0

〈E(0)
n |H1

{
Qn

1

D −H0
Qn (D − En +H1)

}m

|E(0)
n 〉 . (7.77)

The formulas (7.76) and (7.77) are still exact. The relationship to the
Schrödinger perturbation theory we get by the choice

D = E(0)
n . (7.78)

Then it follows, for instance, for the state correction in first order:

|En〉 = |E(0)
n 〉+Qn

1

E
(0)
n −H0

Qn

(
E(0)

n − En +H1

)
|E(0)

n 〉

= |E(0)
n 〉+

∑∫

m
(m �=n)

Qn|E(0)
m 〉〈E(0)

m | E
(0)
n − En +H1

E
(0)
n − E

(0)
m

|E(0)
n 〉

= |E(0)
n 〉+

∑∫

m
(m �=n)

|E(0)
m 〉 〈E

(0)
m |H1|E(0)

n 〉
E

(0)
n − E

(0)
m

.
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But this is exactly the result (7.40) for the state correction in the Schrödinger
theory. In the same manner we obtain for the level shift:

En − E(0)
n

= 〈E(0)
n |H1|E(0)

n 〉+ 〈E(0)
n |H1 Qn

1

E
(0)
n −H0

Qn

(
E(0)

n − En +H1

)
|E(0)

n 〉

= 〈E(0)
n |H1|E(0)

n 〉
+

∑∫

m
(m �=n)

〈E(0)
n |H1 Qn

1

E
(0)
n −H0

|E(0)
m 〉〈E(0)

m |
(
E(0)

n − En +H1

)
|E(0)

n 〉

= 〈E(0)
n |H1|E(0)

n 〉+
∑∫

m
(m �=n)

|〈E(0)
n |H1|E(0)

m 〉|2
E

(0)
n − E

(0)
m

.

This agrees with (7.39) and (7.41). We have therewith shown, at least for the
lowest orders, that the choice (7.78) for the constant D reproduces the results
of the Schrödinger perturbation theory. With

ΔEn = En − E(0)
n (7.79)

this can thus be represented, according to (7.76) and (7.77), as follows in a
compact form:

|En〉 =

∞∑

m=0

{
Qn

1

E
(0)
n −H0

Qn (H1 −ΔEn)

}m

|E(0)
n 〉 , (7.80)

ΔEn =
∞∑

m=0

〈E(0)
n |H1

{
Qn

1

E
(0)
n −H0

Qn (H1 −ΔEn)

}m

|E(0)
n 〉 .

(7.81)

However, we can now construct also additional procedures by other choices of
the constant D!

7.2.5 Brillouin-Wigner Perturbation Series

If one inserts into the perturbation-theoretical basic formula (7.76) and into the
level shift (7.77) for the still free constant D,

D = En , (7.82)

then one gets the following perturbation series:

|En〉 =

∞∑

m=0

{
Qn

1

En −H0
Qn H1

}m

|E(0)
n 〉 , (7.83)

En − E(0)
n =

∞∑

m=0

〈E(0)
n |H1

{
Qn

1

En −H0
QnH1

}m

|E(0)
n 〉 . (7.84)
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They represent the starting point of the Brilloui-Wigner perturbation theory.
We evaluate the level shift up to the second order:

En − E(0)
n = 〈E(0)

n |H1|E(0)
n 〉+ 〈E(0)

n |H1 Qn
1

En −H0
Qn H1|E(0)

n 〉

= 〈E(0)
n |H1|E(0)

n 〉+
∑∫

m
(m �=n)

〈E(0)
n |H1|E(0)

m 〉〈E(0)
m | 1

En −H0
Qn H1|E(0)

n 〉 .

Here we have utilized the representation (7.74) for Qn. Further, if we execute
the application of H0, then we obtain the result:

En − E(0)
n = 〈E(0)

n |H1|E(0)
n 〉+

∑∫

m �=n

|〈E(0)
n |H1|E(0)

m 〉|2
En − E

(0)
m

. (7.85)

The comparison with the Schrödinger results (7.39) and (7.41) shows as an
important difference the energy-denominator in the second order term. In the
version (7.85) frequently problems can be avoided, which appear with the degen-
eracy or quasi-degeneracy of certain unperturbed levels. However, (7.85) has to
be still iterated, because on the right-hand side of the equation there appears
the full eigen-energy En.

The derivation of the state corrections up to first order is done completely
analogously:

|En〉 = |E(0)
n 〉+

∑∫

m
(m �=n)

|E(0)
m 〉 〈E

(0)
m |H1|E(0)

n 〉
En − E

(0)
m

. (7.86)

When we presume that both the perturbation series, the one according to
Schrödinger and the other according to Brillouin-Wigner, converge, then they
must of course lead to the same results. They, in the last analysis, are exact
expressions. Though, that does not at all mean that the corrections of first and
second order also must agree with each other. It is well-known that it is indeed
possible that two series, which are built up of different terms, can nevertheless
approach the same limiting value. Which of the two perturbation theories turns
out to be reasonable and easier tractable, is decided by the actual nature of the
problem.

7.2.6 Exercises

Exercise 7.2.1

For the simplified hydrogen problem (Sect. 6.2) the spatial extension of the
nucleus is neglected. One can consider the nucleus, to a first approximation, as
a homogeneously charged sphere with the radius R.
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1. Formulate the Hamilton operator H = H0 +H1 for the atomic electron,
where H0 represents the well-known operator for the case of the point-like
nucleus, and H1 is the perturbation due to the spatial extension of the
nucleus.

2. For the calculation in part 3. we need the integral:

x0∫

0

dx e−x xn = n!

(
1− e−x0

n∑

μ=0

xμ
0

μ!

)
.

Prove this formula!

3. Calculate in first order perturbation theory the influence of the spatial
extension of the nucleus on the ground-state energy of the atomic electron.

Exercise 7.2.2
The Hamilton operator of the linear, anharmonic oscillator is given by

H = H0 +H1 , H0 =
p2

2m
+

1

2
mω2q2 ; H1 = α

m2ω2

�
q4 ; α > 0 .

Which energy corrections appear in first order perturbation theory due to H1?

Exercise 7.2.3
Let the Hamilton operator of the linear harmonic oscillator be given in the form

H = H0 +H1 ; H0 =
p2

2m
+

1

2
mω2q2 ,

H1 = α
1

2
mω2q2 ; |α| < 1 .

The perturbation-theoretical solution can in this case be compared to the exact
solution.

1. Determine the energy correction of first order!

2. Calculate the state correction |n〉(1) in first order perturbation theory!

3. How does the energy correction of second order look like?

4. Compare the energy corrections in 1. and 3. with the exact result for the
eigen-energy of the harmonic oscillator.

Exercise 7.2.4
A weak constant force F acts on a linear harmonic oscillator what leads to the
following Hamilton operator:

H = H0 +H1 ; H0 =
p2

2m
+

1

2
mω2q2 , H1 = −F q .
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1. With H1 as perturbation calculate in first order perturbation theory the
eigen-state |n〉 of the oscillator.

2. What are the energy corrections of first and second order?

3. Solve the eigen-value problem exactly and compare the result for the
energy with 2.!

4. Does the energy correction of third order vanish?

Exercise 7.2.5
The one-dimensional harmonic oscillator is subject to the perturbation:

H1 = λ (q̂ · p̂+ p̂ · q̂) .

Calculate the states in first order and the energies up to second order pertur-
bation theory!

Exercise 7.2.6
Let the Hamilton operator of the two-dimensional, anharmonic oscillator be
given by H = H0 +H1,

H0 =
1

2m
(p2x + p2y) +

1

2
mω2(q2x + q2y)

H1 = γ q2x · q2y .

1. Calculate the energy corrections of first and second order for the ground
state of H0!

2. Calculate the first order energy corrections of the two lowest excited levels.

Exercise 7.2.7
In first order perturbation theory calculate the influence of the Darwin term
(5.253) on the ground-state energy of the electron in the hydrogen atom.

Exercise 7.2.8
A particle of mass m moves on the surface of a sphere with the radius R.

1. Formulate the Hamilton operator and solve the still unperturbed eigen-
value problem. What is the present degeneracy?

2. As perturbation the homogeneous gravitational field acts. Find an observ-
able which commutes with H0 as well as with H1.

3. Find the correct states of zeroth order. Use for this purpose the consider-
ations from part 2.

4. Calculate the energy correction of first order. Is the degeneracy removed?

5. What comes out as the energy correction of second order?
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Useful formula:

cosϑYlml
(ϑ, ϕ) =

√
(l + 1)2 −m2

l

(2l + 1) (2l+ 3)
Yl+1ml

(ϑ, ϕ)

+

√
l2 −m2

l

(2l + 1) (2l− 1)
Yl− 1ml

(ϑ, ϕ) .

Exercise 7.2.9
Consider a twofold degenerate unperturbed energy level E

(0)
n :

H0|E(0)
nα 〉 = E(0)

n |E(0)
nα 〉 ; α = 1, 2 .

Determine the energy correction of first order and the correct states of zeroth
order of the ‘full’ Hamilton operator H = H0 +H1.

Exercise 7.2.10
Let us discuss a hydrogen atom in the homogeneous electric field (Stark effect):

F = F ez .

Consider this field as perturbation.

1. Find the Hamilton operator and show that it commutes with the z-
component Lz of the orbital angular momentum.

2. Let |n lml〉 be the eigen-states of the field-free system. Show generally:

〈n′l′ml′ |H1|n lml〉 �= 0

at most for ml′ = ml ; l′ = l ± 1 .

3. Calculate for n = 1 and n = 2 the energy corrections of first order.

4. According to 1. it suffices to perform the perturbation calculation in a
subspace belonging to a given eigen-value of Lz. Calculate for ml = 0 and
n = 2 the correct states of zeroth order.

Exercise 7.2.11
Consider an atom with the nuclear charge Z, which is (Z − 1)-fold ionized.
Let the remaining electron be in the state |nlml〉Z . The index Z shall thereby
indicate the charge Ze of the nucleus. The electron spin may not play any role.
As a consequence of a certain process, the nuclear charge changes by αe!

1. Calculate in first order perturbation theory the energy change of the state
|nlml〉Z . For that use the virial theorem from Exercise 7.1.7.

2. Compare the result from 1. with the exact energy of the state |nlml〉Z+α.
For which values of α is the perturbation calculation reasonable?
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Exercise 7.2.12
Consider the one-dimensional motion of a particle of mass m in a periodic
potential V (z). Let the period length be a (V (z + a) = V (z)).

1. Take V (z) as perturbation and find the unperturbed eigen-energies E0(k)
and eigen-functions ϕk(z). Normalize the latter in the volume L = N a
with periodic boundary conditions:

ϕk (z +N a) = ϕk(z) .

2. How large is the degree of degeneracy of the unperturbed energies E0(k)?
Which wave numbers contribute to the Fourier expansion of V (z)?

3. Which necessary condition must be fulfilled by k and k′ in order to give

〈ϕk|V |ϕk′ 〉 �= 0 ?

Which of these states |ϕk〉, |ϕk′〉 have in addition the same energy?

4. Calculate the energy corrections in first order perturbation theory and the
correct states of zeroth order.

5. Which relation exists to the energy-band model of the solid (Sect. 4.3.5,
Vol. 6)?

Exercise 7.2.13
Let the lattice of a solid be built up by two interpenetrating, chemically equiv-
alent sublattices A and B. At each lattice site there is a magnetic moment mi.
The moments order themselves in each of the sublattices ferromagnetically, but
with antiparallel orientation in A and B (antiferromagnet!). Quasi-freely moving
electrons in a partially filled energy band interact with these moments and are
therefore subject to the following strongly simplified model-Hamilton operator:

H = H0 +H1

H0 =
∑

k,σ
α,β

εαβ(k) |kσα〉〈kσβ|

H1 = −1

2
J
∑

kσα

zσmα|kσα〉〈kσα|
(
zσ = δσ↑ − δσ↓

)
.

α, β denote the two chemically equivalent, ferromagnetic sublattices A, B. mα is
the average (temperature-dependent) magnetic moment per lattice site, where
it must hold because of the antiferromagnetic ordering:

mA = −mB ≡ m

|kσα〉 marks the state of an electron with the wave vector k and the spin σ =↑, ↓
in the sublattice α. The so-called Bloch energies εα,β(k),

εAA(k) = εBB(k) ≡ ε(k) ; εAB(k) = ε∗BA(k) ≡ t(k) ,
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are assumed to be known. Although it is unimportant for the solution of the
exercise, it is still mentioned that k is, due to the periodic boundary conditions,
a discrete wave number of the so-called first Brillouin zone. Details should be
taken from the textbooks on solid state physics.

1. Find the eigen-values and the eigen-states of the ‘unperturbed’ operator
H0.

2. Write the ‘perturbation’ H1 by using as basis the H0-eigen states!

3. Solve exactly the full eigen-value problem of H = H0 +H1!

4. In the sense of the Schrödinger perturbation theory, consider H1 as the
‘perturbation’ and calculate the energy corrections up to second order.
Compare these with the exact result from part 3.!

5. Calculate the energy correction up to second order by the use of the
Brillouin-Wigner perturbation theory. Compare this also with the exact
result !

7.3 Time-Dependent (Dirac) Perturbation
Theory

7.3.1 Basic Ideas

The time-independent perturbation theory presumes that the system to
be investigated is represented by a time-independent Hamilton operator. It is
an approximation method for the solution of the energy-eigen value problem.
The idea is to come to a good approximation of the actual, not exactly solvable
eigen-value equation via the exactly known solution of a simpler but similar as
possible problem (‘free system’). As soon as one has found the stationary states
|En〉, the time-dependence of an arbitrary state of the system is completely
determined by the given initial conditions:

|ψ(t)〉 = e−(i/�)Ht|ψ(0)〉 =
∑∫

n

e−(i/�)Ent|En〉〈En|ψ(0)〉

Very often, though, the physical statement of the problem is different. One is,
for instance, interested how the system reacts on a time-dependent perturbation.
In most of these cases this is connected to external fields which are applied to
the system. The time-dependence then comes already into play by switching
on and off processes, in addition to an optionally existing direct time-variation
of the field. For instance, one can think of a periodically alternating electro-
magnetic field. The task then consists in finding out how the states and the
measured values develop in time under the influence of the perturbation. Since
the Hamilton operator

H = H0 +H1t ≡ Ht (7.87)
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is now explicitly time-dependent, the energy of the system can no longer be
a conserved quantity. We indicate the explicit time-dependence, caused by
the perturbation, as index in order to distinguish it from the dynamical time-
dependences (Heisenberg, Dirac picture). There do not exist stationary states
so that a completely different statement of problem is present compared to the
one we discussed in the framework of the time-independent perturbation the-
ory. We have to realize again, though, that for practically all realistic situations,
exact and complete solutions are not achievable. The time-dependent per-
turbation theory represents a method, by which one can determine, under
certain conditions, approximately, the time-evolution of a physical system,
characterized by parameters such as transition probabilities (Sect. 7.3.2) and
transition rates.

Let a Hamilton operator of the form (7.87) be the starting point, where we
assume here also that the solution of the H0-problem is entirely known. H0

itself is time-independent:

H0|E(0)
n 〉 = E(0)

n |E(0)
n 〉 . (7.88)

It is clear that, because of the time-dependence of the Hamilton operator, the
time-dependent perturbation theory cannot be developed on the basis of the
time-independent Schrödinger equation (7.27) of the perturbed system. One
could start, however, with the time-dependent Schrödinger equation,

i �
∂

∂t
|ψ(t)〉 = Ht|ψ(t)〉 , (7.89)

and try to solve it. Since the eigen-states |E(0)
n 〉 build a complete system (7.30),

the following ansatz might offer itself:

|ψ(t)〉 =
∑∫

m

am(t)|E(0)
m 〉 . (7.90)

This we insert into the Schrödinger equation (7.89):

∑∫

m

i � ȧm(t)|E(0)
m 〉 =

∑∫

m

am(t) (E(0)
m +H1t)|E(0)

m 〉 .

When we now multiply this equation from the left by the bra-state 〈E(0)
n |, we

have:
(
i �

∂

∂t
− E(0)

n

)
an(t) =

∑∫

m

am(t)〈E(0)
n |H1t|E(0)

m 〉 . (7.91)

This is a set of differential equations of first order, for the solution of which the
initial conditions,

|ψ(ti)〉 =
∑∫

m

am(ti)|E(0)
m 〉 ,
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must be known. Thereby we want to assume that the perturbation is switched
on at the time ti. Obviously we already obtain all that is essential when we
assume that, before the switching on of the perturbation (t < ti), the system

was in an eigen-state |E(0)
i 〉 of H0. This means:

am(ti) = δmi . (7.92)

We can now proceed very similarly as we did for the time-independent
Schrödinger perturbation theory in Sect. 7.2, by replacing H1t by λH1t (0 ≤
λ ≤ 1), and by choosing for the coefficients am(t) a power-series ansatz in λ.
By sorting with respect to powers of λ the time-dependent perturbation theory
of first, second, third, . . . order is then gradually developed (see Exercise 7.3.1).

We want to take here, however, another path, which is more formal but also
more consistent. We did the essential preparatory work already in Sect. 3.4.4
(Vol. 6), where we discussed the Dirac picture (interaction representation). In
the Dirac picture the dynamical time-dependence of the states is determined by
the operator of the interaction. According to (3.206) (Vol. 6) the Schrödinger
equation reads:

i �|ψ̇D(t)〉 = HD
1t(t)|ψD(t)〉 . (7.93)

On the other hand, the dynamics of the observables is due to H0:

HD
1t(t) = exp

(
i

�
H0 (t− t0)

)
H1t exp

(
− i

�
H0 (t− t0)

)
. (7.94)

As in Sect. 3.4.4 (Vol. 6) we will mark states and observables of the Dirac picture
by the index D. ‘Index-free’ quantities are meant to belong to the Schrödinger
picture. At the point of time t0 both the representations shall coincide. We can
choose t0 = ti and get therewith:

|ψD (ti)〉 = |ψ (ti)〉 (7.92)
= |E(0)

i 〉 . (7.95)

It is asked for |ψD(t)〉 at t > ti. The answer is given by the time evolution
operator UD (t, ti),

|ψD(t)〉 = UD (t, ti)|ψD (ti)〉 , (7.96)

for which we could find in Sect. 3.4.4 (Vol. 6) with the Dyson series ((3.210),
(3.172) (Vol. 6)) a formal integral representation:

UD (t, ti) = 1l +

∞∑

n=1

U
(n)
D (t, ti) , (7.97)

U
(n)
D (t, ti)

=

(
− i

�

)n
t∫

ti

dt1

t1∫

ti

dt2 · · ·
tn− 1∫

ti

dtn HD
1t1 (t1)H

D
1t2 (t2) · · ·HD

1tn (tn) .

(7.98)
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The time-behavior of the Dirac state |ψD(t)〉 is therewith completely determined.
However, for real problems it will not be possible to sum up the Dyson series in a
closed form. On the other hand, (7.97) is obviously an excellent initial basis for
perturbation-theoretical approximations because (7.97) is already sorted with
respect to powers of the perturbation H1t. When the perturbation is small—
what that actually means we, of course, still have to think about—then one can
terminate the series (7.97) after a finite number of summands. Consequently,
one can speak of

time-dependent perturbation theory of nth order ,

if the evaluation comprises the first n summands of the Dyson series. Because
the basic idea traces back to the Dirac representation, one speaks, by the way,
also of the

Dirac perturbation theory ,

For the calculation of the integrals in (7.98), though, a change into the
Schrödinger picture is recommendable. We agree upon the following abbre-
viations:

E(0)
nm = E(0)

n − E(0)
m , (7.99)

Hnm(t) = 〈E(0)
n |H1t|E(0)

m 〉 . (7.100)

Between each pair of perturbation operators in (7.98) we now insert the identity
operator 1l in form of the completeness relation

1l =
∑∫

m

|E(0)
m 〉〈E(0)

m | .

Because of (7.94) the dynamical time-dependence then becomes trivial:

〈E(0)
m |HD

1tn (tn)|E(0)
n 〉 = Hmn (tn) e

(i/�)E(0)
mn (tn − t0) .

The matrix element of the nth term in the Dyson series for the time-evolution
operator now has the following structure:

〈E(0)
f |U (n)

D (t, ti)|E(0)
i 〉 =

(
− i

�

)n
t∫

ti

dt1 · · ·
tn − 1∫

ti

dtn
∑∫

m1

· · ·
∑∫

mn − 1

Hfm1 (t1)

·Hm1m2 (t2) · · ·Hmn−1a (tn) exp

[
i

�
E

(0)
fm1

(t1 − ti)

]

· exp
[
i

�
E(0)

m1m2
(t2 − ti)

]
· · · exp

[
i

�
E

(0)
mn −1i

(tn − ti)

]
. (7.101)

In order to be allowed to terminate the series after the nth summand one has
to require that the (n+ 1)th term can be neglected compared to the nth term.
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Figure 7.4: Schematic representation of a perturbation which is switched on for
a finite time interval

These two members of the series differ, according to (7.101), by a factor of the
type:
∣∣∣∣∣∣
− i

�

t∫

ti

dtn
∑∫

n

Hmn (tn) exp

[
i

�
E(0)

mn (tn − ti)

]∣∣∣∣∣∣
≤ 1

�

t∫

ti

dtn
∑∫

n

|Hmn (tn)| .

One has to therefore require, as a rough criterion for a Dirac perturbation theory
of finite order that

xmn(t
′) ≡ (t− ti)|〈E(0)

m |H1t′ |E(0)
n 〉| (7.102)

is for all m, n and t′ ∈ [ti, t] very much smaller than �. The product of

the interaction strength (∼ |〈E(0)
m |H1t′ |E(0)

n 〉|) and the duration of interaction
(∼ (t− ti)) should thus be a very small quantity.

7.3.2 Transition Probability

We assume that at a time ti a perturbation H1t is switched on, and that the

system up to this point of time was in an eigen-state |E(0)
i 〉 of H0. Transition

probabilities are then of special interest, which indicate, with what probability
the system is found by a measurement at a later point of time t > ti in another

eigen-state |E(0)
f (t)〉 of H0. Possible transitions are the results of the influence

of the perturbation, which in a certain sense shakes the system. For H1t �= 0, as

a rule, |E(0)
i 〉 is no longer an eigen-state. The cases, for which the perturbation

acts for a finite time tp, are the most interesting. That may be an external field
switched on for a certain span of time, or one can think of the perturbation
to be provoked by the fly by of a charged particle (Fig. 7.4). Since H0 itself
is time-independent, the precise point of time of the switching on will not be
decisive, but rather the time duration tp of the perturbation. We therefore can
choose, without further ado, ti arbitrarily, for instance ti = 0. For 0 ≤ t ≤ tp the
perturbation H1t is operative, while outside this time interval, the total energy
remains a constant of motion. We now define as

transition probability

wif(t) ≡ |〈E(0)
f |UD(t, 0)|E(0)

i 〉|2 . (7.103)
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This formula should further be commented on a bit. Let |ψ(t)〉 be the state in
the Schrödinger picture, which under the influence of H = H0 + H1t develops

from |E(0)
i (0)〉:

|ψ(t)〉 = U(t, 0)|E(0)
i 〉 . (7.104)

U(t, 0) is the time-evolution operator in the Schrödinger picture. According to
(3.200) (Vol. 6) we have the relation

UD(t, t
′) = e(i/�)H0(t− t0) U(t, t′) e−(i/�)H0(t

′ − t0) .

t0 is the point of time, at which the various pictures shall coincide. This point
can be freely chosen. We take t0 = 0. But then we have:

UD(t, 0) = e(i/�)H0t U(t, 0) .

When we insert this relation into (7.103), then the transition probability takes,
in the Schrödinger picture, the somewhat more familiar form:

wif(t) = |〈E(0)
f (t)|ψ(t)〉|2 = |af(t)|2 (7.105)

Plausibly, this is identical to the square of the absolute value of the expansion
coefficient af(t) from (7.90). t is thereby the point of time of the measure-
ment! If wif(t) is to be the probability of a real transition, then we have in
particular to presume, of course, that initial state and final state are indeed

different, |E(0)
i 〉 �= |E(0)

f 〉. As the eigen-states of H0, they are also orthogonal.
With (7.97) inserted into (7.103) we then obtain:

wif(t) =

∣∣∣∣∣

∞∑

n=1

〈E(0)
f |U (n)

D (t, 0)|E(0)
i 〉

∣∣∣∣∣

2

. (7.106)

Sometimes one defines for |E(0)
i 〉 = |E(0)

f 〉 a residence probability ŵaa(t), for
which it must of course hold

ŵii(t) = |〈E(0)
i |UD(t, 0)|E(0)

i 〉|2 = 1−
�= i∑

f

wif(t) . (7.107)

For the first two terms in (7.106) the matrix elements read according to (7.101):

〈E(0)
f |U (1)

D (t, 0)|E(0)
i 〉 =

(
− i

�

) t∫

0

dt1 Hfi(t1) e
(i/�)E

(0)
fi t1 , (7.108)

〈E(0)
f |U (2)

D (t, 0)|E(0)
i 〉 =

(
− i

�

)2
t∫

0

dt1

t1∫

0

dt2
∑∫

m

Hfm(t1)Hmi(t2) ·

· exp
[
i

�

(
E

(0)
fm t1 + E

(0)
mi t2

)]
. (7.109)
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We see that the expressions are becoming already in second order rather
involved. In the orders n ≥ 2 the system develops, illustratively, from the real

initial state |E(0)
i 〉 into the real final state via so-called virtual intermediate

states. These are called virtual, since they are as the results of a formal expan-
sion not really undertaken by the system. So they cannot be actually observed,
i.e., they cannot be directly measured. Real transitions into such intermedi-
ate states would, by the way, in general, violate the energy conservation law.
However, formulas like (7.109) convey the impression, as if the system would

indeed reach the final state |E(0)
f 〉 starting at the initial state |E(0)

i 〉 via such
intermediate states. They can therefore sometimes provide expedient help in
illustrating and interpreting.

Generally one has to be content, as far as the transition probability is con-
cerned, with the first order perturbation theory, for which, according to (7.106)
and (7.108), it is left to calculate:

w
(1)
if (t) =

1

�2

∣∣∣∣∣∣

t∫

0

dt1〈E(0)
f |H1t1 |E(0)

i 〉 exp
(
i

�
(E

(0)
f − E

(0)
i ) t1

)∣∣∣∣∣∣

2

. (7.110)

The second order becomes important above all when the transition probability
vanishes in the first order, i.e., when for instance the matrix element in the

integrand of (7.110) equals zero. In such a case w
(2)
if (t) is directly be given by

the square of the absolute value of the expression (7.109). If 〈E(0)
f |H1t|E(0)

i 〉
does not vanish, then we have to build, according to (7.106), for w

(2)
if (t) the

square of the absolute value of a sum of two terms. We want to confine our
considerations here, however, to the first order perturbation theory (7.110).

For t < tp, i.e., when the measurement takes place during the time of active

perturbation, w
(1)
if (t) will be time-dependent. If, however, the perturbation is

already switched off at the point of time of the measurement, i.e., t > tp, then we
can replace in the integral in (7.110) the upper bound of integration t by tp. The

transition probability w
(1)
if is then time-independent. Each measurement yields

for t > tp the same w
(1)
if . The system for t > tp is again in a state, which obeys

the unperturbed, time-independent Schrödinger equation. This state, though,

must no longer be identical to |E(0)
i 〉.

Let us further analyze the case t > tp. At first we can shift in (7.110)
the bounds of integration to ±∞, because Hfi(t1) = 0 for −∞ < t1 < 0 and
tp < t1 < +∞:

(t ≥ tp) w
(1)
if =

1

�2

∣∣∣∣∣∣

+∞∫

−∞
dt1 Hfi(t1) e

(i/�)E
(0)
fi t1

∣∣∣∣∣∣

2

.
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On the right hand side there stands essentially the Fourier integral of the per-
turbation ((4.190), Vol. 3):

Hfi(t) =
1

2π�

+∞∫

−∞
dE Hfi(E) e−(i/�)Et , (7.111)

Hfi(E) =

+∞∫

−∞
dtHfi(t) e

(i/�)Et . (7.112)

We have therewith found for the transition probability in the first order pertur-
bation theory:

w
(1)
if =

1

�2
|Hfi(E

(0)
fi )|2 . (7.113)

w
(1)
if is therefore only then unequal zero when the energy E

(0)
f − E

(0)
i = E

(0)
fi

belongs to the Fourier spectrum of the perturbation. The transition therefore
has resonance character!

Before we continue the discussion in the next two subsections in somewhat
more concrete form, we should remind ourselves once more that, because of
(7.102), these perturbative results for the transition probability are reasonable

only for w
(1)
if � 1. Only when the transitions are still rather unlikely, we can

be content with perturbation theory of first order!

7.3.3 Fermi’s Golden Rule

We now want to discuss the transition probability for the important special
case where the perturbation, which is switched on at the time t = 0, remains
constant up to the switching off at t = tp (Fig. 7.5):

H1t ≡ H1Θ(t)Θ(tp − t) . (7.114)

The period of perturbation tp shall be long enough, so that special turning-on
and turning-off processes can be neglected. Then the integral in (7.110) can
easily be calculated:

w
(1)
if (t) =

1

�2
|〈E(0)

f |H1|E(0)
i 〉|2 Ft (E

(0)
fi ) . (7.115)

Figure 7.5: Simplest form of a perturbation, which acts for a finite time



7.3. TIME-DEPENDENT (DIRAC) PERTURBATION THEORY 181

Figure 7.6: Energy-dependence of the weight factor in the transition probability
of first order

The transition probability is thus determined by two terms, namely, firstly by

the transition matrix element 〈E(0)
f |H1|E(0)

i 〉 and secondly by the time-

dependent weight factor Ft

(
E

(0)
fi

)
= Ft

(
E

(0)
f − E

(0)
i

)
. The latter we want to

investigate now in some more detail:

Ft(E) = Θ(t) [Θ(tp − t)F ∗
t (E) + Θ(t− tp)F

∗
tp(E)] . (7.116)

The function F ∗
t (E),

F ∗
t (E) =

∣∣∣∣∣∣

t∫

0

dt1 e
(i/�)E t1

∣∣∣∣∣∣

2

=

∣∣∣∣
e(i/�)Et − 1

(i/�)E

∣∣∣∣
2

= 2�2
1− cos ((E/�)t)

E2
(7.117)

has zeros at E = n (2π�/t); n = ±1, ±2, . . . and has a pronounced maximum
at E = 0 (Fig. 7.6). By means of l’Hospital’s rule ((1.96), Vol. 1) one finds the
function value F ∗

t (E = 0):

F ∗
t (0) = lim

E→0
2�2

(d2/dE2) (1− cos(E/�) t)

(d2/dE2)E2
= t2 . (7.118)

The full width at half maximum can be estimated to be about 2π�/t. The
peak thus becomes more and more pronounced with increasing time. We still
calculate the following integral:

1

2π � t

+∞∫

−∞
dE F ∗

t (E) =
1

π

+∞∫

−∞
dy

1− cos y

y2
=

1

π

+∞∫

−∞
dy

sin y

y
.

In the second step we have substituted E = (�/t) y, and finally in the third step
integrated by parts. The remaining integral can be evaluated by the use of the
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residue theorem (see second example in Sect. 4.4.5, Vol. 3). It has the value π.
This leads to:

1

2π � t

+∞∫

−∞
dE F ∗

t (E) = 1 . (7.119)

Eventually, it can be estimated for E �= 0 by the use of (7.117):

F ∗
t (E)

2π � t
≤ 2�

π E2t
−→
t→∞ 0 . (7.120)

We recognize by (7.118)–(7.120) that the function F ∗
t (E)/2π � t becomes for

t → ∞ a δ-function (see (1.2) and (1.3), Vol. 3):

lim
t→∞

1

2π � t
F ∗
t (E) = δ(E) . (7.121)

We can draw now from these mathematical properties of the weight function
F ∗
t (E) (Fig. 7.6) some far-reaching conclusions for the transition probability in

(7.115):

1. Transitions take place predominantly between states with energy differ-
ences within the region:

ΔEt ≈ 2π �

t
. (7.122)

2. For E
(0)
fi �= 0 the transition probability oscillates as function of t with the

period

τ =
2π �

E
(0)
fi

.

3. In a system, which is exposed practically infinitely long to a constant
perturbation,

t, tp → ∞ ,

transitions are induced at most between degenerate levels
(
E

(0)
fi = 0

)
.

This one recognizes by insertion of (7.121) into (7.115):

w
(1)
if (t) ≈

t,tp
‘large’

2π t

�
|〈E(0)

f |H1|E(0)
i 〉|2 δ

(
E

(0)
f − E

(0)
i

)
. (7.123)

The δ-function expresses energy conservation. Frequently one still intro-
duces as transition rate the transition probability per time unit:

Γ
(1)
if ≡ w

(1)
if (t)

t
≈ 2π

�
|〈E(0)

f |H1|E(0)
i 〉|2δ(E(0)

f − E
(0)
i ) . (7.124)

According to a proposal of E. Fermi, one calls this formula, or the still to
be discussed version (7.128), which is versatilely applied, and that with
great success, because of its usefulness, the golden rule.
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4. The indisputable success of the golden rule, however, appears to be more
than astounding, if one carefully inspects the various steps which finally
led to the rule. For its derivation we had to use several presumptions,
which are partly seriously contradicting each other. The following points
of criticism are evidently debatable:

a) The perturbation period tp, according to (7.102), should be small to
let perturbation theory of the first order be reasonably applicable at
all. On the other hand, it should also be large in order to justify the
insertion of the mathematical limiting case (7.121) into (7.115).

b) A probability, which according to (7.123) grows linearly with the time
beyond all limits, appears highly absurd.

c) Probabilities and transition rates, which are, as in (7.123) and (7.124),
proportional to δ-functions, contradict common sense drastically.

It is of course clear that the reason for the mentioned inconsistencies must
be ascribed to the mistake, which is brought in by the deficiency of per-
turbation theory of first order. An exact, infinite series is actually approx-
imated by only its first term. But then, why are (7.123) and (7.124) in
many cases nevertheless rather useful formulas?

As to the points a) and b) one often argues that t and tp, respectively,
are indeed macro-physically small, but also large in comparison to micro-
physical activation times, so that (7.121) can approximately be used in
(7.115). The somewhat vague terms ‘large’, ‘small’ times , used already
several times, therefore have to be concretized very carefully in each single
case.

5. One circumvents the objection c) normally in such a way that the for-
mulas (7.123) and (7.124) are, strictly speaking, acceptable only for tran-
sitions into a continuous spectrum. When the final states are quasi-
densely arranged, then one should appropriately not ask the transition
into a special level, but that into a certain finite interval of the energy

E
(0)
f , E

(0)
f +ΔEf. The probability is then equal to the sum of the individ-

ual probabilities:

w
(1)
iΔf(t) =

∑∫

ΔEf

w
(1)
if (t) .

If the final states indeed build a continuum, then we have to write:

w
(1)
iΔf(t) =

∫

ΔEf

dE
(0)
f ρ0 (E

(0)
f )w

(1)
if (t) . (7.125)

ρ0(E) is thereby the density of states of the unperturbed system. It is
defined by the following statement:
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ρ0(E)dE = number of the unperturbed eigen-states with energy
values in the interval E, E + dE.

The density of states is a very useful quantity which appears at many places in
Theoretical Physics.

We know from the preceding considerations of this chapter that for large

times t and tp the function w
(1)
if (t) is very sharply concentrated around E

(0)
fi = 0.

We could estimate the full width at half maximum of the central peak to be
2π �/t. If the energy interval ΔEf is now distinctly broader than the peak,

ΔEf � 2π �

t
, (7.126)

then we can confidently let the integral in (7.125) run from −∞ to +∞. Fur-
thermore it should be allowed to draw the normally continuous density of states

and the matrix element of the perturbation operator at the point E
(0)
f = E

(0)
i

as constants in front of the integral:

w
(1)
iΔf(t)

(7.115)≈ ρ0

(
E

(0)
i

) 1

�2
|〈E(0)

f |H1|E(0)
i 〉|2

+∞∫

−∞
dE F ∗

t (E)

(7.119)
=

2π

�
ρ0 (E

(0)
i )|〈E(0)

f |H1|E(0)
i 〉|2 t . (7.127)

For the transition rate we have now instead of (7.124):

Γ
(1)
iΔf =

2π

�
ρ0 (E

(0)
i )|〈E(0)

f |H1|E(0)
i 〉|2 . (7.128)

This version of the golden rule looks, with respect to the preceding critical
discussion, after the elimination of the δ-function, essentially more reasonable
than that in (7.124).

7.3.4 Periodic Perturbations

The assumption of a perturbation H1, constant in the time interval 0 ≤ t ≤ tp,
led in the last subsection to a transition probability, which is finite only for
transitions with energy conservation. However, characteristic transient processes
must be taken into consideration, if the perturbation acts only for a finite time
tp.

We now aim to treat a further important, relatively simply calculable special
case, for which H1t is now a periodic function of time, realized, e.g., by a
monochromatic electromagnetic field:

H1t ≡ H1 cosω tΘ(t) . (7.129)

We assume that this perturbation is also switched on at the time ti = 0, but we
let the duration of the perturbation tp become infinitely large. For the calculation
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Figure 7.7: Transition probability, after absorption of monochromatic electro-
magnetic radiation, as function of the level separation

of the transition probability we use Eq. (7.110):

w
(1)
if (t) =

1

�2

∣∣∣∣∣∣

t∫

0

dt1 Hfi(t1) e
i/�E

(0)
fi t1

∣∣∣∣∣∣

2

=
|Hfi|2
4�2

∣∣∣∣∣∣

t∫

0

dt1 e
i/�

(
E

(0)
fi +�ω

)
t1 +

t∫

0

dt1 e
i/�

(
E

(0)
fi −�ω

)
t1

∣∣∣∣∣∣

2

=
1

4
|Hfi|2

∣∣∣∣∣∣

exp
[
i/�

(
E

(0)
fi + �ω

)
t
]
− 1

E
(0)
fi + �ω

+
exp

[
i/�

(
E

(0)
fi − �ω

)
t
]
− 1

E
(0)
fi − �ω

∣∣∣∣∣∣

2

. (7.130)

Each of the two summands has a structure similar to that of the function F ∗
t (E)

in (7.117). For sufficiently large times t the first summand delivers a contribution

which is concentrated around E
(0)
fi = −�ω, while that of the second summand

produces a sharp maximum at E
(0)
fi = +�ω. When multiplying out the square

of the absolute value, the mixed terms therefore play only a negligible role. The
transition probability is thus composed essentially of two separate parts, which
can easily be interpreted.

1) E
(0)
f > E

(0)
i ; ω > 0

In this case the second summand dominates, especially for such final state

energies E
(0)
f , for which (Fig. 7.7)

E
(0)
f ≈ E

(0)
i + �ω . (7.131)

In this energy region one can neglect the first summand, and one then obtains
for the transition probability a similar expression as in (7.123):

w
(1)
if (t)

(7.117)≈ |Hfi|2
4�2

F ∗
t (E

(0)
fi − �ω)

(7.121)≈ π

2�
|Hfi|2 t δ (E(0)

fi − �ω) . (7.132)
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Figure 7.8: Transition probability, after emission of monochromatic electromag-
netic radiation, as function of the level separation

With the same considerations as in the last subsection, we then find for the
transition rate into the continuum:

Γ
(1)
iΔf ≈

π

2�
ρ0 (E

(0)
i + �ω)|〈E(0)

f |H1|E(0)
i 〉|2 . (7.133)

When the frequency ω of the perturbation corresponds just to an exact excita-

tion energy E
(0)
fi = E

(0)
f − E

(0)
i of the unperturbed system, transitions become

especially probable. It is thereby a typical resonance phenomenon. An
important example of application is the atomic system, which is shined on by
an electromagnetic field of the frequency ω. (7.131) corresponds in this case to
Bohr’s frequency condition ((1.103), Vol. 6). The unperturbed system (atom)
absorbs an energy quantum �ω (photon) and therewith goes into a higher level,
i.e., into an excited state. We had already pointed out earlier that transitions
between stationary states in the atom would not happen without being forced
by external perturbations.

2) Ef < Ei ; ω > 0

Now the first summand in (7.130) dominates with a sharp peak at E
(0)
fi ≈

−�ω (Fig. 7.8), i.e., for final states energies with:

E
(0)
f ≈ E

(0)
i − �ω . (7.134)

The perturbing monochromatic wave induces the system in this case to emit
the energy �ω. By using the same considerations as for (7.133) we now find as
transition rate:

Γ
(1)
aΔe ≈

π

2�
ρ0 (E

(0)
i − �ω)|〈E(0)

f |H1|E(0)
i 〉|2 . (7.135)

In the case of the resonance
(
E

(0)
fi

!
= ±�ω

)
the monochromatic perturbation

wave can enforce both absorption 1) as well as emission 2).
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7.3.5 Exercises

Exercise 7.3.1
A perturbation H1t is turned on at the time t = 0 and acts on a system which is
described by the Hamilton operator H0. Immediately before the switching on of

the perturbation, the system is in the eigen-state |E(0)
i 〉 of H0. Expand the state

|ψ(t)〉 for t > 0 in the complete system
{
|E(0)

n 〉
}
(see (7.90)) and determine the

expansion coefficients in first order perturbation theory.

Exercise 7.3.2
A linear harmonic oscillator of mass m and charge q experiences an alternating
electric field:

F(t) = F ez cosω t

(ez : unit vector in z-direction) .

Calculate in first order perturbation theory the dependence of the expectation
value of the electric dipole moment

〈p̂〉 = 〈ψ|q z|ψ〉
on the frequency ω. Assume thereby that, before the switching on of the field

at the time t = 0, the oscillator is in the eigen-state |E(0)
n 〉 = |n〉.

Exercise 7.3.3
Let a linear harmonic oscillator be in its ground state ϕ0(q, t). At the time t = 0
the force constant k of its restoring force (F = −k q) is abruptly brought to a
new value k′. What is the probability that at t > 0 the oscillator is in its new
ground state?

Hint: Take into consideration that the formulas of the ordinary time-dependent
perturbation theory describe transitions between states of the unperturbed sys-
tem, and therefore are here not directly applicable.

Exercise 7.3.4
A linear harmonic oscillator is in its ground state. At the time t = 0 an addi-
tional constant force F is applied to the oscillator. What is the probability for
a transition into the new nth eigen-state at t > 0?

Exercise 7.3.5
An electron is within the attractive region of a Z-fold positively charged nucleus,
which can be described as point charge of the strength Ze. At t = 0 the nuclear
charge is changed by +e, e.g. by β-decay. At t > 0, what is the probability
for a transition from the old 1s-state into the new 2s-state of the hydrogen-like
ion?

Exercise 7.3.6
Let a physical system be for t ≤ 0 in the state |ϕ(0)

1 〉 of a twofold degenerate
level E(0). At t = 0 a constant perturbation is switched on.
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1. According to the theory from Sect. 7.3.3, in the first order perturbation
theory for t > 0, what is the probability for the transition into the other

state |ϕ(0)
2 〉 of the same unperturbed energy?

2. The same problem is now to be solved, for comparison, in another way:

2a) Calculate at first by means of time-independent perturbation theory
the energy correction of first order E(1) and the correct states of

zeroth order |ϕ(0)
± 〉, for which in first approximation

H |ϕ(0)
± 〉 ≈

(
E(0) + E

(1)
±

)
|ϕ(0)

± 〉

may be assumed (H = H0 +H1).

2b) In the corresponding approximation determine the time evolution of

the state of the system |ϕ(0)
1 〉 for t > 0, i.e., the evolution under the

influence of the perturbation.

2c) Define now as transition probability

w̃12(t) ≡
∣∣∣
〈
ϕ
(0)
2

∣∣∣ ϕ(0)
1 (t)

〉∣∣∣
2

and calculate it.

2d) Compare the result with the expression from part 1.

Exercise 7.3.7
A linear harmonic oscillator of the mass m and the charge q is at the time
ti = −∞ in its ground state. At the point of time ti a homogeneous, time-
dependent electric field is applied:

F(t) = F e−αt2 ez

(ez : unit vector in z-direction, α > 0) .

1. For t → ∞ calculate the residence probability ŵ
(1)
00 (∞) of the oscillator in

its ground state.

2. Under which conditions is perturbation theory of first order applicable?

Exercise 7.3.8
A linear harmonic oscillator of the mass m and the frequency ω is in its ground
state |0〉(0) at times t < 0 . For t ≥ 0 the perturbation

H1t = c
(
a2 + a†2

)
e−γt ; c > 0, γ > 0 .

acts on it. In the first order perturbation theory calculate the transition prob-
ability into an unperturbed excited state |n〉(0) at the time t > 0!
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Exercise 7.3.9
A system is described by the Hamilton operator

H = H0 +H1t

with a time-dependent perturbation H1t. Consider the Hilbert space which is
spanned by the eigen-states |1〉, |2〉 of the free operator H0:

H0 |n〉 = εn|n〉 ; n = 1, 2 ; ε2 > ε1 .

In this space it holds for the perturbation:

H1t = (〈n |H1t|n′〉) = �ω0

(
0 eiωt

e−iωt 0

)
.

1. Determine the time-dependence of the free eigen-states |n(t)〉!
2. Solve the time-dependent Schrödinger equation in the space of the two

free states |n(t)〉 with the initial condition |ψ(0)〉 = |1〉! Interpret the
occupation probabilities

|αn(t)|2 = |〈n | ψ(t)〉|2 .

3. Calculate the transition 1 → 2 in first order perturbation theory! Compare
this result with the exact expression from part 2.!

Exercise 7.3.10
A quantum-mechanical system,

H = H0 +H1t,

is subject to the time-dependent perturbation

H1t = B̂ f(t) .

B̂ is thereby an observable and f(t) a time-dependent real-valued function. Let

Â be a not explicitly time-dependent observable. Investigate how the expec-
tation value 〈Â〉 in an arbitrary (mixed) state reacts to the perturbation H1t.
There are

ρ0 : statistical operator of the free system

ρt : statistical operator of the interacting system,

both in the Schrödinger picture. The interaction is switched on at a certain
point of time, so that

lim
t→−∞ ρt = ρ0

can be assumed.
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1. Show that it holds in the interaction representation (Dirac picture) for the
statistical operator:

ρDt (t) = e
i
�
H0tρte

− i
�
H0t = ρ0 − i

�

t∫

−∞
dt′[HD

1t′(t
′), ρDt′ (t

′)]−

Interpret the different time-dependences.

2. Find the formal solution

ρDt (t) = ρ0 +

∞∑

n=1

ρ
D(n)
t (t) .

3. What results explicitly for ρDt (t) in the first order perturbation theory?
Use the result in order to calculate the change of the expectation value:

ΔAt = 〈Â〉t − 〈Â〉0
Show that (‘linear response’):

ΔAt = − i

�

t∫

−∞
t.
′ f(t′)〈[ÂD(t), ÔD(t′)]−〉0 .

7.4 Quasi-Classical Approximation

(WKB-Method)

In Chap. 2 (Vol. 6), using analogy arguments with the help of the classical
Hamilton-Jacobi theory (keyword: waves of action−→ matter waves), we justi-
fied (motivated) the wave mechanics of Schrödinger or at least made it appear
plausible

The procedure was based on the idea that Classical Mechanics can be inter-
preted, in some way, as a limiting case of the super-ordinate Quantum Mechan-
ics. Hints for the transition

wave mechanics ←→ classical mechanics

were derived from the known relationship:

wave optics ←→ geometrical (ray) optics

An essential difference between Classical Mechanics and Quantum Mechanics
is connected with the classical concept of the particle path. This requires the
simultaneous precise determination of position and momentum of the particle,
which is basically impossible in Quantum Mechanics. One encounters a similar
problem with the ray-concept of geometrical optics, which is acceptable for the
exact wave optics also at most as a limiting case. The approximate transition
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from the general wave optics to the special ray optics can be justified only if
the spatial variation |∇n(r)| of the index of refraction n(r) is small compared to
n/λ, where λ is the vacuum-wave length of light. We will see that the analogous
requirement in wave mechanics aims at an only weak space-dependence of the
potential V (r), which is equivalent to a weak space-dependence of the de Broglie
wave length

λ(r) =
2π �√

2m(E − V (r))
.

In such a case one recognizes a correspondence between the laws and equations
of Classical Mechanics and those of Quantum Mechanics (see Sects. 1.5.3 and 3.5
in Vol. 6).

We will pick up this thought here once more, and show explicitly that the
classical Hamilton-Jacobi differential equation (2.1) (Vol. 6) can be con-
sidered as the limiting case of the time-dependent Schrödinger equation.
This consideration will then become the background for a general method of
solution, the development of which is the actual objective of this chapter. It is
the so-called

WKB-method

which was proposed in 1926 by the scientists Wentzel, Kramers and Brillouin,
independently of each other.

7.4.1 The � → 0-Limiting Case of Wave Mechanics

The Hamilton-Jacobi theory is underlain by the concept of the canonical trans-
formation (see Sect. 2.1.1 (Vol. 6), Sect. 2.5 (Vol. 2)) By means of a generating
function, the so-called action function S(q, p̄, t), an old set of canonical variables
(q,p) is transformed onto a new set (q̄, p̄), and that too in such a way that the
new variables q̄i and p̄i (i = 1, 2, . . . , s) already are all integrals of motion. That
is guaranteed when the action function S fulfills the Hamilton-Jacobi differential
equation (2.1) (Vol. 6) (H = Hamilton function):

H

(
q1, . . . , qs,

∂S

∂q1
, . . . ,

∂S

∂qs
, t

)
= −∂S

∂t
.

It holds in particular for a particle of mass m in the potential V (r, t) ((3.185),
Vol. 2):

p = ∇S ,

1

2m
(∇S)2 + V (r, t) = −∂S

∂t
. (7.136)

Let us recall the concrete meaning of the action function:

1. Because of p = ∇S, the particles move in the phase space on paths, which
are oriented perpendicular to the S = const-planes.
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2. The continuity equation (particle-number conservation),

∂ρ

∂t
+ div(ρv) = 0 ,

can be expressed by S:

∂ρ

∂t
+

1

m
(∇ρ ·∇S + ρΔS) = 0 . (7.137)

We now want to assure ourselves that under certain limiting conditions the time-
dependent Schrödinger equation leads to analogous results. For this purpose we
choose the following ansatz for the wave function:

ψ(r, t) = exp

[
i

�
S(r, t)

]
. (7.138)

Let the function S have, as �, the dimension action, being, however, otherwise
not yet further specified. With (7.138) the Schrödinger equation becomes a
non-linear, partial differential equation for S:

− ∂S

∂t
=

1

2m
(∇S)2 + V (r, t)− i �

2m
ΔS . (7.139)

In order to come to a systematic approximate solution of this equation we
expand S in powers of �:

S(r, t) =

∞∑

n=0

(i �)n Sn(r, t) ; Sn real . (7.140)

This ansatz, whose convergence we presume without checking, is inserted into
(7.139) and the resulting equation is sorted with respect to the powers of �:

−
{
∂S0

∂t
+ i �

∂S1

∂t
− �

2 ∂S2

∂t
+ · · ·

}

=
1

2m

{
(∇S0)

2 − �
2(∇S1)

2 + �
4(∇S2)

2 + · · ·+ 2i � (∇S0 ·∇S1)

− 2�2 (∇S0 ·∇S2)− 2i �3 (∇S1 ·∇S2) + · · ·}+ V (r, t)

− i�

2m

{
ΔS0 + i �ΔS1 − �

2ΔS2 + · · ·} .

We assume that this expression is satisfied separately by each power of �. Then
we obtain the following system of equations:

(∼ �
0) : −∂S0

∂t
=

1

2m
(∇S0)

2 + V (r, t) , (7.141)

(∼ �
1) : −∂S1

∂t
=

1

m
(∇S0 ·∇S1)− 1

2m
ΔS0 , (7.142)

(∼ �
2) : −∂S2

∂t
=

1

2m
(∇S1)

2 +
1

m
(∇S0 ·∇S2)

2 − 1

2m
ΔS1,

. . .
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We recognize that in zeroth order (∼ �
0) the Hamilton-Jacobi differential equa-

tion (7.136) is reproduced. The equation of first order (7.142) we still rearrange
a bit. It holds approximatively for the density of the position probability
ρ(r, t) = |ψ(r, t)|2:

ρ = exp

[
i

�

(
S0 + i �S1 − �

2S2 + . . .
)]

exp

[
− i

�

(
S0 − i �S1 − �

2S2 + . . .
)]

= exp
(−2S1 +O (�2)

)
.

This means:

∂ρ

∂t
≈ −2

∂S1

∂t
ρ ; ∇ρ ≈ −2∇S1ρ .

When we now multiply (7.142) by 2ρ, it follows with

∂ρ

∂t
= − 1

m
(∇S0 ·∇ρ)− 1

m
ρΔS0

just the continuity equation (7.137), if one inserts for S the first term (‘� → 0-
term’) of the expansion (7.140). The Schrödinger equation thus leads in zeroth
order to the same results as the classical Hamilton-Jacobi differential equation,
if we choose the wave function as in (7.138) and expand the phase S(r, t) as
done in (7.140). In this sense we can interpret

Classical Mechanics as ‘� → 0’-limiting case of Quantum Mechanics .

On the other hand, these considerations suggest an iterative quantum-
mechanical method of solving by taking into consideration successively more
and more higher terms in the expansion of S for the evaluation of the exact
differential equation (7.139).

7.4.2 WKB-Method

The connection between Classical Mechanics and Quantum Mechanics, as
described in the preceding subsection, does not only confirm the principle of
correspondence, but can also be expanded, as mentioned, to a practical, iterative
method for solving quantum-mechanical eigen-value problems. This method is
especially clearly presentable and applicable for (effectively) one-dimensional
problems, which satisfy a time-independent Schrödinger equation of the form:

u′′(ρ) + k2(ρ)u(ρ) = 0 ,

k2(ρ) =
2m

�2
(E − V (ρ)) . (7.143)

This concerns the really one-dimensional systems (Chap. 4, Vol. 6),

ρ = q ; V (ρ) = V (q) ; u(ρ) = ψ(q) ,
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but also, for instance, the three-dimensional systems in central fields ((6.18),
(6.19)), for which the actual problem lies in the determination of the radial part
R(r) of the wave function:

ρ = r ; V (ρ) = V (r) +
�
2l(l+ 1)

2mr2
; u(ρ) = r R(r) .

We begin with an ansatz, completely analogously to (7.138), where we already
split off, however, the trivial time-dependence (S(ρ, t) = W (ρ)− E t; see (2.3),
Vol. 6):

u(ρ) = c exp

(
i

�
W (ρ)

)
. (7.144)

In (7.143) we need the second derivative of u(ρ):

u′′(ρ) =
(
i

�
W ′(ρ)u(ρ)

)′
=

i

�
W ′′(ρ)u(ρ)− 1

�2
(W ′(ρ))2 u(ρ) .

The time-independent Schrödinger equation is therewith transferred into an
inhomogeneous non-linear differential equation of second order for W :

(W ′(ρ))2 − (i �)W ′′(ρ) = �
2k2(ρ) . (7.145)

Without the second summand on the left-hand side one would have the strict
analog to the eikonal equation of geometrical optics ((3.198), Vol. 2). Starting
from the idea, discussed in the last subsection, that Classical Mechanics should
correspond to the ‘� → 0’-limiting case of Quantum Mechanics, an expansion
of the phase W in powers of (i �) as in (7.140) appears to be reasonable:

W (ρ) =

∞∑

n=0

(i �)n Wn(ρ) (7.146)

This we insert into (7.145) and sort again by powers of �:

(W ′2
0 − �

2k2) + i � (2W ′
0W

′
1 −W ′′

0 )− �
2 (W ′2

1 + 2W ′
0W

′
2 −W ′′

1 ) +O(�3) = 0 .
(7.147)

(�2k2(ρ) = 2m (E − V (ρ)) is thereby of course not a �
2-term, but a �

0-term.)
In zeroth order (∼ �

0) one therefore gets

W ′
0(ρ) = ±� k(ρ) =⇒ W0 (ρ) = ±�

ρ∫
k(ρ′) dρ′ (7.148)

with an at first still undetermined lower bound of integration. W0(ρ), fixed in
such a way, corresponds to the action function (or the characteristic function)
of Classical Mechanics (see (3.73), Vol. 2) warranting therewith the expected
‘� → 0’-limiting case.
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The terms ∼ �
1 in (7.147) yield the following conditional equation:

W ′
1(ρ) =

1

2

W ′′
0 (ρ)

W ′
0(ρ)

=
1

2

k′(ρ)
k(ρ)

.

This determines W1(ρ), except for an integration constant:

W1(ρ) = ln
√
k(ρ) . (7.149)

For the next higher order (∼ �
2 in (7.147)) we evaluate

W ′2
1 (ρ) + 2W ′

0(ρ)W
′
2(ρ)−W ′′

1 (ρ) = 0

and obtain:

W ′
2(ρ) =

W ′′
1 (ρ)

2W ′
0(ρ)

− W ′2
1 (ρ)

2W ′
0(ρ)

= ± 1

4�

(
k′′(ρ)
k2(ρ)

− 3

2

k′2(ρ)
k3(ρ)

)
.

Here we have already exploited the preceding partial results:

W2(ρ) = ± 1

4�

ρ∫
dρ′

(
k′′(ρ′)
k2(ρ′)

− 3

2

k′2(ρ′)
k3(ρ′)

)
(7.150)

Again an integration constant, at first, remains free. The procedure can now
in principle be arbitrarily continued step by step according to this scheme,
where the higher terms of the expansion (7.146) can be found from the already
calculated ones, each by differentiations and elementary rearrangements.

When inserting (7.148)–(7.150) into the ansatz (7.144), the W1-contribution
(7.149) can be directly evaluated and becomes then the pre-factor:

u±(ρ) ≈ c±√
k(ρ)

exp

⎡

⎣± i

�

ρ∫
dρ′

(
� k(ρ′)− �

4

k′′(ρ′)
k2(ρ′)

+
3

8
�
k′2(ρ′)
k3(ρ′)

)⎤

⎦ .

(7.151)

In higher orders there arise, alternately, corrections of the pre-factor and the
exponent. The WKB-approximation now consists in cutting the expansion
after the term (W1) linear in �, where the complete solution must of course be
written as a linear combination of the two linearly independent partial solutions:

û(ρ) ≡ d+√
k(ρ)

exp

⎛

⎝i

ρ∫
dρ′ k(ρ′)

⎞

⎠+
d−√
k(ρ)

exp

⎛

⎝−i

ρ∫
dρ′ k(ρ′)

⎞

⎠ . (7.152)

The constants d± and the lower bounds of integration in the exponents are still
to be fixed by boundary conditions. Of course, only two of them can really be
independent of each other, since û(ρ) is the solution of a differential equation
of second order (7.143). (We will later identify, more or less arbitrarily, the still
open bound of integration with a classical turning point.)
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The approximate result (7.152) does indeed appear plausible. If, for instance,
the potential V (ρ) were constant everywhere, which transfers of course to k(ρ),
the WKB-solution would correspond to the plane wave e±ikρ and therewith to
the exact result. For a slowly changing potential, one might then expect in
first approximation instead of the phase kρ the term

∫ ρ
k(ρ′)dρ′, i.e., a plane

wave with weakly space-dependent phase. Also the appearance of the factor
(k(ρ))−1/2 can easily be explained. The position probability of the particle in
the interval (ρ, ρ + dρ) is proportional to |u(ρ)|2 and therewith, according to
the WKB-approximation (7.152), is essentially given by 1/k(ρ) ∼ 1/p(ρ). But
that is exactly what one would indeed expect from a (quasi-) classical particle.
Its average duration of stay in the interval is surely inversely proportional to its
velocity v(ρ) = 1/mp(ρ).

The essentially new feature of the WKB-solution compared to the solutions
of the classical Hamilton-Jacobi differential equation, though, consists in (7.152)
being not restricted to the classically allowed region (E > V (ρ)), but being
applicable also in the classically forbidden region

E < V (ρ) ; k(ρ) = i|k(ρ)| .

The exponential functions then get real arguments:

û(ρ) =
d+√|k(ρ)| exp

⎛

⎝+

ρ∫
|k(ρ′)|dρ′

⎞

⎠

+
d−√|k(ρ)| exp

⎛

⎝−
ρ∫
|k(ρ′)|dρ′

⎞

⎠ . (7.153)

The demand for correct asymptotic behavior (exponential decay of the wave
function, (Sect. 4.1.1, Vol. 6)) sometimes sees to it that the two coefficients d+
and d− can not be simultaneously equal to zero.

Before we further concretize and interpret these results in the next sub-
section, we want to give thought to the range of validity of the WKB-
approximation.

7.4.3 Classical Turning Points

The WKB-solution (7.152) is of course only an approximation. It is therefore
rather instructive to think about how the differential equation of second order
has to look like so that (7.152) represents a rigorous mathematical solution.
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For this purpose we differentiate (7.152) twice with respect to ρ:

⎡

⎣ d±√
k(ρ)

exp

⎛

⎝±i

ρ∫
dρ′ k(ρ′)

⎞

⎠

⎤

⎦
′′

=

⎡

⎣
(
−1

2

k′(ρ)
k(ρ)

± i k(ρ)

)
d±√
k(ρ)

exp

⎛

⎝±i

ρ∫
dρ′ k(ρ′)

⎞

⎠

⎤

⎦
′

=

[
3

4

k′2(ρ)
k2(ρ)

− k2(ρ)− 1

2

k′′(ρ)
k(ρ)

] ⎡

⎣ d±√
k(ρ)

exp

⎛

⎝±i

ρ∫
dρ′ k(ρ′)

⎞

⎠

⎤

⎦ .

(7.152) is therewith the solution of the following differential equation:

û′′(ρ) +
(
k2(ρ) +

1

2

k′′(ρ)
k(ρ)

− 3

4

k′2(ρ)
k2(ρ)

)
û(ρ) = 0 . (7.154)

The comparison with (7.143) traces out the range of validity of the WKB-
approximation. Obviously it must be required

∣∣∣∣∣∣

1
2

k′′(ρ)
k(ρ) − 3

4
k′2(ρ)
k2(ρ)

k2(ρ)

∣∣∣∣∣∣
� 1 , (7.155)

which applies especially to weakly changing k(ρ). With (7.148) and (7.150)
follows the equivalent formulation:

∣∣∣∣2�
2 W ′

2(ρ)

W ′
0(ρ)

∣∣∣∣ � 1 .

If one additionally requires that in (7.155) already each summand by itself is
small compared to 1, then it follows for instance from the second term with
(7.148):

∣∣∣∣∣3�
2

(
W ′

1(ρ)

W ′
0(ρ)

)2
∣∣∣∣∣ � 1 .

Both the two last inequalities include the plausible requirement that in the series
expansion (7.146) for W (ρ) the corrections of first and second order exhibit a
distinctly weaker ρ-dependence than W0(ρ). But if now really

∣∣∣∣
3

4

k′2(ρ)
k4(ρ)

∣∣∣∣ � 1 ,

then it holds of course also:
∣∣∣∣
k′(ρ)
k2(ρ)

∣∣∣∣ =
∣∣∣∣
d

dρ

1

k(ρ)

∣∣∣∣ � 1 .
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Figure 7.9: Demonstration of the failure of the WKB-solution at the classical
turning point

Over a distance of Δρ the de Broglie wave length λ(ρ) = 2π/k(ρ) should
therefore change only by an amount, which is small compared to Δρ:

∣∣∣∣
d

dρ
λ(ρ)

∣∣∣∣
!� 1 . (7.156)

The WKB-theory should thus represent a usable concept for the case that the
potential V (ρ) and therewith also the de Broglie wave length are only weakly
space-dependent. But that is now indeed analogous to the condition for the
classical transition between wave optics and geometrical (ray) optics, which
requires an only weak spatial change of the index of refraction (see the discussion
after (2.11), Vol. 6).

But the criterion of validity (7.155) also lays bare an obvious weak point of
the WKB-approximation. Near the classical turning point ρ∗ ((4.8), Vol. 6),

k2(ρ∗) = 0 ⇐⇒ E = V (ρ∗) ,

the inequality (7.155) is not satisfiable. There the solving function (7.152)
diverges in any case and is therefore unusable. The WKB-theory is acceptable
as physically reasonable approximation only far away from any turning point
(Fig. 7.9).

There is another disagreeable consequence of the singular behavior of û(ρ) at
the point ρ = ρ∗. In connection with the practical calculation of wave functions,
which as solutions of a differential equation of second order always contain free
parameters, we could fix these parameters by requirements on the continuity of
the wave function and its first derivative. This possibility can not be exploited
in the WKB-method. Because of the divergence, the coefficients d+, d− and
d+, d− can not be determined by continuous fitting of the partial solutions
(7.152) and (7.153) at ρ = ρ∗. In this sense, the quasi-classical WKB-method
actually appears only a little promising. However, we can help ourselves with
the following trick :
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Figure 7.10: Definition of left-hand and right-hand turning points

In the immediate neighborhood of a classical turning point ρ∗ k2(ρ) can be
linearized:

k2(ρ) =
2m

�2
(E − V (ρ∗))− 2m

�2
(ρ− ρ∗)V

′
(ρ∗) + . . .

= c (ρ− ρ∗) +O [(ρ− ρ∗)2] ,

c = −2m

�2
V

′
(ρ∗) . (7.157)

With this form of k2(ρ) the Schrödinger equation (7.143) can be exactly solved.
In the classically forbidden region (V (ρ) > E) the WKB-function (7.153) and in
the classically allowed region (V (ρ) < E) the function (7.152) are continuously
fitted to the solution which is exact in the ‘turning region’. The unknown param-
eters are therewith fixed. An algorithm of this kind, going back to R. E. Langer,
will be illustrated in the next subsection in detailed single steps. With this pro-
cedure one achieves that the function, which is correct in the ‘turning region’ and
agrees asymptotically with the WKB-approximations, so that the parameter-
fitting becomes unique.

7.4.4 Langer Procedure

It is advisable for the following considerations to distinguish ‘left-hand’ and
‘right-hand’ turning points. We speak of a ‘left-hand’ turning point, if, as at
ρ∗1 in Fig. 7.10, to the left of this point (ρ < ρ∗1) we find classically forbidden
region and to the right of this point (ρ > ρ∗1) classically allowed region. For a
‘right-hand’ turning point (ρ∗2 in Fig. 7.10) it is just the opposite.

Let ρ∗ now be any classical turning point, which separates classical allowed
region from classical forbidden region. According to a method of Langer (R. E.
Langer, Phys. Rev. 51, 669 (1937)) we aim to fit physically reasonably the
two WKB-partial solutions (7.152) and (7.153) with respect to ρ∗. The not yet
specified lower bound of integration in the exponents in (7.152) and (7.153) we
set arbitrarily equal to ρ∗, but without restricting the general validity of the
following considerations. The solutions (7.152) and (7.153) can therewith also
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be seen as functions of a new variable α:

α ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ∫
ρ∗

k(ρ′)dρ′ , if ρ∗ left-hand ,

ρ∗∫
ρ

k(ρ′) dρ′ , if ρ∗ right-hand ,

(7.158)

The bounds of integration were thereby chosen so that for both types of turning
points it equally holds:

E > V (ρ) =⇒ α > 0 (classically allowed) ,

E < V (ρ) =⇒ α = −i|α| (classically forbidden) . (7.159)

The WKB-partial solutions (7.152) and (7.153) read with the new variable α:

û(α) =
1√
k(α)

(γ+ eiα + γ− e−iα) for E > V ,

û(α) =
1√|k(α)| (δ+ e|α| + δ− e−|α|) for E < V . (7.160)

The turning point ρ = ρ∗ corresponds to α = 0!
The now following considerations require substantial calculational effort and

therefore, for a clearer picture, will be divided into several single steps. For this
purpose we agree upon:

a) ρ∗: left-hand turning point,

b) −∞ < ρ < ρ∗: classically forbidden region.

The considerations can be done completely analogously for a corresponding
right-hand turning point and lead then with the agreement (7.158) for α to
formally exactly the same results. (It is surely a helpful exercise to check this
step by step!). That, by the way, is the reason why α was defined in (7.158) for
right-hand and left-hand turning points somewhat differently.

Because of the presumption b) the wave function must exponentially
approach zero for ρ → −∞. But that is guaranteed only for

δ+ = 0 . (7.161)

This point still has to be commented on later.

1) Schrödinger equation:
The differentiation with respect to the new variable α,

dα = k dρ ⇐⇒ d

dρ
= k

d

dα
,

will be marked by a point in order to distinguish it from that with respect to ρ:

u′′ =
d2

dρ2
u = k

d

dα
(k u̇) = k k̇ u̇+ k2ü .
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The exact Schrödinger equation (7.143) for u = u(α) then reads:

ü+
k̇

k
u̇+ u = 0 . (7.162)

In the next step we rewrite the WKB-equation (7.154) also by using the new
variable α.

2) WKB-equation:
For this purpose we insert

k′ = k k̇ ; k′′ = k k̇2 + k2k̈

into (7.154):

k k̇ ˙̂u+ k2 ¨̂u+

(
k2 +

1

2
k̇2 +

1

2
k k̈ − 3

4
k̇2
)

û = 0 .

After division by k2 there results a differential equation,

¨̂u+
k̇

k
˙̂u+

(
1− 1

4

k̇2

k2
+

1

2

k̈

k

)
û = 0 , (7.163)

for which the WKB-function (7.160), which fulfills the Schrödinger equation
(7.162) only approximately, represents an exact solution.

3) Linearization in the region of the turning point:
In the immediate neighborhood of the turning point ρ∗ the linearization

(7.157),

k2(ρ) ∼ (ρ− ρ∗) , α ∼ (ρ− ρ∗)3/2 ,

takes care for the following relatively simple relations:

k(α) ∼ α1/3 ;
k̇

k
=

1

3α
;

k̈

k
= − 2

9α2
.

In the turning region the Schrödinger equation (7.162) then reads,

ü+
1

3α
u̇+ u = 0 , (7.164)

while the WKB-equation (7.163) there takes the form

¨̂u+
1

3α
˙̂u+

(
1− 5

36α2

)
û = 0 . (7.165)

The last summand is responsible for the disturbing singularity at the turning
point α = 0. On the other hand, the solution of the linearized Schrödinger
equation (7.164) is regular at α = 0. The trick now consists in not to solve
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(7.164) directly, which would be in principle quite possible, but to seek a version,
which makes the connection with the WKB-approximation become essentially
simple.

4) ‘Corrected’ WKB-equation:
We modify the WKB-equation (7.163) such that the (α → 0)-singularity

disappears. The comparison of (7.164) and (7.165) provides the hint as to what
must be done:

v̈ +
k̇

k
v̇ +

(
1− k̇2

4k2
+

k̈

2k
+

5

36α2

)
v = 0 . (7.166)

The solution v(α) of this equation has the following remarkable properties:

a) v(α) −→
α→ 0

u(α) .

In the turning region the differential equation (7.166) is identical to the lin-
earized Schrödinger equation (7.164), and thus delivers there the same solutions.
This means in particular that without any problem v(α) can be continued from
the classically allowed region into the classically forbidden region.

b) v(α) −→
|α |
 1

û(α) .

Asymptotically (7.166) agrees with (7.163), so that v(α) turns for |α| � 1 into
the WKB-solution û(α). One should bear in mind that the estimations for k(α),
which lead to (7.164), are in the limit |α| � 1 of course no longer valid.

5) Solution of the ‘corrected’ WKB-equation:
Because of a) and b) v(α) is obviously suitable to guarantee a physically

reasonable piecing together of the two WKB-partial solutions (7.160). We will
therefore try to solve the differential equation (7.166), in order to then fix the
constants of integration in (7.160) by fitting the WKB-functions for |α| � 1 to
v(α). It turns out to be successful to use the ansatz

v(α) =

√
α

k
x(α) , (7.167)

by which, after simple manipulations, a differential equation for x(α) results
from (7.166), which is extensively investigated in the textbooks on mathematical
physics:

ẍ(α) +
1

α
ẋ(α) +

(
1− 1

9α2

)
x(α) = 0 . (7.168)

It concerns the so-called general Bessel equation:

y′′(z) +
1

z
y′(z) +

(
1− ν2

z2

)
y(z) = 0 (7.169)
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for ν = ±1/3. Solutions are the Bessel functions of first kind J±ν(z), the
mathematical behavior of which is very precisely known. Some of the special
properties of the general Bessel equation and its solutions are listed in Sect. 7.4.6,
as for instance the relationship to the spherical Bessel equation used in
Sect. 6.3.2.

Since ν enters (7.168) quadratically, this equation is solved by both Jν and
J−ν . For non-integer ν, as in our case here, Jν and J−ν are linearly independent
so that the general solution of the corrected WKB-equation (7.166) takes the
following form:

v(α) =

√
α

k
(a J1/3(α) + b J−1/3(α)) . (7.170)

The solution is regular at the turning point α = 0 (see Exercise 7.4.2).

6) Fitting conditions for E < V (ρ):
According to our agreement on the turning point ρ∗, the solving function

must decay exponentially in the classically forbidden region (k2(ρ) < 0). There-
fore δ+ = 0. One of the two constants of integration is therewith already
determined. Here we thus exploit a precognition about the sought-after wave
function. It will turn out that without such a precognition one of the free
parameters in the WKB-solution would have to remain undetermined (see Exer-
cise 7.4.3). Hence we can write, according to (7.160), for the WKB-solution in
the classically forbidden region:

û(α) =
δ−√|k(α)| e

−|α| . (7.171)

For the Langer solution (7.170) it holds at first with (7.159):

v(α) =

√
−i|α|
i|k| [a J1/3 (−i|α| ) + b J−1/3 (−i|α|)] .

The Bessel functions with an imaginary argument lead to the so-calledmodified
Bessel functions I±ν (see (7.206) with (7.207)):

J±1/3 (−i|α|) = (−i)±1/3 I±1/3 (|α|) .
When we still use

i(−i)1/3 = −1 ; i(−i)−1/3 = +1 ,

it follows as intermediate result:

v(α) =

√∣∣∣
α

k

∣∣∣ (−a I1/3(|α|) + b I−1/3(|α|)) . (7.172)

For |α| � 1 v(α) should comply with the WKB-solution (7.171), i.e., in par-
ticular it should decay exponentially. The asymptotic behavior of the modified
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Bessel functions, however, fulfills this only by very special combinations ((7.208)
and (7.213)):

I1/3(|α|)− I−1/3(|α|) = −2 sin (1/3π)

π
K1/3(|α|)

−→
|α|
 1

−2 sin(1/3π)

π

√
π

2|α| e
−|α| .

We have therefore to choose in (7.172) a = b (sin π
3 = 1

2

√
3):

v(α) −→
|α|
 1

a

√
3

2π|k| e
−|α| . (7.173)

The requirement that v(α) approaches for large |α| the WKB-solution û(α), is
according to (7.171) equivalent with:

δ− = a

√
3

2π
. (7.174)

7) Fitting conditions for E > V (ρ):
In the classically allowed region (k2(ρ) > 0) we have α > 0. We conclude

from the asymptotic behavior of the Bessel functions (7.195),

Jν(α) −→
α
 1

√
2

πα
cos

(
α− π

4
− ν

π

2

)
,

with (7.170) and the result a = b derived in point 6):

v(α) −→
α
 1

a

√
2

π k

[
cos

(
α− π

4
− π

6

)
+ cos

(
α− π

4
+

π

6

)]

= 2a

√
2

π k
cos

(
α− π

4

)
cos

π

6
= a

√
6

π k
cos

(
α− π

4

)
. (7.175)

We have here applied the addition theorem

cos(x∓ y) = cosx cos y ± sinx sin y

and cos(π/6) = (1/2)
√
3. This result we have to now compare with the WKB-

solution for the classically allowed region in (7.160). Obviously one has to choose
for the coefficients in (7.160)

γ± =
1

2
γ e∓i(π4) (7.176)

in order to get for û(α) the same structure as that of the asymptotic v(α) in
(7.175):

û(α) =
γ√
k

cos
(
α− π

4

)
. (7.177)
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The equating of (7.175) and (7.177) then yields immediately:

γ = a

√
6

π
. (7.178)

When we now, in the last step, combine the expressions (7.174) and (7.178),

δ− =
1

2
γ , (7.179)

then all constants of integration in the WKB-solution (7.160), except one, are
fixed. The remaining unknown can serve as normalization constant. We write
down once more explicitly the complete result:
E < V (ρ) : (ρ < ρ∗)

û(ρ) =
γ

2
√|k(ρ)| exp

⎧
⎨

⎩−
ρ∗∫

ρ

|k(ρ′)|dρ′
⎫
⎬

⎭ , (7.180)

E > V (ρ) : (ρ∗ < ρ)

û(ρ) =
γ√
k(ρ)

cos

⎧
⎨

⎩

ρ∫

ρ∗

dρ′ k(ρ′)− π

4

⎫
⎬

⎭ . (7.181)

One should note with (7.180) that it holds for the here considered left-hand
turning point according to (7.158)

|α| =

∣∣∣∣∣∣

ρ∫

ρ∗

k(ρ′) dρ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
i

ρ∫

ρ∗

|k(ρ′)|dρ′
∣∣∣∣∣∣

=

∣∣∣∣∣∣

ρ∫

ρ∗

|k(ρ′)|dρ′
∣∣∣∣∣∣

→
ρ<ρ∗=

ρ∗∫

ρ

|k(ρ′)|dρ′ .

Let us finally add some remarks to the just performed Langer procedure:

1. The Langer procedure serves only to piece together the WKB-solutions
of the classically allowed region and the classically forbidden region in a
physically reasonable manner, in order to fix therewith the at first unde-
termined constants of integration. The singularities of the WKB-wave
functions at the classical turning points, however, of course do not disap-
pear therewith. The solution remains unusable there.

2. The concrete single steps of the above considerations refer to a left-hand
turning point ρ∗, for which the entire region −∞ < ρ < ρ∗ is classically
forbidden. The definition of the variable α in (7.158), though, was so
chosen that the results (7.171), (7.177) and (7.178) remain exactly the
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same for a right-hand turning point ρ̄∗, when in this case the entire
region ρ∗ < ρ < +∞ is classically forbidden. The explicit evaluation of
the mentioned equations then yields:

E > V (ρ) : (ρ < ρ∗)

û(ρ) =
γ√
k(ρ)

cos

⎧
⎨

⎩

ρ∗∫

ρ

dρ′ k(ρ′)− π

4

⎫
⎬

⎭ , (7.182)

E < V (ρ) : (ρ∗ < ρ)

û(ρ) =
γ

2
√|k(ρ)| exp

⎧
⎨

⎩−
ρ∫

ρ∗

dρ′|k(ρ′)|
⎫
⎬

⎭ . (7.183)

But here also, the condition is again important that the classically forbid-
den region, which is attached to the right to ρ∗, extends up to +∞. It
is therewith guaranteed as in (7.161) that in the non-oscillating WKB-
partial solution (7.160) one of the coefficients is zero.

3. For the general case, for which in the classically forbidden region, which is
attached to the turning point, in the WKB-solution besides the decreasing
also the increasing exponential function is to be taken into consideration,
the Langer method leads to the following result:

E > V (ρ)

û(α) =
γ̂√
k
cos

(
α− π

4
+ ϕ

)
, (7.184)

E < V (ρ)

û(α) =
γ̂√|k|

(
1

2
cosϕe−|α| + sinϕe|α|

)
. (7.185)

The variable α is defined as in (7.158). γ̂ and ϕ are complex constants. In
contrast to the solutions (7.180)–(7.183) ϕ represents an additional con-
stant of integration, which can be more precisely specified only if certain
advance information about the solution is available. In the cases of the
above examples that was just the exponential decrease of the wave func-
tion to be required in the classically forbidden region, which brought about
ϕ = 0, as the comparison of (7.171) and (7.177) with (7.184) and (7.185)
points out. We perform the proof to (7.184) and (7.185) as Exercise 7.4.3!

4. The WKB-procedure finds important applications as approximation
method in connection with all conceivable tunneling processes of
quantum-mechanical particles through classically impenetrable potential
barriers of complicated, realistic shape (Fig. 7.11). Although the situation
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Figure 7.11: Tunneling of quantum-mechanical particles through classically
impenetrable potential walls

described in part 3) is present, sometimes rather concrete statements
can be derived. So one finds for the transmission coefficient T (E)
(4.56) (Vol. 6) of a particle of mass m through a potential wall V (ρ) with
V (ρ → ±∞) < E and only two turning points ρ∗1 and ρ∗2 (Fig. 7.11):

T (E) ≈ exp

⎛

⎜⎝− 2

�

ρ∗
2∫

ρ∗
1

√
2m(V (ρ)− E) dρ

⎞

⎟⎠ . (7.186)

This useful formula, which we derive in Exercise 7.4.4, we have already
made plausible, under strongly simplifying assumptions, in Sect. 4.3.3
(Vol. 6), where such important phenomena as the α-radioactivity
(Sect. 4.3.4 (Vol. 6)) or the field emission (Exercise 4.3.4 (Vol. 6)) could
be explained.

7.4.5 Phase-Integral Quantization

We want to derive now by means of the WKB-method a formula for an important
special case which provides the way to calculate the discrete energy spectrum of
bound states. We consider a potential curve, for which a particle of mass m and
energy E can classically reach neither +∞ nor −∞. There exists a left-hand
and a right-hand turning point. The interval ρ∗1 < ρ < ρ∗2 represents a classically
allowed region, while the regions −∞ < ρ < ρ∗1 as well as ρ∗2 < ρ < +∞ are
classically forbidden (Fig. 7.12). For the left-hand turning point ρ∗1 the formulas
(7.180) and (7.181) are valid and for the right-hand turning point ρ∗2 (7.182) and
(7.183). Within the classically allowed interval ρ∗1 < ρ < ρ∗2 the two solutions
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Figure 7.12: Schematic representation of the exact solution (solid line) and
the WKB-approximation (broken line) for a particle motion with two classical
turning points

(7.181) and (7.182) must of course coincide. This obviously requires that the
two constants γ and γ differ at most by the sign, and furthermore

cos

⎧
⎪⎨

⎪⎩

ρ∫

ρ∗
1

dρ′ k(ρ′)− π

4

⎫
⎪⎬

⎪⎭
!
= ± cos

⎧
⎪⎨

⎪⎩

ρ∗
2∫

ρ

dρ′ k(ρ′)− π

4

⎫
⎪⎬

⎪⎭

= ± cos

⎧
⎪⎨

⎪⎩
−

ρ∗
2∫

ρ

dρ′ k(ρ′) +
π

4

⎫
⎪⎬

⎪⎭

= ± cos

⎧
⎪⎨

⎪⎩
−

ρ∗
2∫

ρ∗
1

dρ′ k(ρ′) +
π

4
+

ρ∫

ρ∗
1

dρ′ k(ρ′)

⎫
⎪⎬

⎪⎭

= ± cos

⎧
⎪⎨

⎪⎩

ρ∫

ρ∗
1

dρ′ k(ρ′)− π

4
−

⎛

⎜⎝

ρ∗
2∫

ρ∗
1

dρ′ k(ρ′)− π

2

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

This requirement is equivalent to:

γ
!
= (−1)n γ ,

ρ∗
2∫

ρ∗
1

dρ′ k(ρ′) !
=

(
n+

1

2

)
π ; n ∈ N . (7.187)

The left-hand side is positive definite, so that for n only non-negative integers
come into question. This relation turns out to be eminently useful because it
can help to calculate, for a known potential V (ρ), the energy-eigen values of
the bound states (see Exercise 7.4.1).
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For a full circulation (ρ∗1 ↔ ρ∗2) of a periodic motion (7.184) reads, if one
takes into consideration that the momentum p = �k reverses its sign on the way
back :

∮
p dρ = 2π �

(
n+

1

2

)
; n ∈ N . (7.188)

This corresponds to the semi-classical phase-integral quantization (1.131)
(Vol. 6). Here it is the result of an approximate quantum-mechanical consid-
eration and must therefore no longer be seen as a pure postulate. The only
difference to the famous Bohr-Sommerfeld quantization rule consists in
the additive constant 1/2!

Because of the failure of the WKB-method in the turning point regions the
results (7.187) and (7.188) are the more trustworthy the more oscillations the
wave function carries out in the classically allowed region. One reaches the
asymptotic region then ‘faster’, with respect to α from (7.158). According to
the law of nodes (Sect. 4.1.3 (Vol. 6)) large quantum numbers n are thus
convenient for this quasi-classical approximate procedure, which corresponds to
the principle of correspondence discussed in Sect. 1.5.3 (Vol. 6).

7.4.6 Mathematical Supplement: Bessel Differential
Equation

In this subsection we will collect some formulas and mathematical laws, which
played a role in the preceding subsections. The strict mathematical proofs,
though, can not all be performed in the framework of an ground course on
Theoretical Physics. In this connection, the reader must be referred to the
special textbooks.

In the general Bessel differential equation,

y′′(z) +
1

z
y′(z) +

(
1− ν2

z2

)
y(z) = 0 , (7.189)

let ν be an arbitrary real number and z an in general complex variable. One
speaks of the special Bessel differential equation when ν is an integer. The
solutions of (7.189) are generally called cylindrical functions. One distin-
guishes several types:

1) Bessel functions of the first kind

These are defined as follows:

Jν(z) =
(z
2

)ν ∞∑

k=0

(−1)k

k!Γ(k + ν + 1)

(z
2

)2k

. (7.190)

One immediately recognizes the symmetry relation:

Jν(−z) = (−1)ν Jν(z) . (7.191)



210 CHAPTER 7. APPROXIMATION METHODS

In (7.190) Γ is the gamma-function:

Γ(ν + 1) =

∞∫

0

dt e−t tν . (7.192)

As long as ν is not integral, Jν(z) and J−ν(z) are linearly independent. The
general solution of (7.189) then reads

Zν(z) = α Jν(z) + β J−ν(z) (7.193)

with any constants α and β.
The asymptotic behavior is important:

Jν(z) −→
z→ 0

1

Γ(ν + 1)

(z
2

)ν

. (7.194)

ν is here non-negative or, if it is negative, then not integral:

Jν(z) −→
|z|→∞

√
2

π z
cos

(
z − π

4
− νπ

2

)
. (7.195)

If ν = n is an integer, then Jν and J−ν are no longer linearly independent.
Instead one recognizes with (7.190) (Exercise 7.4.5):

J−n(z) = (−1)n Jn(z) . (7.196)

In such a case a second linearly independent solution must be found. These are
the

2) Bessel functions of the second kind,

which are also called Neumann functions :

Nν(z) =
1

sin ν π
(Jν(z) cos ν π − J−ν(z)) . (7.197)

This definition is, because of (7.196), to be read for integral ν as limiting value
(l’Hospital). The Nν(z) and Jν(z) are for each real ν linearly independent. The
general solution of (7.189) can therefore always be written as

Zν(z) = αJν(z) + β Nν(z) . (7.198)

In the case of non-integral ν both (7.193) as well as (7.198) are general solutions,
for integral ν only (7.198).

The Neumann functions are singular at the origin:

Nν(z) −→
z→ 0

{
2
π

[
ln
(
z
2

)
+ 0.5772 + . . .

]
; ν = 0 ,

− 1
πΓ(ν)

(
z
2

)−ν
; ν > 0 ,

(7.199)

Nν(z) −→
|z|→∞

√
2

πz
sin

(
z − π

4
− ν π

2

)
. (7.200)

There still exists a third fundamental system. These are the
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3) Bessel functions of the third kind,

which are also called Hankel functions :

H(1)
ν (z) = Jν(z) + i Nν(z) ; H(2)

ν (z) = Jν(z)− i Nν(z) . (7.201)

Their introduction is sometimes reasonable in order to achieve a suitable asymp-
totic behavior:

H(1,2)
ν (z) −→

|z|→∞

√
2

π z
exp

[
±i

(
z −

(
ν +

1

2

)
π

2

)]
. (7.202)

For z → 0 they are of course determined by the singular behavior of the Neu-
mann functions.

We present at the end still some useful recursion formulas, which are

fulfilled in the same manner by the functions Jν(z), Nν(z), H
(1,2)
ν (z) (Exer-

cise 7.4.7):

yν −1(z) + yν +1(z) =
2ν

z
yν(z) , (7.203)

yν −1(z)− yν +1(z) = 2
d

dz
yν(z) , (7.204)

y′ν(z) = yν −1(z)− ν

z
yν(z) = −yν +1(z) +

ν

z
yν(z) . (7.205)

Besides the general differential equation one still knows the modified Bessel
differential equation:

y′′(z) +
1

z
y′(z)−

(
1 +

ν2

z2

)
y(z) = 0 . (7.206)

The partial solutions Iν(z) and Kν(z), which are linearly independent for all
real ν, are related to the already introduced Bessel functions as follows:

Iν(z) = (−i)ν Jν(i z) , (7.207)

Kν(z) =
π

2
iν +1 H(1)

ν (i z) =
π

2

I−ν(z)− Iν(z)

sin(ν π)
= K−ν(z) . (7.208)

For non-integral ν also Iν(z) and I−ν(z) are linearly independent. In the case
of integral ν = n, however, it holds in agreement with (7.196):

I−n(z) = In(z) n ∈ N . (7.209)

For ν = n the second part in (7.208) has again to be read as a limiting process.
In the limit of small z, the modified Bessel functions behave as follows:

Iν(z) −→
z→ 0

1

Γ(ν + 1)

(z
2

)ν

; ν �= −n , n ∈ N (7.210)

Kν(z) −→
z→ 0

⎧
⎪⎨

⎪⎩

−
(
ln

z

2
+ 0.5772 + . . .

)
; ν = 0 ,

1
2 Γ(ν)

(
2

z

)ν

; ν �= 0 .
(7.211)
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These functions are asymptoticly (|z| → ∞) to first approximation even ν-
independent:

Iν(z) −→
|z|→∞

1√
2π z

ez , (7.212)

Kν(z) −→
|z|→∞

√
π

2z
e−z . (7.213)

Besides the general and the modified Bessel differential equation there exists
still a third variant, namely, the one, discussed extensively in Sect. 6.3.2, the

spherical Bessel differential equation

R′′(z) +
2

z
R′(z) +

(
1− n(n+ 1)

z2

)
R(z) = 0 , n ∈ Z , (7.214)

which by the substitution y(z) =
√
z R(z) turns into the general equation (7.189)

for ν = n + 1/2. Solutions of (7.214) are the spherical Bessel, Neumann,
Hankel functions, for which we therefore have:

jn(z) =

√
π

2z
Jn+1/2(z) , (7.215)

nn(z) =

√
π

2z
Nn+1/2(z) , (7.216)

h(1, 2)
n (z) =

√
π

2z
Hn+1/2(z) . (7.217)

The properties of these functions, in particular their asymptotic behavior (see
(6.120)–(6.126)), we got to know already in Sect. 6.3.2.

7.4.7 Exercises

Exercise 7.4.1
By means of the WKB-procedure calculate the energy-eigen values of the har-
monic oscillator.

Exercise 7.4.2
Show that the Langer-solution (7.170),

v(α) =

√
α

k

(
a J1/3(α) + b J−1/3(α)

)
,

remains finite at the turning point α = 0.

Exercise 7.4.3
Let ρ∗ be a classical turning point, which separates the classically forbidden
region (E < V (ρ)) and the classically allowed region (E > V (ρ)). Consider,
in extension of the theory in Sect. 7.4.4, the general case, for which there does
not exist a precognition of any sort about the wave function, neither in the
classically allowed region nor in the classically forbidden region.
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1. Show that in the classically forbidden region the WKB-solution (7.160)
has the structure (7.184):

û(α) =
γ̂√
k
cos

(
α− π

4
+ ϕ

)
.

α is here defined as in (7.158), while γ̂ and ϕ are complex constants. What
is the relation between ϕ, γ̂ and the constants γ± in (7.160)?

2. Express the coefficients a and b in (7.170) by γ̂ and ϕ by an asymptotic
piecing together of the WKB-solution from part 1. and the Langer-solution
v(α).

3. Show that the Langer-solution (7.170) behaves in the classically forbidden
region asymptoticly like

v(α) −→
|α|→∞

1

2
√
2π|k|

[√
3(a+ b) e−|α| − 2(a− b) e|α|

]
.

4. Finally confirm the WKB-solution (7.185), again by an asymptotic piecing
together, in the classically forbidden region:

û(α) =
γ̂√|k|

(
1

2
cosϕe−|α| + sinϕe|α|

)
.

Exercise 7.4.4
A particle of mass m and energy E moves towards a broad potential wall V (ρ),
for which V (ρ → ±∞) < E, where, as in Fig. 7.11, two turning points (ρ∗1 < ρ∗2)
exist.

1. How do the WKB-solutions with respect to ρ∗1 read, if one can approx-
imately assume that, because of the width of the wall, only a negligible
fraction of the particle wave can permeate the wall?

2. Calculate with part 1. the incident current density jin in direction towards
the potential wall.

3. How does the WKB-solution with respect to ρ∗2 read? Exploit the fact
that from infinity (ρ → +∞) no part of the wave will be reflected.

4. Calculate the outgoing current density jout, which permeates the wall.

5. Calculate the transmission coefficient

T (E) =

∣∣∣∣
jout
jin

∣∣∣∣ .

Confirm the result (7.186).



214 CHAPTER 7. APPROXIMATION METHODS

Exercise 7.4.5
Use the properties of the gamma-function,

1.
Γ(n+ 1) = n! for n = 0, 1, 2, . . .

2.

Γ(z) singular at z = −n (n = 0, 1, 2, . . .) with the residues
(−1)n

n!
,

in order to derive from (7.190) the property (7.196),

J−n(z) = (−1)n Jn(z) n = 0, 1, 2, . . . ,

of Bessel functions of the first kind with integral indexes!

Exercise 7.4.6
Derive directly from the definition (7.190) the two Bessel functions of the first
kind with the indexes ν = +1/2 and ν = −1/2!

Exercise 7.4.7
Consider in the following exclusively the Bessel functions of the first kind with
integral indexes ν = n ∈ Z.

1. Prove the relationship:

exp

(
z

2

(
t− 1

t

))
=

+∞∑

n=−∞
Jn(z) t

n .

One calls the function on the left-hand side the generating function of the
Bessel functions of the first kind.

2. Utilize the result from 1., in order to derive the recursion formula (7.203):

Jn−1(z) + Jn+1(z) =
2n

z
Jn(z) .

3. Verify the recursion formula (7.204):

Jn−1(z)− Jn+1(z) = 2
d

dz
Jn(z) .

4. Prove the recursion formula (7.205):

d

dz
Jn(z) = Jn−1(z)− n

z
Jn(z) = −Jn+1(z) +

n

z
Jn(z) .

5. Derive the following relations:

d

dz

(
znJn(z)

)
= znJn−1(z) ;

d

dz

(
z−n Jn(z)

)
= −z−n Jn+1(z) .
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7.5 Self-Examination Questions

To Section 7.1

1. What is the statement of the extremal principle?

2. In which way can approximation methods be developed with the extremal
principle?

3. On the basis of which generally valid statement does the Ritz’s variational
method work?

4. How does the Ritz’s method operate for the calculation of the ground state
energy?

5. What is normally better determined by the Ritz’s method, the ground
state or the ground-state energy?

6. How can, at least in principle, even excited states and their energies be
determined by the Ritz’s method?

7. Which variational ansatz underlies the Hartree-procedure?

To Section 7.2

1. To which physical problems is the Schrödinger perturbation theory tai-
lored?

2. In the Schrödinger perturbation theory a parameter λ is artificially
extracted from the interaction H1. Which purpose does it serve?

3. How does one calculate the energy correction of first order for a non-
degenerate level?

4. Which rough criterion should be fulfilled in order to make it reasonable to
terminate the expansions for the eigen-energies and the eigen-states after
a few terms in the non-degenerate perturbation theory?

5. What is to be taken into consideration when treating the perturbation
correction of a degenerate energy level?

6. How are the energy corrections of first order to be determined for an
degenerate energy level?

7. Which problems with respect to Schrödinger’s perturbation expansion
arise for the case of very closely adjacent (quasi-degenerate) energy levels?

8. Does the quasi-degeneracy represents a problem for the energy correction
of first order also?

9. How can the perturbation of a twofold quasi-degenerate system be approx-
imately treated?
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10. Which idea leads to the perturbation-theoretical basic formula?

11. How does one get from this basic formula the perturbation series of
Schrödinger and Brillouin-Wigner, respectively?

12. What could be an advantage, what could be a disadvantage of the
Brillouin-Wigner perturbation theory compared to that of Schrödinger?

To Section 7.3

1. To which type of physical problem is the time-dependent perturbation
theory tailored?

2. Which are the essential differences in the objectives of time-independent
and time-dependent perturbation theory?

3. Which advantages do the Dirac representation offer for the development
of the time-dependent perturbation theory?

4. What does one understand by the Dyson series?

5. Formulate a rough criterion for the applicability of time-dependent per-
turbation theory!

6. How is the transition probability defined?

7. What does one understand by virtual intermediate states?

8. What is to be calculated in first order for the transition probability?

9. To which range of values is the transition probability w
(1)
if restricted in

first order perturbation theory?

10. Which terms dominate the transition probability w
(1)
if , when a constant

perturbation is switched on in the time interval 0 ≤ t ≤ tp?

11. Which statement is made by the Fermi’s golden rule?

12. What can be said about the range of validity of the golden rule?

13. What is a density of states?

14. What is meant when one says that the transition probability has a reso-
nance character?

To Section 7.4

1. In which sense can Classical Mechanics be regarded as the ‘� → 0’-limiting
case of Quantum Mechanics?

2. With which ansatz for the wave function does the WKB-method start?
On which problems the method is focused in particular?
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3. Which structure does the wave function in WKB-approximation have?
How does it look like for the special case of a constant potential every-
where?

4. What do you know about the range of validity of the WKB-approximation?

5. In which regions is the WKB-solution definitely unusable?

6. Why can the WKB-solutions and their derivatives from the classically
forbidden and from the classically allowed region not, as otherwise usual,
continuously be fitted at the classical turning point?

7. How does one nevertheless reach a physically convincing piecing together
by the WKB-procedure?

8. What is the objective of the Langer procedure?

9. Let a one-dimensional potential problem have a lower and an upper classi-
cal turning point. By the use of which relation can the energy-eigen values
of the bound states be calculated in the WKB-approximation?

10. Which relationship exists between the semi-classical Bohr-Sommerfeld
quantization rule and the WKB-approximation?

11. Which form does the general Bessel differential equation have?

12. What is the connection between the general and the spherical Bessel dif-
ferential equation?



Chapter 8

Many-Particle Systems

Our considerations in the preceding chapters were valid for systems which con-
sist of just one particle. We learned how such one-particle systems are to be
described quantum-mechanically. Now we have to give thought to the question
what is to take into consideration additionally when treating many-particle
systems. It will turn out as necessary to strictly separate the so-called distin-
guishable particles from the indistinguishable ones, i.e., from the so-called
identical particles. Distinguishable means that there exists some physical
property (mass, charge, spin, . . .), by which the single particles set themselves
apart from the other ones, so that it is in principle possible, to identify the
particles by an appropriate measurement. On the other hand, identical parti-
cles have all their properties same, and can thus be distinguished from each
other by no measurement. In this sense, electrons and protons are distinguish-
able because of their different masses and different charges, while the electrons
among themselves as well as the protons among themselves are identical.

At first, we want to begin in Sect. 8.1 with the discussion of systems of N
distinguishable particles. Their description orients itself, in principle, directly
along the line of the general postulates of Quantum Mechanics which are already
known to us. However, that does not reduntantize that we have to very carefully
think about which Hilbert space and which observables are to be ascribed to
these systems. It will turn out that operators, which act on different particles,
are in any case commutable. It is therefore, for instance, possible to measure
simultaneously and precisely the position of particle i and the momentum of
particle j ( �= i).

When describing identical particles we will meet a completely new princi-
ple (Sect. 8.2), to which there does not exist any classical analog, and by which
symmetry-requirements are to be placed on the Hilbert-space vectors. This
principle of indistinguishability of identical particles has very far-reaching
consequences. An immediate result is the Pauli principle, by which, in the
last analysis, the entire buildup of the matter is regulated.
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The ordinary description of many-particle systems proves to be extremely
troublesome, but gets a strong and elegant simplification by the formalism of
second quantization (Sect. 8.3). A typical feature of this formalism is the
introduction of creation and annihilation operators.

We will close this chapter with a few concrete examples of application, which
clearly demonstrate the impact of the principle of indistinguishability. The
Hartree-Fock equations (Sect. 8.4.1) are important basic equations for the deter-
mination of the electron-density distribution in atoms, molecules and solids. In
connection with two-electron systems, hydrogen molecule (Sect. 8.4.2) and
helium atom (Sect. 8.4.3), we will get to know the classically incomprehensible
exchange interaction, on which such important phenomena as, e.g.,the chem-
ical bond or the wide region of collective magnetism are based.

8.1 Distinguishable Particles

In this first section, at first we want to look for a representation of such sys-
tems, which consist of N particles, which do not agree in all their properties,
and are therefore pairwise distinguishable. Distinguishable particle can in
particular be numbered consecutively (i = 1, 2, . . . , N). All the essentials can be
demonstrated already by the relatively easily manageable case of N = 2, with
which we therefore want to start our considerations.

8.1.1 Hilbert Space of Two Distinguishable Particles

How does one describe a system of two distinguishable particles? For simplicity
we want at first to presume that the two particles do not interact with each
other. We will of course soon be able to remove this restriction. To such a
system there is classically ascribed a Hamilton function of the form

H =

2∑

i=1

H(i) , (8.1)

H(i) =
p2
i

2mi
+ Vi(qi) , (8.2)

where Vi represents the interaction of the ith particle with a possibly present
external field. According to the principle of correspondence, therefrom we get
the Hamilton operator, when we change the particle variables in the well-known
manner to operators. With H(1) and H(2) there are then the time-independent
Schrödinger equations to be fulfilled:

H(1)|ε(1)〉 = ε(1)|ε(1)〉 ; H(2)|η(2)〉 = η(2)|η(2)〉 . (8.3)

The eigen-states thereby belong to the respective one-particle Hilbert spaces:

|ε(1)〉 ∈ H(1)
1 ; |η(2)〉 ∈ H(2)

1 . (8.4)
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The lower index of the Hilbert-space symbols H refer to the number of parti-
cles in the system (HN ⇐⇒ N -particle system); the upper index marks the
distinguishable and therefore denumerable particles. Because of the missing
interaction the eigen-energies of the total Hamilton operator H of course are
just the sum of the two partial energies in (8.3):

E = ε(1) + η(2) . (8.5)

But now, how do the eigen-states of the total Hamilton operator look like? We
remember that we have solved a similar problem already once in Sect. 5.2.3 when
we had to incorporate the particle spin in addition to the orbital motion into
our theoretical framework. This succeeded by means of the direct product
states (5.138). It therefore suggests itself to try the same here, i.e., to write
the two-particle state, we are looking for,

|ε η〉 ≡ |ε(1)〉|η(2)〉 = |η(2)〉|ε(1)〉 , (8.6)

formally as (commutative) product of the two one-particle states. Because of

H |ε η〉 =
(
H(1) +H(2)

) ∣∣∣ε(1)
〉 ∣∣∣η(2)

〉

=
(
H(1)

∣∣∣ε(1)
〉) ∣∣∣η(2)

〉
+
(
H(2)

∣∣∣η(2)
〉) ∣∣∣ε(1)

〉

=
(
ε(1) + η(2)

) ∣∣∣ε(1)
〉 ∣∣∣η(2)

〉
= E|ε η〉 (8.7)

they are indeed the required eigen-states, if we reasonably presume that the

operator H(i) (i = 1, 2), defined only in H(i)
1 , consequently acts only on the ele-

ments of this subspace and leaves the states of the other subspace uninfluenced.
We will come back to this point once more in the next subsection.

The states (8.6) are of course neither elements ofH(1)
1 nor of H(2)

1 , but rather
of the so-called product space

H2 = H(1)
1 ⊗H(2)

1 . (8.8)

This space consists of all the product states, which can be built up, as in (8.6),

by the elements of the two one-particle Hilbert spaces H(i)
1 , as well as of all con-

ceivable linear combinations of these product states with complex coefficients.
For an arbitrary element |ϕ2〉 of the H2 it can thus always be written:

|ϕ2〉 =
∑∫

i

∑∫

j

αij(ϕ)|ϕi ϕ̂j〉 =
∑∫

i

∑∫

j

αij(ϕ)|ϕ(1)
i 〉|ϕ̂(2)

j 〉 , (8.9)

|ϕ(1)
i 〉 ∈ H(1)

1 ; |ϕ̂(2)
j 〉 ∈ H(2)

1 ; αij(ϕ) ∈ C .

The summation symbol
∑∫

indicates that we allow proper as well as improper
states (elements). Each product state of the type (8.6) is an element of H2. The
reverse, however, does not hold. The relation (8.9) makes clear that not every
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state of H2 can be written as a simple product state. It is just this fact, which
allows for the inclusion of interactions into the formalism. It makes immediate
sense that in the presence of interactions (8.6) can no longer be an eigen-state
of H . But it is self-evident to assume that the mentioned state can be expanded
in the eigen-states of the free system, in order to be therewith an element of the
H2.

For H2 to be a unitary vector space we still have to explain the scalar
product. As in (5.140) we trace this back to the corresponding scalar products

in the partial spaces H(i)
1 . It surely makes sense to combine states only out of

the same partial space. For the pure product states,

|χρ〉 = |χ(1)〉|ρ(2)〉 ; |χρ〉 = |χ(1)〉|ρ(2)〉 ,

which build a proper subset of the H2, it should be valid:

〈χρ|χρ〉 = 〈χ(1)|χ(1)〉〈ρ(2)|ρ(2)〉 . (8.10)

Consistently therewith, general states |ϕ2〉, |ψ2〉 ∈ H2, which are built as in
(8.9), are scalarly multiplied as follows:

〈ψ2|ϕ2〉 =
∑∫

k,l

∑∫

i, j

α∗
kl(ψ)αij(ϕ) 〈ψ(1)

k |ϕ(1)
i 〉〈ψ̂(2)

l |ϕ̂(2)
j 〉 . (8.11)

We prove as Exercise 8.1.1 that this definition indeed fulfills all the axioms of a
scalar product.

Now let

{|a(1)n 〉} ;
{|b(2)m 〉}

be eigen-states of complete sets of commuting observables in H(1)
1 and H(2)

1 ,
respectively, building the orthonormalized bases of these spaces. Then the prod-
uct states

{|an bm〉 = |a(1)n 〉|b(2)m 〉} (8.12)

represent a continuous or discrete orthonormalized basis of the H2. Let us
control this:

1. Orthonormality

〈an′ bm′ |an bm〉 = 〈a(1)n′ |a(1)n 〉〈b(2)m′ |b(2)m 〉 = δ(n′, n)δ(m′,m) . (8.13)

We had introduced the δ-symbol in (3.49) (Vol. 6). It means the Kronecker-
delta in the case of discrete states and the δ-function for improper (Dirac)
states.
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2. Completeness
Let |ϕ2〉 be an arbitrary state of H2, for which the representation (8.9) holds.

Then we can at first expand the one-particle states |ϕ(1)
i 〉, |ϕ̂(2)

j 〉 respectively
in complete bases

{|a(1)n 〉} and
{|b(2)m 〉} in their one-particle spaces H(1,2)

1 :

|ϕ(1)
i 〉 =

∑∫

n

c(i)n |a(1)n 〉 ,

|ϕ̂(2)
j 〉 =

∑∫

m

d(j)m |b(2)m 〉 .

This we insert into (8.9):

|ϕ2〉 =
∑∫

i, j

∑∫

n,m

αij(ϕ) c
(i)
n d(j)m |a(1)n 〉|b(2)m 〉 =

∑∫

m,n

γnm(ϕ)|an bm〉 ,

γnm(ϕ) =
∑∫

i, j

αij(ϕ) c
(i)
n d(j)m ∈ C . (8.14)

Each arbitrary state of the H2 can therefore be written as a linear combi-
nation of the product states (8.12). That demonstrates the completeness,
which can also be expressed by

∑∫

n,m

|an bm〉〈an bm| = 1l2 . (8.15)

1l2 is the identity in the two-particle Hilbert space H2. If H(1,2)
1 are finite-

dimensional spaces, then the dimension of H2 is obviously equal to the prod-

uct of the dimensions of the one-particle spaces H(1)
1 and H(2)

1 . One can of
course also find other basis systems for the product space, whose elements are

then not necessarily the direct products of one state from H(1)
1 and one from

H(2)
1 . So we have recognized in Sect. 6.2.5 that in the case of two-particle

systems with a distance-dependent interaction V = V (|r1 − r2|), it can be
convenient to choose center-of-mass and relative coordinates, R and r (6.98).
It is evident that the two-particle states |Rr〉 can not be written as direct

products of states from H(1)
1 and H(2)

1 . We met another example when we
discussed in Sect. 5.4 the addition of angular momenta. In the product space
of two single angular momenta j1 and j2, it can turn out to be reasonable to
choose as basis the eigen-states |j1j2; j mj〉 of the total angular momentum.

The components γnm(ϕ) of the general state |ϕ2〉 in (8.14) must be understood
as projections of |ϕ2〉 onto the corresponding basis states |an bm〉:

γnm(ϕ) = 〈an bm|ϕ2〉 . (8.16)
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If we presume that |ϕ2〉 is normalized, then we can apply exactly the same
probability interpretations to the two-particle states as to the one-particle states.
The respective statements in Chap. 2 (Vol. 6) can be adopted almost word-for-
word. In this sense,

|γnm(ϕ)|2 ≡ |〈an bm|ϕ2〉|2 (8.17)

represents the probability that in a measurement on the two-particle system

|ϕ2〉 particle 1 is found in the state |a(1)n 〉 and particle 2 in the state |b(2)m 〉. In
particular it holds with (8.15):

∑∫

n,m

|γnm(ϕ)|2 = 〈ϕ2|ϕ2〉 = 1 . (8.18)

8.1.2 Observables in the Product Space

We still have to give thought to the mode of action of the operators in the
product space, where, however, fortunately, we can adopt almost all what we
have worked out in Sect. 3.2 (Vol. 6) for the operators in H1. As a first point,
also for many-particle systems only the linear operators (Sect. 3.25, Vol. 6)
are interesting. Let

{
A

(1)
1

}
be the observables of the H(1)

1 ,
{
B

(2)
1

}
be the observables of the H(2)

1 ,

then the observables of H2 will be some operator functions of the A
(1)
1 and

B
(2)
1 , just in the same sense with which we have introduced operator functions

in Sect. 3.2.7 (Vol. 6) (sums, products, powers, power series, . . .):

D2 = F (
A

(1)
1 , B

(2)
1

)
. (8.19)

When we take as basis of the H2 the product states (8.12), then we find by
means of (8.15) the following decomposition of the operator D2:

D2 = 1l2 D2 1l2 =
∑∫

n,m

∑∫

p, q

|an bm〉〈an bm|D2|ap bq〉〈ap bq| . (8.20)

In the integrand there appears the matrix element of the operator D2 with
respect to the basis {|an bm〉}:

(D2)nm,pq ≡ 〈an bm|D2|ap bq〉 . (8.21)

The index pair n,m numbers the rows, and the index pair p, q the columns of the
D2-matrix. The representation becomes therewith, compared to that in H1, a
bit more complicated, but does not really offer any novel facts. The application
of the operator D2 on the state |ϕ2〉 ∈ H2,

D2|ϕ2〉 = |ψ2〉 ∈ H2 ,
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leads with (8.16), (8.20) and (8.21) to the following system of equations for the
expansion coefficients γnm(ψ) of the state |ψ2〉:

γnm(ψ) =
∑∫

p, q

(D2)nm,pq γpq(ϕ) . (8.22)

The operators A
(1)
1 , B

(2)
1 , which act exclusively in one of the two subspacesH(i)

1 ,
assume a certain exceptional position. For these we write in H2 according to
(8.20):

A
(1)
1 =

∑∫

n, p

|a(1)n 〉〈a(1)n |A(1)
1 |a(1)p 〉〈a(1)p |

⎛

⎝
∑∫

m, q

|b(2)m 〉〈b(2)m |b(2)q 〉〈b(2)q |
⎞

⎠ .

The term in the bracket represents, because of the orthonormality of the one-

particle states
(〈b(2)m |b(2)q 〉 = δ(m, q)

)
, just the identity in H(2)

1 :

1l
(2)
1 =

∑∫

m

|b(2)m 〉〈b(2)m | . (8.23)

It thus remains for A
(1)
1 :

A
(1)
1 =

⎡

⎣
∑∫

n, p

|a(1)n 〉〈a(1)n |A(1)
1 |a(1)p 〉〈a(1)p |

⎤

⎦ · 1l(2)1 . (8.24)

The dot on the right-hand side does not at all indicate a scalar product, but

simply expresses that A
(1)
1 does not act in H(1)

1 , but in H2 = H(1)
1 ⊗ H(2)

1 .

(Sometimes one uses also the sign ×). An analogous relation is found for B
(2)
1 :

B
(2)
1 = 1l

(1)
1 ·

⎡

⎣
∑∫

m, q

|b(2)m 〉〈b(2)m |B(2)
1 |b(2)q 〉〈b(2)q |

⎤

⎦ . (8.25)

As a rule, though, one refrains from explicitly writing down the identities 1l
(1)
1

and 1l
(2)
1 , respectively.

If we now let the one-particle operator A
(1)
1 act on a basis product state,

A
(1)
1 |an bm〉 = |ãn bm〉 = |ã(1)n 〉|b(2)m 〉 ,

|ã(1)n 〉 =
∑∫

p

|a(1)p 〉〈a(1)p |A(1)
1 |a(1)n 〉 , (8.26)

then, according to (8.24), the state |b(2)m 〉 obviously remains unaffected. Analo-

gously, B
(2)
1 does not change the state |a(1)n 〉:

B
(2)
1 |an bm〉 = |an b̃m〉 = |a(1)n 〉|b̃(2)m 〉 ,

|b̃(2)m 〉 =
∑∫

q

|b(2)q 〉〈b(2)q |B(2)
1 |b(2)m 〉 . (8.27)
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This has an important consequence:

B
(2)
1 A

(1)
1 |an bm〉 = B(2)|ãn bm〉 = |ãn b̃m〉 = A

(1)
1 |an b̃m〉 = A

(1)
1 B

(2)
1 |an bm〉 .

Since |an bm〉 is an arbitrary basis state, this relation leads to the operator
identity:

[
A

(1)
1 , B

(2)
1

]

−
= 0 . (8.28)

One-particle operators, which refer to different particles, commute in any case!
At the beginning of this section, we presumed that the two considered par-

ticles do not interact with each other. Therewith it was easier to justify our
first steps into the field of many-particle systems. However, the effort would not
have been necessary, if we had to restrict ourselves just to this special case. One
can indeed realize that the considerations performed so far retain their validity
even for interacting particles. At first we have to extend the Hamilton operator
(8.1) by an interaction term:

H = H(1) +H(2) +H(1,2) . (8.29)

(In principle we should of course have written here H2 = H
(1)
1 · 1l(2)1 + 1l

(1)
1 ·

H
(2)
1 + H

(1,2)
2 !) The energy-eigen value is therewith no longer so simple as in

(8.5), namely, surely not simply the sum of the two free one-particle energies.
It is actually important, however, that the interaction, too, as an operator
function, will depend only on the dynamical variables of the two particles, for
instance

H
(1,2)
2 = H

(1,2)
2 (r1, r2) .

This is valid also for all the other observables of the two-particle system, which
all have the structure of D2 in (8.19). In this sense, all that has been stated
up to now remains valid. The H2 is, even in the presence of interactions, the
suitable Hilbert space. The time-independent Schrödinger equation,

H |ϕ2(E)〉 = E|ϕ2(E)〉 , (8.30)

will in general, however, no longer be solved by pure product states as in (8.6).
The eigen-states |ϕ2(E)〉 will be expandable, though, according to (8.14) always
in such product states, and are therefore elements of the H2. We had already
mentioned that the interaction operators are responsible for the fact that the
set of direct product states of the type (8.6), which represent a real subset of
H2, is not sufficient for the description of general two-particle systems.

The dynamics of the composed system follows a formally unchanged, time-
dependent Schrödinger equation:

i �|ϕ̇2(E)〉 = H |ϕ2(E)〉 . (8.31)

The explicit calculation of the energy-eigen values and eigen-states as well as
their time-dependences will, however, in almost all interesting and realistic cases,
make it necessary to apply approximation methods (Chap. 7).
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8.1.3 Systems of N Distinguishable Particles

There is a further step still to be done, namely, the generalization from the so far
discussed two-particle system to such systems which consist of arbitrarily many
((N > 2)) particles. The necessary extension of our hitherto theory, though,
does not represent any real problem. The frame is built in line with (8.8) by
the following product space:

HN = H(1)
1 ⊗H(2)

1 ⊗ . . .⊗H(N)
1 . (8.32)

It contains all direct

N-particle product states

|ϕα1 ϕα2 . . . ϕαN 〉 ≡ |ϕ(1)
α1

〉|ϕ(2)
α2

〉 . . . |ϕ(N)
αN

〉 , (8.33)

and all linear combinations of these states, where the product states are built

up by the one-particle states of the spaces H(i)
1 (i = 1, 2, . . . , N). Their sequence

in (8.33) is of course arbitrary. The usage of the same letter ϕ shall not at all
imply that the one-particle bases are all the same. But just as before, we are
considering distinguishable particles.

If the
{|ϕ(i)

αi 〉
}
are the common eigen-states of a complete set of commuting

observables of the ith particle, they build an orthonormal basis of the H(i)
1 . If

this is true for all i, then the product states (8.33) can be taken as an orthonor-
mal basis of the HN , in which any arbitrary N -particle state can be expanded:

|ψN 〉 =
∑∫

α1...αN

γα1...αN (ψ)|ϕα1 . . . ϕαN 〉 . (8.34)

The course of proof for orthonormality and completeness of the |ϕα1 . . . ϕαN 〉
is carried out completely analogously to that in Sect. 8.1.1 for the two-particle
system. So it follows, e.g., from the orthonormality, for the expansion coefficients
in (8.34):

γα1... αN (ψ) = 〈ϕα1 ϕα2 . . . ϕαN |ψN 〉 . (8.35)

The scalar product is also a direct generalization of that in (8.11):

〈χN |ψN 〉 =
∑∫

β1... βN

∑∫

α1... αN

γ∗
β1... βN

(χ) γα1... αN (ψ)

·〈ϕ(1)
β1

|ϕ(1)
α1

〉〈ϕ(2)
β2

|ϕ(2)
α2

〉 . . . 〈ϕ(N)
βN

|ϕ(N)
αN

〉
=

∑∫

α1... αN

γ∗
α1... αN

(χ) γα1... αN (ψ) . (8.36)

Especially the norm of a general N -particle state is given by

‖ ψN ‖2= 〈ψN |ψN 〉 =
∑∫

α1...αN

|γα1...αN (ψ) .|2 (8.37)
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In normal cases we normalize the states of the HN to 1, so that their statisti-
cal interpretation can consistently be generalized from that of the one-particle
states. As an example:

|γα1...αN (ψ)|2 =

probability(density) to find by a measurement on the N -particle system in the
state |ψN 〉 the eigen-value belonging to |ϕα1 . . . ϕαN 〉, i.e., to find particle 1 in
the state |ϕα1〉, particle 2 in the state |ϕα2〉, . . ..
From that we get for instance the special case:

∑∫
α2...αN

|γα1...αN (ψ)|2 =

probability(density) to find particle 1 in the state |ϕα1〉, when the N -particle
system is in the state |ψN 〉.

Let us remark right at this stage that any question which singles out a
particular particle, as for instance the above case where the probability for
particle 1 is asked, of course makes sense only for distinguishable particles. For
identical particles, which we will discuss in the next section, such a question is
basically not answerable.

The observables of the HN are operator functions of the observables A
(i)
1 of

the one-particle spaces H(i)
1 :

XN = F(
A

(1)
1 , B

(2)
1 , . . . ,K

(N)
1

)
(8.38)

By the use of the basis (8.33) they possess the representation:

XN =
∑∫

α1... αN

∑∫

β1... βN

|ϕα1 · · · ϕαN 〉

·〈ϕα1 · · · ϕαN |XN |ϕβ1 · · · ϕβN 〉〈ϕβ1 · · · ϕβN | (8.39)

The operators, which are exclusively ascribed to a particular single particle,
assume also here an exceptional position:

A
(i)
1 =

⎡

⎢⎣
∑∫

αi, βi

|ϕ(i)
αi
〉〈ϕ(i)

αi
|A(i)

1 |ϕ(i)
βi
〉〈ϕ(i)

βi
|

⎤

⎥⎦ · 1l(i)N−1 . (8.40)

1l
(i)
N−1 means here the identity of the (N − 1)-particle product space, in which,

compared to the HN , the H(i)
1 is absent. In the same way as shown in (8.28)

for the special case N = 2, one can prove generally that one-particle operators,
which refer to different particles, do commute in any case:

[
A

(i)
1 , B

(j)
1

]

−
= 0 . (8.41)
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The dynamics of the N -particle systems follows from the time-dependent
Schrödinger equation,

i �|ψ̇N 〉 = HN |ψN 〉 , (8.42)

in which HN means the Hamilton operator related to the N -particle system.
In summary we realize that the treatment of many-particle systems, in the

case of particle-distinguishability, do not require novel concepts with regard to
the Quantum Theory of the single particle, which we developed in the preceding
chapters. Only the computational and procedural effort increases tremendously.
In Classical Mechanics also the transition from the one- to the many-particle
problem is not in any way different. In the case of indistinguishable particles,
however, completely new and classically not understandable aspects will play a
decisive role!

8.1.4 Exercises

Exercise 8.1.1
Show that by the description (8.11) for two-particle states of the H2 the general
axioms of a scalar product are fulfilled.

Exercise 8.1.2
Let the two Hilbert spaces H(1)

1 and H(2)
1 be two-dimensional (e.g., spin-(1/2)-

particles!). By the use of the bases {|a(1)n 〉} and {|b(2)m 〉} the observables A
(1)
1

and B
(2)
1 possess the matrix representation

(
A

(1)
1

)

ij
= αij and

(
B

(2)
1

)

ij
= βij ,

respectively.

1. Find the matrix representation of A
(1)
1 in the product basis {|an bm〉} of the

space H2 = H(1)
1 ⊗H(2)

1 .

2. How does the matrix representation of B
(2)
1 look like in H2?

3. Derive explicitly the product matrix A
(1)
1 ·B(2)

1 and verify the commutativity
of the two operators!

8.2 Identical Particles

At first glance, it appears as if the theory of Sect. 8.1 is really complete for arbi-
trary many-particle systems. Upon closer inspection, however, there are distinct
hints even in our physical everyday world that there is something which does
not yet really fit the above considerations. There are phenomena to observe,
which obviously go beyond the limits of the so far developed Quantum Theory.
For the heuristic reasoning of the structure of the atomic electron shell, and, fol-
lowing from that, the buildup-principle of the periodic table in the framework of
the semi-classical pre-Quantum Mechanics (Bohr, Sommerfeld, . . ., see Chap. 1
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(Vol. 6)), we had to assume, e.g., that the stationary energy levels of an atom
can not be occupied by arbitrarily many shell electrons. Today we know that
this phenomenon is a consequence of the fundamental Pauli principle, accord-
ing to which two electrons can never simultaneously occupy one and the same
state. Therewith, the Pauli principle makes even interaction-free electrons not
completely independent of each other. In our quantum-mechanical considera-
tions so far there was no indication leading to the discovery the Pauli principle.
We will be able to show in this chapter that this principle is an immediate
consequence of the categorical indistinguishability of identical particles!

8.2.1 Principle of Indistinguishability

What are actually identical particles? In order to prevent misunderstandings let
us at first strictly distinguish the genuine particle properties from the mea-
sured values of the particle observables. A particle property (e.g., mass,
spin, charge, magnetic moment, moment of inertia) is an in principle unchange-
able characteristic of the particle. As soon as such a quantity is nevertheless
changed by some drastic course of action, then the particle looses in a certain
sense its identity. The measured values of the particle observables (e.g., posi-
tion, momentum, angular momentum, spin projection), on the other hand, can
change in the course of time.

Definition 8.2.1

‘Identical particles’ have all their particle properties identically same!

They behave themselves under similar conditions completely equivalently, and
can therefore not be distinguished from each other by any objective measure-
ment. The measured values of the particle observables in a system of identical
particles can of course be different. The identical electrons in an energy band
of a solid have, for instance, different energies and different momenta. However,
every electron comes into question for each energy state. It is impossible to
find out which of the identical particles occupies which state.

Identical particles of course exist also in Classical Physics. However, one
can perform at a point of time t0 a position and momentum measurement for
them, and from that one can calculate in advance by means of the Hamilton
equations of motion (Sect. 2.2.1, Vol. 2) their phase-space point (r,p)(t) for
every later time (Fig. 8.1). The (r,p)-measurement at a single point of time t0

Figure 8.1: Paths of motion of classical (identical) particles
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makes it possible to identify out of an ensemble of classical identical particles
each individual uniquely at every later point of time. By the measurement one
has attached, in a certain sense, labels to the particles, which make them for all
times recognizable in spite of identical properties.

Just this labeling is basically impossible for quantum-mechanical identical
particles. The deep reason for this lies in the statistical character of the particle
state, which we have discussed extensively in Chaps. 2 and 3 of Vol. 6. We
remember that for a measurement of the observable A it can, in general, not
be precisely predicted, which measured value will actually be observed. It is
only ensured that it will be one of the eigen-values of A. Apart from that,
only the probability can be found, with which a certain eigen-value will really
appear as the measured value. Think of the above discussed measurement of
the position of a classical particle, which observes that at the time t0 particle 1
is at r1 and particle 2 at r2. When now at a later point of time a measurement
at r receives a signal, then, quantum-mechanically, we can not say with full
certainty, whether the signal comes from particle 1 or particle 2. The density
of the position probability of both the particles ρ1,2(r, t) = |ψ1,2(r, t)|2, if at all
reasonably definable, is for both particles unequal zero at r. Furthermore, since
the particles are identical, the unchangeable particle properties can contribute
in no way to distinguish them.

Although these considerations do not prove the

principle of indistinguishability ,

they make it at least plausible. It must be incorporated into the framework of
Quantum Mechanics as a further postulate:

Identical particles are basically indistinguishable. Therefore they do
not possess any individuality!

This postulate leads to a series of far-reaching consequences, which we will
analyze point by point.

As a start, assignments of the kind

(particle)i ⇐⇒ state |ϕ(i)〉
become meaningless and have to be replaced by the more sweeping assignment

{(particle)i ; i = 1, 2, . . . , N} ⇐⇒ N -particle state |ϕN 〉 .

Each question, which aims at the observation of a single particle, is for systems
of identical particles not only forbidden but also completely meaningless.

Up to now we do not know the states which are acceptable for N identical
particles. We can, however, assume that they must be special combinations of
the direct products of one-particle states discussed in Sect. 8.1. Let us use for
them in the following tentatively the symbol:

|ϕN 〉 ≡
∣∣∣ϕ(1)

α1
ϕ(2)
α2

· · · ϕ(N)
αN

〉
. (8.43)
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In a manner, which we still have to work out, the one-particle states |ϕα1〉, |ϕα2 〉,
. . . , |ϕαN 〉 are involved in the N -particle state |ϕN 〉. The lower indexes in the
symbol (8.43) refer, in this regard, to (sets of) quantum numbers, by which
these one-particle states are uniquely characterized, and the upper indexes refer
to the particles which are somehow distributed over the one-particle states.

Let us try to concretize the above train of thoughts, i.e., to bring it into
a mathematically evaluable form! As we now know, such observables are not
admitted in a system of N identical particles, which are focused on a certain
individual. For distinguishable particles, in contrast, that is surely possible
(see 8.40). Expressions of the form

〈ϕN |A(i)
1 |ϕN 〉

are acceptable only for distinguishable particles. If they could provide relevant
statements also for identical particles, then we would have a means to single

out the particle i amongst the other particles by measuring the observable A
(i)
1 ,

and therewith to label it.
Reasonable measured quantities, as for instance expectation values of observ-

ables, are surely to be related only to the total collective. Therefore, as accept-
able observables only such come into question which explicitly depend on the
coordinates of all the particles, and that too in an equally weighted symmetric
manner:

〈
ϕ(1)
α1

· · · ϕ(N)
αN

∣∣∣AN (1, 2, . . . , N)
∣∣∣ϕ(1)

α1
· · · ϕ(N)

αN

〉
.

This representation, however, already reveals the actual problem. Because of
purely calculatory reasons we are forced to perform something like a particle
numbering, for instance for the discrimination of variables in multiple integrals
and sums, or for the correct assignment of the one-particle states, which build

up the states |ϕN 〉, to their Hilbert spaces H(i)
1 . If such a numbering is indeed

from practical reasons unavoidable, then it must be done, in order not to violate
the principle of indistinguishability, in such a way that physically relevant
statements remain unaffected by the kind of numbering, i.e. in particular,
being invariant with respect to changes in the performed numbering. All that,
which is in some way accessible to the experiment (expectation values, eigen-
values, scalar products, matrix elements, . . .) is physically relevant. The bare
operators and states, by the way, do not belong to this. For the expectation
value of an allowed observable in an allowed state of a system of N identical
particles, we have therefore to require, for instance:

〈
· · · ϕ(i)

αi
· · · ϕ(j)

αj
· · ·

∣∣∣AN

∣∣∣· · · ϕ(i)
αi

· · · ϕ(j)
αj

· · ·
〉

!
=
〈
· · · ϕ(j)

αi
· · · ϕ(i)

αj
· · ·

∣∣∣AN

∣∣∣· · · ϕ(j)
αi

· · · ϕ(i)
αj

· · ·
〉

. (8.44)

The interchange of the particle indexes at the state symbols should not change
the actual measured value! We will be able to derive in the next subsection
some important conclusions from this symmetry requirement alone.
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8.2.2 Observables and States

We will now take advantage of the condition (8.44), in order to obtain concrete
information about the allowed observables and states of a system of identical
particles.

We define at first the permutation operator P by its mode of action on
the N -particle state (8.43):

P
∣∣∣ϕ(1)

α1
ϕ(2)
α2

· · · ϕ(N)
αN

〉
=
∣∣∣ϕ(i1)

α1
ϕ(i2)
α2

· · · ϕ(iN )
αN

〉
. (8.45)

P acts on the particle indexes, and changes the distribution of the particles over
the N one-particle states. (i1, i2, . . . , iN) is the permuted N -tuple (1, 2, . . . , N).
The particle, which is placed before at the jth site changes into the ijth position.
Each permutation can be traced back to a product of pairwise interchanges of
two particles. We therefore define the transposition operator Pij ,

Pij

∣∣∣· · · ϕ(i)
αi

· · · ϕ(j)
αj

· · ·
〉

=
∣∣∣· · · ϕ(j)

αi
· · · ϕ(i)

αj
· · ·

〉
, (8.46)

which interchanges the particles at the ith and the jth positions. Pij is of course
a special permutation. We look at a simple example:

P23 P12

∣∣∣ϕ(1)
α1

ϕ(2)
α2

ϕ(3)
α3

〉
= P23

∣∣∣ϕ(2)
α1

ϕ(1)
α2

ϕ(3)
α3

〉
=
∣∣∣ϕ(2)

α1
ϕ(3)
α2

ϕ(1)
α3

〉
,

P12 P23

∣∣∣ϕ(1)
α1

ϕ(2)
α2

ϕ(3)
α3

〉
= P12

∣∣∣ϕ(1)
α1

ϕ(3)
α2

ϕ(2)
α3

〉
=
∣∣∣ϕ(3)

α1
ϕ(1)
α2

ϕ(2)
α3

〉
.

The example gives evidence that in general the transposition operators are not
commutable. Twofold application of the same transition operator obviously
leads back to the initial state:

P 2
ij = 1lN ⇐⇒ Pij = P−1

ij . (8.47)

The mappings (8.45) and (8.46) must not change, because of the indistinguisha-
bility of the particles, in particular the norm of the state. P and Pij are therefore
unitary in HN , Pij in addition, because of (8.47) is also Hermitian:

P+ = P−1 ; P+
ij = P−1

ij = Pij . (8.48)

Because of the non-commutability of the transpositions the general permutation
operator is not Hermitian in HN .

We can now bring the basic requirement (8.44) into the following form:

〈ϕN |AN |ϕN 〉 !
= 〈Pij ϕN |AN |Pij ϕN 〉 = 〈ϕN |P+

ij AN Pij |ϕN 〉 .

This relation must be valid for all states of the system of identical particles. If it
is fulfilled then the analogous relation holds even for arbitrary matrix elements,

〈ϕN |AN |ψN 〉 !
= 〈ϕN |P+

ij AN Pij |ψN 〉 , (8.49)
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because these can always be decomposed into expectation values of the above
form:

〈ϕN |AN |ψN 〉 = 1

4
{〈ϕN + ψN |AN |ϕN + ψN 〉 − 〈ϕN − ψN |AN |ϕN − ψN 〉

+i〈ϕN − i ψN |AN |ϕN − i ψN 〉 − i〈ϕN + i ψN |AN |ϕN + i ψN〉}

In the state space for identical particles, which is so far, though, still unknown
to us, it must therefore hold the operator identity

AN = P+
ij AN Pij . (8.50)

Multiplying this identity from the left by Pij and taking account of (8.48), we
recognize that all allowed observables of the N -particle system must be com-
mutable with all transposition operators and consequently also with all permu-
tation operators:

[AN , Pij ]− = 0 ∀i, j ; [AN ,P ]− = 0 . (8.51)

Therewith we have got to know a very important characteristic of the observ-
ables of identical particles.

What can now be said about the states which are allowed in the sense of the
principle of indistinguishability? Let |ϕN 〉 be such a state, then the projection
operator |ϕN 〉〈ϕN | represents an observable, for which (8.50) is valid:

|ϕN 〉〈ϕN | = P+
ij |ϕN 〉〈ϕN |Pij = |P+

ij ϕN 〉〈P+
ij ϕN | = |Pij ϕN 〉〈Pij ϕN | .

The state |Pij ϕN 〉 creates therewith the same subspace as |ϕN 〉. This, however,
is possible only if the two Hilbert-space vectors are parallel, i.e., if |ϕN 〉 is an
eigen-state of Pij :

Pij |ϕN 〉 = λij |ϕN 〉 .

Because of (8.47) for all i and j only λij = ±1 can come into consideration.
This means:

Pij

∣∣∣ϕ(±)
N

〉
= ±

∣∣∣ϕ(±)
N

〉
∀i, j . (8.52)

The states of a system of identical particles are either symmetric or
antisymmetric with respect to an interchange of two particle

indexes!

All these states are of course, additionally, elements of the product space HN

(8.32), which we have constructed in Sect. 8.1 for systems of distinguishable
particles. For systems of identical particles this space turns out to be too large,
because not all elements of HN comply with the symmetry requirements (8.52)
due to the principle of indistinguishability. We will have to still discuss the
corresponding subspaces.
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We want to list some further basic properties of the states of identical par-
ticles:

1. A first important conclusion results from the fact that Eq. (8.51) is true in
particular for the Hamilton operator of the system:

[HN , Pij ]− = 0 .

Since the time evolution operator U ((3.177), Vol. 6) reads for not explicitly
time-dependent HN

U(t, t0) = exp

[
− i

�
HN (t− t0)

]
,

U also commutes with Pij :

[U, Pij ]− = 0 . (8.53)

This statement, by the way, remains valid even for time-dependentHN (proof
as Exercise 8.2.1)! When the state |ϕN 〉 has at any point of time t0 a par-
ticular symmetry,

Pij |ϕN (t0)〉 = ±|ϕN (t0)〉 ,
it will exhibit this symmetry for all other times also:

Pij |ϕN (t)〉 = Pij U(t, t0)|ϕN (t0)〉 (8.53)
= U(t, t0)Pij |ϕN (t0)〉

= ±U(t, t0)|ϕN (t0)〉 = ±|ϕN (t)〉 .
The states of a system of identical particles thus retain their symmetry char-
acter for all times!

2. Symmetric and antisymmetric states are orthogonal to each other:
〈
ϕ
(+)
N

∣∣∣ ψ(−)
N

〉
=

〈
ϕ
(+)
N

∣∣∣ 1lN
∣∣∣ψ(−)

N

〉
=
〈
ϕ
(+)
N

∣∣∣P+
ij Pij

∣∣∣ψ(−)
N

〉

= −
〈
ϕ
(+)
N

∣∣∣ ψ(−)
N

〉
= 0 . (8.54)

3. There does not exist an observable, which can map a symmetric onto an
antisymmetric state, and vice versa:

〈ϕ(+)
N |AN |ψ(−)

N 〉 = 0 ∀AN (8.55)

(see Exercise 8.2.2).

4. The states of a certain system of identical particles belong either all to the

H(+)
N or all to the H(−)

N . If one and the same system could be in states with
different symmetry behavior, then a linear combination of these states, which
must also be a possible state, would be neither symmetric nor antisymmetric.
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8.2.3 Hilbert Space

The time-independent symmetry character and the orthogonality of the sym-
metric and the antisymmetric states of identical particles make the following
division appear reasonable:

H(+)
N : Space of the symmetric states |ϕ(+)

N 〉 ∈ HN with

Pij

∣∣∣ϕ(+)
N

〉
=
∣∣∣ϕ(+)

N

〉
∀i, j .

H(−)
N : Space of the antisymmetric states |ϕ(−)

N 〉 ∈ HN with

Pij

∣∣∣ϕ(−)
N

〉
= −

∣∣∣ϕ(−)
N

〉
∀i, j .

The spacesH(±)
N are subspaces of the product spaceHN , defined in (8.32). They

contain from the elements of HN just those with the proper symmetry behavior.
But how can we now find these, respectively, totally symmetric and totally

antisymmetric N -particle states? Equation (8.43) is up to now only an abstract,
and not further specified symbol.

Since the sought-after (anti)symmetric states must in any case be elements
of the HN , it suggests itself to start from one of the basis states of the product
space:

|ϕα1 ϕα2 · · · ϕαN 〉 =
∣∣∣ϕ(1)

α1

〉 ∣∣∣ϕ(2)
α2

〉
· · ·

∣∣∣ϕ(N)
αN

〉
.

If we succeed to (anti)symmetrize this state by a proper operation, then it will
not be difficult to transfer this method to any arbitrary element of the HN .

We introduce a new operator,

S
(±)
N =

1

N !

∑

P
(±)p P , (8.56)

which we call the symmetrization operator and the antisymmetrization
operator, respectively. The sum runs over all conceivable permutations of the
N -tuple (1, 2, . . . , N), including the identity. p is the number of transpositions,

by which P is built up. Let us consider whether indeed with S
(±)
N the required

(anti)symmetrizations of the basis states can be done, and therewith ultimately
those of all states of the HN .

If one multiplies any P of the sum (8.56) by any transposition Pij , then it
results obviously in another permutation P ′ with a by one different number of
transpositions p′ = p± 1. Since the sum in (8.56) contains all permutations, P ′

also appears as one of the summands:

Pij S
(±)
N =

1

N !

∑

P
(±)p Pij P = (±)

1

N !

∑

P′
(±)p

′ P ′

= ±S
(±)
N

(
= S

(±)
N Pij

)
. (8.57)
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This result transfers immediately to general permutations:

P S
(±)
N = S

(±)
N P = (±)p S

(±)
N . (8.58)

When we thus apply S
(±)
N to a non-symmetrized product state of the HN , then

we can be sure that the resulting state is an element of the H(±)
N :

|ϕ(±)
N 〉 ≡ |ϕα1 · · · ϕαN 〉(±) = S

(±)
N |ϕα1 · · · ϕαN 〉

=
1

N !

∑

P
(±)p P|ϕα1 · · · ϕαN 〉 . (8.59)

One should strictly bear in mind the different meanings of |ϕα1 · · · ϕαN 〉 and
|ϕα1 · · · ϕαN 〉(±)! Because of (8.57) and (8.58) we have in every case for the so
constructed states:

Pij

∣∣∣ϕ(±)
N

〉
= ±

∣∣∣ϕ(±)
N

〉
; P

∣∣∣ϕ(±)
N

〉
= (±)p

∣∣∣ϕ(±)
N

〉
. (8.60)

This means in particular:

S
(±)
N

∣∣∣ϕ(±)
N

〉
=

1

N !

∑

P
(±)p P

∣∣∣ϕ(±)
N

〉
=
∣∣∣ϕ(±)

N

〉
. (8.61)

The (anti)symmetrized states |ϕ(±)
N 〉 are of course again elements of the HN . By

application of S
(±)
N to every single state inHN we obtain all (anti)symmetrized

states of the HN . The already symmetric or antisymmetric elements of the

product space will be mapped on themselves according to (8.61). S
(±)
N acts in

HN as an projection operator:

S
(±)
N : HN −→ H(±)

N .

Its idempotency is easily demonstrated:
[
S
(±)
N

]2
|ϕα1 · · · ϕαN 〉 = S

(±)
N |ϕα1 · · · ϕαN 〉(±) = |ϕα1 · · · ϕαN 〉(±)

= S
(±)
N |ϕα1 · · · ϕαN 〉 .

This is true for arbitrary states |ϕα1 · · · ϕαN 〉 of the HN . It is hence:
[
S
(±)
N

]2
= S

(±)
N . (8.62)

According to (8.48) P+ = P−1. Since P represents a product of transpositions,
P−1 is, because of (8.47), just that permutation, in which the transpositions
appear in the opposite sequence. Particularly, the number of transpositions is
the same for P and P−1. In expressions like (8.56) the summation can of course
be performed, instead over all P , also over all P−1. This means:

(
S
(±)
N

)+

=
1

N !

∑

P
(±)p P+ =

1

N !

∑

P−1

(±)p P−1

=
1

N !

∑

P′
(±)p

′ P ′ = S
(±)
N . (8.63)
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S
(+)
N and S

(−)
N are therefore idempotent and Hermitian, and possess therewith

the properties of projection operators (Sect. 3.2.7, Vol. 6). It holds for arbitrary
states |ϕN 〉, |ψN 〉 of the HN :

〈ψN |S(+)
N S

(−)
N |ϕN 〉 =

〈
ψ
(+)
N

∣∣∣ ϕ(−)
N

〉
(8.54)
= 0 .

S
(+)
N and S

(−)
N thus project onto orthogonal subspaces of the HN :

S
(+)
N S

(−)
N = S

(−)
N S

(+)
N = 0 . (8.64)

Already for N > 2 the sum of S
(+)
N and S

(−)
N is no longer the identity 1lN . The

subspaces, created by S
(+)
N and S

(−)
N , therefore do not cover the whole HN . If

one defines the operator S
(0)
N by

S
(+)
N + S

(−)
N + S

(0)
N = 1lN , (8.65)

then it can be shown that it is also a projection operator. It projects onto a

subspace H(0)
N , which is orthogonal to the spaces, which are created by S

(+)
N

and S
(−)
N . The three spaces H(+)

N , H(−)
N , H(0)

N together build, because of (8.65),

the entire product space HN . The Hermiticity of S
(0)
N is, because of (8.63),

immediately clear. From

S
(0)
N S

(±)
N =

(
1lN − S

(+)
N − S

(−)
N

)
S
(±)
N

(8.64)
= S

(±)
N −

[
S
(±)
N

]2 (8.62)
= 0 (8.66)

it follows the orthogonality of H(0)
N to the two other spaces, and from

[
S
(0)
N

]2
= S

(0)
N

(
1lN − S

(+)
N − S

(−)
N

)
= S

(0)
N (8.67)

the idempotency of the operator S
(0)
N .

8.2.4 Basis States

We have now to find out which basis can come into consideration for the
(anti)symmetrized spaces H(±)

N . In the product space HN , suitable for a sys-
tem of N distinguishable particles, the N -particle basis states can be written
as direct products (8.33) of one-particle basis states. If we gather together by
ϕ̂ a complete set of commutable one-particle observables, then the eigen-states
{|ϕαi〉} build an orthonormal basis of the one-particle Hilbert space:

ϕ̂|ϕαi〉 = ϕαi |ϕαi〉 , (8.68)

〈ϕαi |ϕαj 〉 = δ(αi, αj) , (8.69)
∑∫

αi

|ϕαi〉〈ϕαi | = 1l1 (8.70)
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The product states (8.33), built by these one-particle basis states, represent then
a basis for the N -particle space HN , so that each state of HN can be expanded
as follows:

|ψN 〉 =
∑∫

α1···αN

|ϕα1 · · · ϕαN 〉〈ϕα1 · · · ϕαN |ψN 〉 . (8.71)

Since the (anti)symmetrized states of the subspacesH(±)
N belong to the elements

of HN , they can of course also be expanded as in (8.71):

|ψ(±)
N 〉 =

∑∫

α1···αN

|ϕα1 · · · ϕαN 〉〈ϕα1 · · · ϕαN |ψ(±)
N 〉 . (8.72)

The scalar product in the integrand is rearranged as follows:

〈ϕα1 · · · ϕαN |ψ(±)
N 〉 (8.61)

= 〈ϕα1 · · · ϕαN |S(±)
N |ψ(±)

N 〉
(8.63)
= (±)〈ϕα1 · · · ϕαN |ψ(±)

N 〉 . (8.73)

When we insert this into the above equation (8.72) and apply once more to both

sides the operator S
(±)
N , then we have, because of (8.59) and (8.61),:

|ψ(±)
N 〉 =

∑∫

α1···αN

|ϕα1 · · · ϕαN 〉(±) (±)〈ϕα1 · · · ϕαN |ψ(±)
N 〉 . (8.74)

This relation is valid for arbitrary states from H(±)
N . The (anti)symmetrized

product states,

|ϕα1 · · · ϕαN 〉(±) =
1

N !

∑

P
(±)p P|ϕα1 · · · ϕαN 〉

=
1

N !

∑

P
(±)p P

(∣∣∣ϕ(1)
α1

〉
· · ·

∣∣∣ϕ(N)
αN

〉)
, (8.75)

thus build a basis of the H(±)
N , and comply thereby with the completeness

relation:
∑∫

α1···αN

|ϕα1 · · · ϕαN 〉(±) (±)〈ϕα1 · · · ϕαN | = 1lN . (8.76)

An interesting specialty arises for the basis states of the antisymmetrized space

H(−)
N , which obviously can be written as determinant:

|ϕα1 · · · ϕαN 〉(−) =
1

N !

∣∣∣∣∣∣∣∣∣∣∣∣

|ϕ(1)
α1 〉 |ϕ(2)

α1 〉 · · · |ϕ(N)
α1 〉

|ϕ(1)
α2 〉 |ϕ(2)

α2 〉 · · · |ϕ(N)
α2 〉

...
...

...

|ϕ(1)
αN 〉 |ϕ(2)

αN 〉 · · · |ϕ(N)
αN 〉

∣∣∣∣∣∣∣∣∣∣∣∣

. (8.77)
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This expression is denoted as Slater determinant. If in the N -particle state
two sets of quantum numbers are equal (αi = αj for i �= j), then this means that
two rows of the determinant are equal, and that means that the determinant
vanishes. The (density of the) probability for the situation that in an N -particle

state of the H(−)
N two of the identical particles have all their quantum numbers

same is thus equal to zero. This is just the statement of the fundamental Pauli
principle, to which we will come back once more in Sect. 8.2.6. An analogous

restriction for the states of the H(+)
N , according to (8.75), obviously does not

exist!

In order to be able to really work in the space H(±)
N , we have to still think

about the scalar product between (anti)symmetrized basis states. With (8.73)
we can directly write this down:

(±)〈ϕβ1 · · · ϕβN |ϕα1 · · · ϕαN 〉(±) = 〈ϕβ1 · · · ϕβN |ϕα1 · · · ϕαN 〉(±)

=
1

N !

∑

P
(±)p

[〈
ϕ
(1)
β1

∣∣∣
〈
ϕ
(2)
β2

∣∣∣ · · ·
〈
ϕ
(N)
βN

∣∣∣ P
(∣∣∣ϕ(1)

α1

〉 ∣∣∣ϕ(2)
α2

〉
· · ·

∣∣∣ϕ(N)
αN

〉)]

=
1

N !

∑

Pα

(±)pα Pα

[〈
ϕ
(1)
β1

∣∣∣ ϕ(1)
α1

〉
· · ·

〈
ϕ
(N)
βN

∣∣∣ ϕ(N)
αN

〉]

(8.69)
=

1

N !

∑

Pα

(±)pα Pα [δ(β1, α1) · · · δ(βN , αN)] . (8.78)

That is the consistent generalization of the one-particle scalar product (8.69)
for the (anti)symmetrized N -particle states. The index α at the P-symbol shall
indicate that after forming the scalar products in the respective one-particle

spaces H(i)
1 the permutation aims exclusively at the quantum numbers αi. As

soon as the one-particle scalar products are formed, the particle index has

become superfluous, because the Hilbert spaces H(i)
1 of the identical particles,

and therewith in particular also the scalar products in these spaces, are of course
completely equivalent. The particle indexes only serve for the correct assignment
of the one-particle states.

By the use of the completeness relation (8.76), each observable AN can be
expressed by its matrix elements in the (anti)symmetrized N -particle basis:

AN = 1lN AN 1lN

=
∑∫

α1···αN

∑∫

β1···βN

|ϕα1 · · · ϕαN 〉(±)

· (±)〈ϕα1 · · · ϕαN |AN |ϕβ1 · · · ϕβN 〉(±)(±)〈ϕβ1 · · · ϕβN | . (8.79)

8.2.5 Occupation Number Representation

The situation where the (anti)symmetrized N -particle states are built up by
elements of a discrete one-particle basis allows for a special, sometimes
remarkably useful representation. Let us first consider the normalization of the
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N -particle states:

(±)〈ϕα1 · · · ϕαN |ϕα1 · · · ϕαN 〉(±) (8.80)

(8.73)
=

1

N !

∑

P
(±)p

(〈
ϕ
(1)
α1

∣∣∣
〈
ϕ
(2)
α2

∣∣∣ · · ·
〈
ϕ
(N)
αN

∣∣∣
)
P
(∣∣∣ϕ(1)

α1

〉 ∣∣∣ϕ(2)
α2

〉
· · ·

∣∣∣ϕ(N)
αN

〉)
.

Before we evaluate this expression we introduce the term

occupation number nαi

which will be used frequently later. It is defined as the frequency of occurrence,
with which the one-particle state |ϕαi〉 appears in the considered N -particle
state. More illustrative, one could denote nα as the number of identical particles,
which occupy the one-particle state |ϕαi〉. It holds obviously:

∑

i

nαi = N ,

nαi = 0, 1 for states in H(−)
N ,

nαi = 0, 1, 2, . . . for states in H(+)
N .

Because of the orthonormality of the one-particle basis states, only such per-
mutations of the sum in (8.80) yield a finite contribution, which interchange
exclusively particles in the nαi identical one-particle states. These are alto-
gether

nα1 !nα2 ! · · · nαN !

possible permutations. Each summand of this kind is equal to 1:

(±)〈ϕα1 · · · ϕαN |ϕα1 · · · ϕαN 〉(±) =
1

N !

N∏

i=1

nαi ! (8.81)

Because of 0! = 1! = 1 the right-hand side simplifies distinctly for antisym-
metrized states, which only permit nαi = 0, 1. It is then just 1/N !. The in

the form of (8.75) constructed basis states of the H(±)
N are thus not normalized

to one. That can of course be easily caught up in (8.75), if desired or even
necessary, by introducing the normalization constant:

C+ =

{
1

N !

N∏

i=1

nαi !

}−1/2

; C− =
√
N ! (8.82)

Note, however, that then the completeness relation (8.76), if it is written with
the normalized states, must get a corresponding additional factor.

We now come back to the above-mentioned alternative representation, which
one calls the

occupation number representation.
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It traces back to the following idea: One realizes with (8.75) that for a fixedly
given one-particle basis {|ϕαi〉} the (anti)symmetrized N -particle state is com-
pletely defined by the specification of the occupation numbers nαi . In the
non-symmetrized direct product |ϕα1 · · · ϕαN 〉, on the other hand, the sequence
of the one-particle states is in principle arbitrary. It must only once be fixedly
preset, and that for ever. We thus can choose the initial order as we want, i.e.
according to convenience. At the first position we put the nα1 states |ϕα1〉, then
come the nα2 states |ϕα2〉, and so on:

C±
1

N !

∑

P
(±)p P

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣ϕ(1)
α1

〉 ∣∣∣ϕ(2)
α1

〉
· · ·

︸ ︷︷ ︸
nα1

· · ·
∣∣∣ϕ(p)

αi

〉 ∣∣∣ϕ(p+1)
αi

〉
· · ·

︸ ︷︷ ︸
nαi

⎫
⎪⎪⎬

⎪⎪⎭
· · ·

≡ ∣∣N ; nα1 nα2 · · · nαi · · · nαj · · ·〉 (±) . (8.83)

With this arrangement the occupation numbers uniquely define the state. It is
important, though, that all occupation numbers are given in the ket-symbol.
Unoccupied one-particle states get nα = 0. The representation (8.83) is obvi-
ously realizable only for discrete bases. The orthonormality of these so-called
Fock states can directly be read off from (8.78), (8.81), and (8.83):

(±)〈N ; · · · nαi · · · |N̂ ; · · · n̂αi · · ·〉(±) = δN N̂

∏

i

δnαi
n̂αi

. (8.84)

They build, in the so-called Fock space, a complete basis:

∑

nα1

∑

nα2

· · ·
∑

nαi

· · · |N ; nα1 nα2 · · · nαi · · ·〉(±) (±)〈N ;nα1 nα2 · · · nαi · · · |=1lN .

(8.85)

It is summed over all allowed occupation numbers with the constraint:
∑

i nαi =
N . We will come back to the occupation number representation in the next
section.

8.2.6 Pauli Principle

Finally, it still remains to clarify the important question which type of identical

particles is to be described in which of the two spaces H(+)
N and H(−)

N . How
can we, for a given particle system, decide, whether its states are elements of

the H(+)
N or of the H(−)

N ? This question can not be answered, though, by the
means of Quantum Mechanics. The so-called spin-statistics theorem, which
is decisive here, was formulated in 1925 by W. Pauli, at first purely empirically,
for the theoretical explanation of experimentally found atomic spectra. The
same author was then later (1940) able to strictly prove the theorem in the
framework of the relativistic quantum field theory (Phys. Rev. 58, 716 (1940)).

According to the theorem the particle spin decides, which space, H(+)
N orH(−)

N ,
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is in charge of the respective system of identical particles:

H(+)
N : Space of the totally symmetric states of identical particles with

integral spin (S = 0, 1, 2, . . .).

These particles are called

bosons

Examples:
π-mesons (S = 0), photons (S = 1), phonons (S = 1), magnons (S = 1),
α-particles (S = 0), . . . .

H(−)
N : Space of the totally antisymmetric states of identical particles with

half-integral spin (S = 1/2, 3/2, 5/2, . . .).

These particles are called

fermions

Examples:
electrons (S = 1/2), positrons (S = 1/2), neutrons (S = 1/2), protons (S =
1/2), . . . The statement, which we formulated in connection with the representa-
tion of the antisymmetric N -particle basis states as Slater determinants (8.77),
turns out to be the fundamental Pauli principle:

In a system of identical fermions two particles can not have, in a
measurement, all their quantum numbers same!

Two electrons in one and the same atom can therefore not possess the same
set of quantum numbers n, l ,ml, ms. Two protons with parallel spin projec-
tions can not occupy the same space point. Two spin-parallel electrons of the
same energy band of a solid can not have the same momentum (the same wave
number). Pauli’s exclusion principle has the remarkable consequence that even
interaction-free fermions are not fully independent of each other. Such an
exclusion principle does not exist for bosons!

Important consequences of the Pauli principle are the shell structure of the
electron density in an atom and the periodic table of the elements. Anticipating
the Pauli principle, we have commented on both phenomena already at the end
of Sect. 6.2.1, so here we can restrict ourselves to a passing remark. The direct
consequences of the Pauli principle are surely known to the reader also from
elementary atomic physics.

The results of this section urge us to think once more whether the manner,
with which we practiced Quantum Mechanics up to now, namely essentially as a
one-particle theory, was reasonable at all. Would it not be actually mandatory,
for the theoretical-physical description of nature, to include in the formulation
all identical particles of this world? When we intend, e.g., to calculate the
electronic structure of a ferromagnetic Ni-crystal, can we then restrict ourselves
to the small piece of Ni in the lab or have we to take into consideration also the
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electrons anywhere in the near and farther surroundings? Can the electrons of
two hydrogen atoms, the one localized in Berlin, the other in New York, with
parallel spin projections, actually be both in the ground state without violating
the Pauli principle?

The answer to the last question is the simpler one. The answer is: yes! There
are two different one-particle ground states, since the hydrogen nuclei are located
at different sites. In Chap. 6, when we calculated the hydrogen spectrum, we
have identified the position of the nucleus with the origin of coordinates. That
we can do in our example here of course only for one of the two hydrogen
atoms, either the one in Berlin or the one in New York, but not for both. One
easily convinces oneself that in the position representation the hydrogen-wave
functions strongly depend on the position of the nucleus.

The other question, whether or not we actually have to (anti)symmetrize
states, which incorporate all identical particles, we have to rack our brain about,
because the answer is: in principle yes! Luckily, though, this is actually neces-
sary only ‘in principle’ ! To see this, let us consider the just-mentioned example
of the two hydrogen electrons in Berlin and New York. The wave functions,
in particular their squares of the absolute values, decay exponentially with the
distance to the nucleus center. The overlap of the American and the German H-
wave function is therefore immeasurably small. The corresponding one-particle
states (|ϕN〉 and |ϕB〉 with 〈ϕN,B|ϕN,B〉 = 1) are thus factually orthogonal:

〈ϕN|ϕB〉 =
∫

d3r 〈ϕN|r〉〈r|ϕB〉 =
∫

d3r ϕ∗
N (r)ϕB (r) ≈ 0 . (8.86)

This is the first important point. We now perform on the two-electron system
a measurement of the two-particle observable A2, where we will exclusively
be interested in the German results. The question, which we want to clarify
thereby, is, whether we then can quite simply forget the hydrogen atom in New
York, or whether it somehow influences substantially the measurement in Berlin.

Without antisymmetrization the system would be described by a product
state of the type

|ϕN ϕB〉 = |ϕ(1)
N 〉|ϕ(2)

B 〉 ,

if we assume, despite knowing better, that the two electrons are after all distin-
guishable in some way. The index 1 can then be ascribed to the electron in New
York, and the index 2 to the electron in Berlin. In this case we of course expect
an independence of the measurements in America and Germany. In order to
show this, we calculate the probability for the appearance of the measured value
aB in the German lab as eigen-value of the (non-symmetrized) eigen-state

|aN aB〉 =
∣∣∣a(1)N

〉 ∣∣∣a(2)B

〉
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of the observable A2. The American contributions to the measurement do not
interest here. It is therefore summed over the respective terms:

w =
∑

aN

|〈aN aB|ϕN ϕB〉|2 = |〈aB|ϕB〉|2
∑

aN

|〈aN|ϕN〉|2

= |〈aB|ϕB〉|2
∑

aN

〈ϕN|aN〉〈aN|ϕN〉 = |〈aB|ϕB〉|2 〈ϕN|ϕN〉

= |〈aB|ϕB〉|2 . (8.87)

As expected, it comes out a purely German result, completely independent of
the H-atom in New York.

But what happens now in the case of correct antisymmetrization? The two
electrons are indistinguishable fermions:

|ϕN ϕB〉(−) =
1√
2

(∣∣∣ϕ(1)
N

〉 ∣∣∣ϕ(2)
B

〉
−
∣∣∣ϕ(2)

N

〉 ∣∣∣ϕ(1)
B

〉)
. (8.88)

The factor 1/
√
2 takes care for the correct normalization (8.82). The eigen-state

|aN aB〉(−) is analogously built up. We can now exploit for the evaluation the
quasi-orthogonality (8.86) of the N - and B-states:

(−)〈aN aB|ϕN ϕB〉(−)

=
1

2

[
〈a(1)N |ϕ(1)

N 〉〈a(2)B |ϕ(2)
B 〉+ 〈a(2)N |ϕ(2)

N 〉〈a(1)B |ϕ(1)
B 〉−

−〈a(1)N |ϕ(1)
B 〉〈a(2)B |ϕ(2)

N 〉 − 〈a(2)N |ϕ(2)
B 〉〈a(1)B |ϕ(1)

N 〉
]

≈ 1

2

[
〈a(1)N |ϕ(1)

N 〉〈a(2)B |ϕ(2)
B 〉+ 〈a(2)N |ϕ(2)

N 〉〈a(1)B |ϕ(1)
B 〉

]
.

Because of the identity of the particles both the summands yield the same
contribution!

In a thought experiment, we then perform the same measurement of the
observable A2 as above, where again the American partial results are not inter-
esting for us:

w =
∑

aN

∣∣∣(−)〈aN aB|ϕN ϕB〉(−)
∣∣∣
2

= |〈aB|ϕB〉|2
∑

aN

|〈aN|ϕN〉|2 = |〈aB|ϕB〉|2 . (8.89)

That is exact the same result as that of the, in principle, not correct one of
the non-symmetrized representation. In particular it is clear therewith that, if
we are not interested in the American measured values, we can ‘forget’ the far
away electron, without any drawback for the results we are actually interested
in. That is extraordinarily calming, because it ‘saves’ the procedure which was
considered so far always as reasonable. The (anti)symmetrized formulation is,
strictly speaking, the only correct one, but need not always be strictly obeyed.
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When the identical particles, however, are microscopically close to each other,
then novel phenomena appear, which can be encompassed only by the correct
(anti)symmetrized representation.

8.2.7 Exercises

Exercise 8.2.1
Show that for a system of identical particles the time-evolution operator U(t, t0)
commutes with each transposition operator. Prove therewith that (8.53) is valid
even if the Hamilton operator is explicitly time-dependent!

Exercise 8.2.2
Show that there does not exist an observable AN , which is able to transfer a

state from the H(+)
N into the H(−)

N :

〈
ϕ
(+)
N

∣∣∣AN

∣∣∣ψ(−)
N

〉
!
= 0 .

Exercise 8.2.3
Investigate whether for

1. N = 2,

2. N = 3

the basis states of the H(−)
N together with those of the H(+)

N span the entire
product space HN .

Exercise 8.2.4
Show that the permutation operator P is Hermitian in the (anti)symmetrized

space H(±)
N .

Exercise 8.2.5
Two identical particles move interaction-free in a one-dimensional potential well
with infinitely high walls:

V (q) =

{
0 for |q| < q0 ,

∞ for |q| ≥ q0 .

Let the spin state of the two-particle system be symmetric with respect to a
particle interchange. The two single spins are parallel, so that both particles
have the same magnetic quantum number ms.

1. Formulate the Hamilton operator of the two-particle system. Show that
the energy-eigen states separate into a space and a spin part. Of which
symmetry should the space part of the total state be, if the two particles are
both fermions and both bosons, respectively?

2. Calculate the possible eigen-states and eigen-energies for bosons and
fermions, respectively!
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3. Find the ground-state energy for two bosons and two fermions, respectively!

Exercise 8.2.6
A system of two identical fermions is described by a Hamilton operator, which
does not depend on the spins of the two fermions, but may be, e.g., explicitly
time-dependent. The eigen-states therefore factorize into a space and a spin
part:

∣∣∣ψ(S)
2

〉
=
∣∣∣q(+)

〉
|SmS〉(−)

∣∣∣ψ(T )
2

〉
=
∣∣∣q(−)

〉
|S mS〉(+) .

The upper indexes (±) refer to the symmetry character of the particle states.

1. Let P12 be the transposition operator. What is

P12

∣∣∣ψ(S,T )
2

〉
?

2. Decompose P12 into a space and a spin part,

P12 = P
(q)
12 · P (S)

12 = P
(S)
12 · P (q)

12 ,

and give reasons why P
(q)
12 commutes with H .

3. Show that the time-evolution operator U(t, t0) also commutes with P
(q)
12 , even

if H were explicitly time-dependent.

4. Explain by the use of the preceding partial results, why in the temporal devel-

opment of a state of the two-fermion system no transitions between |ψ(S)
2 〉

and |ψ(T )
2 〉 can happen, although both have the same symmetry character.

Exercise 8.2.7
Starting point is a system of two spin-1/2 particles. The transposition operator
P12 is defined by its action on the common eigen-states,

|m1m2〉 = |m1〉(1)|m2〉(2) ; m1,2 = ±1

2
,

of the spin operators S2
1, S

2
2, S

z
1, S

z
2 in the product space H2 = H

(1)
1 ⊗H

(2)
1 of

the two spin-1/2 Hilbert spaces H
(1,2)
1 :

P12|m1m2〉 = P12|m1〉(1)|m2〉(2)
= |m1〉(2)|m2〉(1)
= |m2〉(1)|m1〉(2)
= |m2m1〉.

1. Confirm the known relations:

P−1
12 = P+

12 = P12

P12 possesses only the eigen-values ±1.
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2. Give reasons why the common eigen-states of

S2
1 , S2

2 , S2 , Sz (S = S1 + S2)

are also the eigen-states of P12.

3. Show that

P12S1P
+
12 = S2 ; P12S2P

+
12 = S1 .

4. Verify the representation

P12 =
1

2
[1l +

4

�2
S1 · S2] .

Exercise 8.2.8
The symmetrization operator

S
(±)
N =

1

N !

∑

P
(±1)pP

projects the product spaceHN onto the subspaceH
(±)
N of the (anti)symmetrized

states |ϕ(±)
N 〉 of a system of N identical particles. Let it be a system of

interaction-free particles in the non-degenerate particle-energy states |n〉:
H |n〉 = (α · n+ ε0)|n〉 ; n = 0, 1, 2, . . . ; α > 0 ; ε0 > 0 .

1. Express S
(−)
2 and S

(+)
3 by the transposition operators Pij !

2. Let the system consist of N = 3 noninteraction bosons. How do the ground

state |E(+)
0 〉 and the ground-state energy E

(+)
0 of the three-boson system look

like?

3. Let the system consist of N = 2 noninteraction fermions. Find the ground

state |E(−)
0 〉 and the ground-state energy E

(−)
0 of the two-fermion system.

4. Determine for the three-boson system in 2. the first excited state |E(+)
1 〉.

Exercise 8.2.9
Let N interaction-free identical particles be encased in a cuboid of the volume
V = L3:

1. Determine for the case of periodic boundary conditions (Sect. 2.2.5, Vol. 6):
ψ(x, y, z) = ψ(x+ L, y, z) = ψ(x, y + L, z) = ψ(x, y, z + L)) the one-particle
wave function and the one-particle energies.

2. Consider the ground state for the case of bosons and fermions (S = 1/2),
respectively. Calculate the maximal absolute value of the one-particle
momentum!
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3. Calculate the ground-state energy of the N -particle system.

Exercise 8.2.10
Three noninteraction identical particles with spin S = 0 move in a one-
dimensional potential well with infinitely high walls (see Exercise 8.2.5):

V (q) =

{
0 for |q| < q0 ,

∞ for |q| ≥ q0 .

Determine the wave functions of the ground state and the first excited state of
the three-particle system. Find also the corresponding energies.

8.3 Second Quantization

The considerations in the preceding Sects. 8.1 and 8.2 have revealed how trou-
blesome the description of many-particle systems can be. The formalism of
second quantization, which we will now deal with, means ultimately, though,
only a redrafting of the many-body problem and does not at all represent a
method of complete solution. The introduction of so-called

creation and annihilation operators

is typical for the second quantization, which makes the troublesome construc-
tion of (anti)symmetrized products of one-particle states superfluous. The
wealth of consequences of the principle of indistinguishability, which we gath-
ered in the last two sections, can then be traced back to a few fundamental
(anti)commutator relations between these so-called construction operators.
Formally, the theory becomes independent of the particle number. Interaction
processes are expressed by creation and annihilation of particles. That may
appear, at first, rather peculiar, is , however, in principle, a highly illustrative
way of description. When a particle hops from the position Ri to the position
Rj, then one can interpret that also as if the particle is annihilated at Ri and
subsequently created at Rj . Interaction processes change the states of the inter-
acting partners. That can be understood illustratively as an annihilation of the
two particles in their old states and subsequent creation in their new states
(Fig. 8.2).

Figure 8.2: Symbolic representation of an interaction process
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The formalism of second quantization has proven as so advantageous that it
has found today a very broad application in the research literature. One has
therefore to master it, in order to at least be able to read corresponding publi-
cations. We will apply it in Vol. 9 (Fundamentals of Many-body Physics)
almost exclusively, and will therefore repeat there once more some of the fol-
lowing most important considerations.

To the nomenclature second quantization one should not attach too much
importance; it is indeed widely considered as more or less inappropriate. The
most elegant derivation of the formalism is provided by the quantum field the-
ory, which is not a part of our program, and which is based on the quantization
of Schrödinger’s matter field. Since Schrödinger’s Quantum Theory exhibits
already a first quantization, one thought to have to speak now of a second quan-
tization. It can be shown that this reasoning of the notation rests actually on a
misinterpretation. However, that does not change the fact that the nomencla-
ture is now absolutely established.

8.3.1 Creation and Annihilation Operators

For the set-up of the (anti)symmetrized basis states (8.75) of the Hilbert space

H(±)
N we define a special operator, which creates them step by step out of the

so-called

vacuum state

|0〉 ; 〈0|0〉 = 1 . (8.90)

This so-called

creation operator

a+ϕα
≡ a+α

has the special property to connect Hilbert spaces of different particle numbers:

a+α : H(±)
N −→ H(±)

N+1 . (8.91)

Apart from that it is uniquely defined by its mode of action:

a+α1
|0〉 =

√
1|ϕα1〉 ∈ H(±)

1 ,

a+α2
|ϕα1〉 =

√
2|ϕα2 ϕα1〉(±) ∈ H(±)

2 ,

a+α3
|ϕα2 ϕα1〉(±) =

√
3|ϕα3 ϕα2 ϕα1〉(±) ∈ H(±)

3

. . .

The state |0〉 thus characterizes a system without a particle (vacuum). In general
the assignment holds:

a+β |ϕα1 · · · ϕαN︸ ︷︷ ︸
∈H(±)

N

〉(±) =
√
N + 1 |ϕβ ϕα1 · · · ϕαN︸ ︷︷ ︸

∈H(±)
N +1

〉(±) . (8.92)
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The creation operator a+β adds to the N -particle state a further particle in the
one-particle state |ϕβ〉. This new state |ϕβ〉 is put, according to an agreement,
at the first place in the initial order of the one-particle states. The relation
(8.92) can of course also be reversed:

|ϕα1 · · · ϕαN 〉(±) =
1√
N !

a+α1
a+α2

· · · a+αN
|0〉 . (8.93)

Since a change of the initial ordering of the one-particle states in |ϕα1 · · ·
· · · ϕαN 〉(±) can for fermions cause a sign change (8.60), the sequence of the
operators in (8.93) is important. If we want to change this order, we must
know the commutation relation of the operators. This we get by the following
consideration:

a+α1
a+α2

|ϕα3 · · · ϕαN︸ ︷︷ ︸
∈H(±)

N − 2

〉(±) =
√
N (N − 1)|ϕα1 ϕα2 ϕα3 · · · ϕαN︸ ︷︷ ︸

∈H(±)
N

〉(±) ,

a+α2
a+α1

|ϕα3 · · · ϕαN 〉(±) =
√
N(N − 1)|ϕα2 ϕα1 ϕα3 · · · ϕαN 〉(±)

= ±
√
N(N − 1)|ϕα1 ϕα2 ϕα3 · · · ϕαN 〉(±) .

Interchange of two adjacent one-particle symbols in the N -particle ket-vector
| · · ·〉(±) changes for the antisymmetrized state the sign. The above two equa-
tions hold for arbitrary basis states. They lead after subtraction and addition,
respectively, therefore to the following operator identities:

[
a+α1

, a+α2

]
∓ ≡ a+α1

a+α2
∓ a+α2

a+α1
≡ 0 . (8.94)

The upper sign ([. . . , . . .]−: commutator) holds in the space H(+)
N , the lower

sign ([. . . , . . .]+: anti-commutator) in the space H(−)
N . Creation operators

for bosons commute, those for fermions anti-commute!

We now introduce the to a+α adjoint operator and call this already now, for
reasons, which will become clear very soon, the

annihilation operator

aϕα ≡ (
a+ϕα

)+ ←→ aα ≡ (a+α )
+ .

According to (8.92) and (8.93) we have, as a start, for the corresponding bra-
states:

(±)〈ϕα1 · · · ϕαN |aγ =
√
N + 1 (±)〈ϕγ ϕα1 · · · ϕαN | , (8.95)

(±)〈ϕα1 · · · ϕαN | =
1√
N !

〈0|(a+α1
· · · a+αN

)+

=
1√
N !

〈0|aαN aαN−1 · · · aα1 . (8.96)
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Which meaning and which functionality does the so introduced annihilation
operator have? We find the answer by evaluating the following matrix element:

(±)〈ϕβ2 · · · ϕβN︸ ︷︷ ︸
∈H(±)

N−1

|aγ |ϕα1 · · · ϕαN︸ ︷︷ ︸
∈H(±)

N

〉(±)

(8.95)
=

√
N (±)〈ϕγ ϕβ2 · · · ϕβN |ϕα1 · · · ϕαN 〉(±)

(8.78)
=

√
N

N !

∑

Pα

(±)pα Pα

[
δ(γ, α1) δ(β2, α2) · · · δ(βN , αN )

]

=
1√
N

1

(N − 1)!

{
δ(γ, α1)

∑

Pα

(±)pα Pα

[
δ(β2, α2) · · · δ(βN , αN )

]

+(±)1 δ(γ, α2)
∑

Pα

(±)pα Pα

[
δ(β2, α1) δ(β3, α3) · · · δ(βN , αN )

]

+ . . .

+(±)(N−1) δ(γ, αN )
∑

Pα

(±)pα Pα

[
δ(β2, α1) δ(β3, α2) · · · δ(βN , αN−1)

]}

(8.78)
=

1√
N

{
δ(γ, α1)

(±)〈ϕβ2 . . . ϕβN |ϕα2 · · · ϕαN 〉(±)

+(±)1 δ(γ, α2)
(±)〈ϕβ2 · · · ϕβN |ϕα1 ϕα3 · · · ϕαN 〉(±)

+ . . .

+(±)(N−1) δ(γ, αN ) (±)〈ϕβ2 · · · ϕβN |ϕα1 ϕα2 · · · ϕαN−1〉(±)

}
.

The (N − 1)-particle bra-state (±)〈ϕβ2 · · · ϕβN | is the same in all summands,
and also on the left-hand side of the equation. It is furthermore a completely

arbitrary basis state of the H(±)
N−1. We can therefore write:

aγ |ϕα1 · · · ϕαN 〉(±)

=
1√
N

{
δ(γ, α1)|ϕα2 · · · ϕαN 〉(±)

+(±)1 δ(γ, α2)|ϕα1 ϕα3 · · · ϕαN 〉(±)

. . .

+(±)N−1 δ(γ, αN )|ϕα1 ϕα2 · · · ϕαN−1〉(±)
}

. (8.97)

If the one-particle state |ϕγ〉 is found among the states |ϕα1〉 to |ϕαN 〉, which,
according to (8.75), build up the (anti)symmetrized state |ϕα1 · · · ϕαN 〉(±), it
results after application of aγ an (N−1)-particle state, in which |ϕγ〉, compared
to the initial state, is eliminated (annihilated). If |ϕγ〉 does not appear among
the N one-particle states, then the application of aγ will make the state |ϕα1 · · ·
ϕαN 〉(±) to vanish. The vacuum state does not contain a particle at all. It
therefore holds for this state, independently of γ (or ϕγ):

aγ |0〉 = 0 . (8.98)
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Because of

[aα1 , aα2 ]∓ =
([
a+α2

, a+α1

]
∓
)+

the fundamental commutation relation for the annihilation operators follows
directly from that of the creation operators (8.94). Annihilation opera-
tors commute in the case of bosons, and anti-commute in the case
of fermions:

[aα1 , aα2 ]∓ = 0 . (8.99)

It still remains to derive as a third fundamental commutation relation the one
between creators and annihilators. Let |ϕα1 · · · ϕαN 〉(±) be again an arbitrary

basis state of the H(±)
N . One after the other, we apply to this state the two

operators aβ and a+γ :

aβ
(
a+γ |ϕα1 · · · ϕαN 〉(±)

)

=
√
N + 1 aβ|ϕγ ϕα1 · · · ϕαN 〉(±)

= δ(β, γ)|ϕα1 · · · ϕαN 〉(±)

+(±)1 δ(β, α1)|ϕγ ϕα2 · · · ϕαN 〉(±)

+ . . .

+(±)N δ(β, αN )|ϕγ ϕα1 · · · ϕαN−1〉(±) .

A somewhat different result is found when one lets the operators act in the
reverse order:

a+γ
(
aβ|ϕα1 · · · ϕαN 〉(±)

)

= δ(β, α1)|ϕγ ϕα2 · · · ϕαN 〉(±)

+(±)1 δ(β, α2)|ϕγ ϕα1 ϕα3 · · · ϕαN 〉(±)

+ . . .

+(±)N−1 δ(β, αN )|ϕγ ϕα1 · · · ϕαN−1〉(±) .

When we multiply the last equation by ±1, and then subtract it from the
preceding one, then all terms except for the first summand of the first equation
are canceling each other:

(
aβ a

+
γ ∓ a+γ aβ

)|ϕα1 · · · ϕαN 〉(±) = δ(β, γ)|ϕα1 · · · ϕαN 〉(±) .

With the usual reasoning, we can read this equation as operator identity:

[
aβ, a

+
γ

]
∓ = δ(β, γ) . (8.100)

The commutator refers to bosons, and the anti-commutator to fermions.
By the relations (8.93) and (8.97) we succeeded to trace all N -particle states

back to the vacuum state |0〉. The mode of action of the annihilation operator
on the vacuum state is very simple (8.98).
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We have gotten rid of the cumbersome (anti)symmetrization of the N -
particle states by the introduction of the new operators. The corresponding
effect is absorbed now by the three formally simple, fundamental commutation
relations (8.94), (8.99), and (8.100). They prescribe the manner, in which the
sequence of construction operators can be changed.

The derivation so far presented of the creation and annihilation operators
and their modes of action is likewise valid for discrete (proper) and continuous
(improper) one-particle basis states. In the discrete case, though, the Fock
states (8.83) of the occupation number representation from Sect. 8.2.5 are by
a far more common starting point than the general (anti)symmetrized basis
states (8.75). The corresponding derivation follows more or less exactly the
same line as the one just discussed, however, unfortunately with somewhat
modified normalization factors.

One writes instead of (8.92):

a+αr
|N ; · · · nαr · · ·〉(±) = a+αr

C±|ϕα1 · · · ϕαN 〉(±)

≡ √
N + 1C±|ϕαr ϕα1 · · ·︸ ︷︷ ︸

nα1

. . . ϕαr · · ·︸ ︷︷ ︸
nαr

. . .〉(±)

= (±)Nr
√
N + 1C±| · · · ϕαr ϕαr · · ·︸ ︷︷ ︸

nαr+1

· · ·〉(±) .

Nr corresponds thereby to the number of pairwise interchanges, which are nec-
essary to permute the one-particle state |ϕαr 〉, which is at first created at the
first position, to its correct position, namely to the already present nαr states
of the same kind:

Nr =

r− 1∑

i=1

nαi . (8.101)

The creation operator shall act on the Fock states as follows:

a+αr
|N ; · · · nαr · · ·〉(±) = (±)Nr

√
nαr + 1 |N + 1; · · · nαr + 1 · · ·〉(±) . (8.102)

That differs indeed from (8.92) by the normalization factor. For the representa-
tion (8.102) one has, however, to bear in mind that the occupation restriction for
fermions is not directly recognizable. It is therefore sometimes recommendable
to itemize the expression according to fermions and bosons:

Bosons

a+αr
|N ; · · · nαr · · ·〉(+) =

√
nαr + 1|N + 1; · · · nαr + 1 · · ·〉(+) ,

nαr = 0, 1, 2, . . . (8.103)

Fermions

a+αr
|N ; · · · nαr · · ·〉(−) = (−1)Nr δnαr ,0|N + 1; · · · nαr + 1 · · ·〉(−) . (8.104)
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We can also here, of course, develop each Fock state out of the vacuum state
|0〉 by repeated application of the creation operator,

|N ;nα1 · · · nαr · · ·〉( afterpm) =
∏

r

(
a+αr

)nαr

√
nαr !

(±)Nr |0〉 , (8.105)

where, though, again the occupation restriction for fermions (nαr = 0, 1; nαr ! =
0! = 1! = 1) is to be taken into consideration.

The annihilation operator aαr is of course also now defined as the adjoint
operator of the creation operator. Its mode of action we get to know with a
similar consideration as that after (8.96):

(±)〈N ; · · · nαr · · · |aαr |N ; · · · nαr · · ·〉(±)

(8.102)
= (±)Nr

√
nαr + 1 (±)〈N + 1; · · · nαr + 1 · · · |N ; · · · nαr · · ·〉(±)

(8.84)
= (±)Nr

√
nαr + 1 δN+1,N

(
δnα1 nα1

· · · δnαr+1,nαr
· · ·)

= (±)Nr
√
nαr δN,N−1

(
δnα1nα1

· · · δnαr ,nαr−1 · · ·)

= (±)Nr
√
nαr

(±)〈N ;nα1 · · · nαr · · · |N − 1; · · · nαr − 1 · · ·〉(±) .

The product of the Kronecker-deltas sees to it that

Nr =
r− 1∑

i=1

nαi =
r− 1∑

i=1

nαi = Nr .

When one compares the first with the last line in the above chain of equations
and takes into consideration that it was chosen as bra-state (±)〈 · · · | an arbitrary
basis state of the Fock space, then one comes to the conclusion:

aαr |N ; · · · nαr · · ·〉(±) = (±)Nr
√
nαr |N − 1; · · · nαr − 1 · · ·〉(±) . (8.106)

We should formulate also this relation once more explicitly and separately for
bosons and fermions:

Bosons

aαr |N ; · · · nαr · · ·〉(+) =
√
nαr |N − 1; · · · nαr − 1 · · ·〉(+) ,

nαr = 0, 1, 2, . . . (8.107)

Fermions

aαr |N ; · · · nαr · · ·〉(−) = (−1)Nr δnαr ,1|N − 1; · · · nαr − 1 · · ·〉(−) . (8.108)

By means of the equations (8.103), (8.104), (8.107), and (8.108) one finds the
fundamental commutation relations of the creation and annihilation oper-
ators in the Fock space (see Exercise 8.3.1):

[
aαr , aαs

]
∓ =

[
a+αr

, a+αs

]
∓ = 0 , (8.109)

[
aαr , a

+
αs

]
∓ = δrs . (8.110)



256 CHAPTER 8. MANY-PARTICLE SYSTEMS

They are of course identical to (8.94), (8.99), and (8.100). The commutators
refer again to bosons, and the anti-commutators to fermions.

8.3.2 Operators in Second Quantization

We have been able in the preceding sections to trace back all (anti)symmetrized
N -particle states ultimately to the vacuum state |0〉, by having replaced the
complicated process of (anti)symmetrization by the application of creation and
annihilation operators, which obey a rather simple algebra, which manifests
itself exclusively in three fundamental commutation relations. The whole pro-
cedure, however, makes of course sense only if it is possible to express also the
observables of the N -particle system by creation and annihilation operators, so
that their actions on the states can be calculable exclusively on the basis of the
commutation relations.

Starting point for the following considerations is the representation (8.79)
of the general N -particle observable AN , where we can express the basis states,
according to (8.93) and (8.96), already by creators and annihilators :

AN =
1

N !

∑∫

α1···αN

∑∫

β1··· βN

a+α1
· · · a+αN

|0〉 (±)〈ϕα1 · · · |AN |ϕβ1
· · ·〉(±)〈0|aβN

· · · aβ1
.

(8.111)

In all physically relevant cases such an operator consists of a one-particle and a
two-particle part:

AN =

N∑

i=1

A
(i)
1 +

1

2

i �= j∑

i, j

A
(i, j)
2 . (8.112)

By a careful inspection of the matrix element (8.111) one can reach some further
substantial simplifications. This we show at first for the one-particle part. For
that purpose we still reshape the matrix element a bit:

(±)〈ϕα1 · · · ϕαN |
∑

i

A
(i)
1 |ϕβ1 · · · ϕβN 〉(±)

(8.59)
= 〈ϕα1 · · · ϕαN |S(±)

N

∑

i

A
(i)
1 |ϕβ1 · · · ϕβN 〉(±)

(8.51),(8.61)
= 〈ϕα1 · · · ϕαN |

N∑

i=1

A
(i)
1 |ϕβ1 · · · ϕβN 〉(±)

=
1

N !

∑

Pβ

(±)pβ Pβ

[〈
ϕ(1)
α1

∣∣∣A(1)
1

∣∣∣ϕ(1)
β1

〉 〈
ϕ(2)
α2

∣∣∣ ϕ(2)
β2

〉
· · ·

· · ·
〈
ϕ(N)
αN

∣∣∣ ϕ(N)
βN

〉
+ . . .+

〈
ϕ(1)
α1

∣∣∣ ϕ(1)
β1

〉
· · ·

〈
ϕ(N)
αN

∣∣∣A(N)
1

∣∣∣ϕ(N)
βN

〉 ]
.

This expression must now be inserted into (8.111), where the following simpli-
fying measures are possible:
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1. Each term of the sum over the permutations Pβ yields in (8.111) the same

contribution, because each by Pβ permuted ordering of the |ϕ(i)
βi
〉 can be led

back into the initial order by

a) a renaming of the integration (summation) variables βi and

b) a subsequent respective interchange of the annihilators in the product
aβN · · · aβ1 .

The step b) yields according to (8.99) a factor (±)pβ , which, together with
the identical factor already present in the above representation of the matrix
element, leads to (±)2pβ = +1. The sum yields therefore in (8.111) N ! equal
contributions.

2. Each summand in the square bracket contributes also the same value. It
is thereby important to remember that the particle indexes serve only to
combine to scalar products the right one-particle states in the right Hilbert

spaces. The Hilbert spaces H(i)
1 as such are of course for all i completely

equivalent. In order to see then that, for instance, the first and the last
summand in the square bracket of the above equation contribute the same to
(8.111), we replace in the last term βN by β1 and αN by α1. This renaming
of the variables is allowed, because in (8.111) it is summed and integrated,
respectively, over all the quantum numbers. After the renaming, though, the
creators and the annihilators are no longer in their original order. To bring
them back to this original order, an equal number of interchanges between
the a’s and between the a+’s are necessary, which in turn yields simply a
factor +1.

We are now able to formulate an intermediate result:

N∑

i=1

A
(i)
1 =

N

N !

∑∫

α1···αN

∑∫

β1···βN

a+α1
· · · a+αN

|0〉

·
{〈

ϕ(1)
α1

∣∣∣A(1)
1

∣∣∣ϕ(1)
β1

〉
δ(α2, β2) · · · δ(αN , βN)

}
〈0|aβN · · · aβ1

=
∑∫

α1

∑∫

β1

〈
ϕ(1)
α

∣∣∣A(1)
1

∣∣∣ϕ(1)
β

〉
a+α1

·
⎧
⎨

⎩
1

(N − 1)!

∑∫

α2···αN

a+α2
· · · a+αN

|0〉〈0|aαN · · · aα2

⎫
⎬

⎭ aβ1 .

The curly bracket represents just the identity of the H(±)
N−1 (8.76). We are

therewith left with the remarkably simple final result:

N∑

i=1

A
(i)
1 =

∑∫

α

∑∫

β

〈ϕα|A1|ϕβ〉a+α aβ . (8.113)
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For a given one-particle basis the matrix element is normally easily calculable.
One should note that on the right-hand side the particle number N does not
explicitly appear. It is hidden in the identity 1lN−1, which we have to actually
insert into the space between a+α and aβ.

Let us now inspect the two-particle part in (8.112). For this we have to
calculate the following matrix element, in order to insert it then into (8.111):

(±)〈ϕα1 · · · ϕαN |1
2

i �= j∑

i, j

A
(i, j)
2 |ϕβ1 · · · ϕβN 〉(±)

(8.59)
= 〈ϕα1 · · · ϕαN |S(±)

N

1

2

i �= j∑

i, j

A
(i, j)
2 |ϕβ1 · · · ϕβN 〉(±)

(8.51),(8.61)
= 〈ϕα1 · · · ϕαN |1

2

i �= j∑

i, j

A
(i, j)
2 |ϕβ1 · · · ϕβN 〉(±)

=
1

2N !

∑

Pβ

(±)pβ Pβ

[〈
ϕ(1)
α1

∣∣∣
〈
ϕ(2)
α2

∣∣∣A(1,2)
2

∣∣∣ϕ(1)
β1

〉 ∣∣∣ϕ(2)
β2

〉

·
〈
ϕ(3)
α3

∣∣∣ ϕ(3)
β3

〉
· · ·

〈
ϕ(N)
αN

∣∣∣ ϕ(N)
βN

〉
+
〈
ϕ(1)
α1

∣∣∣
〈
ϕ(3)
α3

∣∣∣A(1,3)
2

∣∣∣ϕ(1)
β1

〉 ∣∣∣ϕ(3)
β3

〉

·
〈
ϕ(2)
α2

∣∣∣ ϕ(2)
β2

〉 〈
ϕ(4)
α4

∣∣∣ ϕ(4)
β4

〉
· · ·

〈
ϕ(N)
αN

∣∣∣ ϕ(N)
βN

〉
+ · · ·

]
.

The square bracket contains N(N − 1) summands. Exactly the same reasoning
as that, which we just presented elaborately for the one-particle part, shows that
all N ! permutations Pβ, and also all the N(N − 1) terms in the square bracket
in (8.111) deliver the same contribution 1. Thereby it is again co-decisive that
the particle index only adjusts the correct assignment of the one-particle states.
As soon as this assignment has been done, the particle index can of course be
omitted. It remains therewith for the two-particle part in (8.111):

1

2

i �= j∑

i, j

A
(i, j)
2

=
1

2

∑∫

α1, α2

∑∫

β1, β2

〈ϕα1 ϕα2 |A(1,2)
2 |ϕβ1 ϕβ2〉

·a+α1
a+α2

⎧
⎨

⎩
1

(N − 2)!

∑∫

α3... αN

a+α3
· · · a+αN

|0〉〈0|aαN · · · aα3

⎫
⎬

⎭ aβ2 aβ1 .

In the curly bracket there stands the identity of the (N−2)-particle Hilbert space

H(±)
N−2. We see that also the two-particle operator is formally independent of

the particle number:

1

2

i �= j∑

i, j

A
(i, j)
2 =

1

2

∑∫

α1α2β1β2

〈ϕα1 ϕα2 |A(1,2)
2 |ϕβ1 ϕβ2〉 a+α1

a+α2
aβ2 aβ1 . (8.114)
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Notice the β-indexing, which is at the operators just in the opposite order com-
pared to that in the matrix element. According to our derivation, the latter
must be built with non-symmetrized two-particle states. One easily realizes,
however, that the four terms which arise, when one takes the (anti)symmetrized
states instead, are identical in the four-fold sum (four-fold integral) (8.114), so
that the normalization factor 1/(2!)2 takes care for the fact that the applica-
tion of the (anti)symmetrized two-particle state for building the matrix ele-
ment is equivalent to the application of the non-symmetrized state. One can
use, simply according to expedience, for the calculation of the matrix element
(anti)symmetrized or non-symmetrized states.

We had found out in Sect. 8.2.5 that in the case of a discrete one-particle
basis the occupation number (Fock) representation appears to be especially con-
venient. The creation and annihilation operators fulfill the same fundamental
commutation relations (8.109) and (8.110) as the operators of the general rep-
resentation (8.94), (8.99) and (8.100). Even the representation of a general
observable AN is in the Fock space the same as in (8.113) and (8.114), only the
matrix elements of the two-particle operator have then to be built in any case
with non-symmetrized two-particle states. The reason for this is the special
normalization (8.83), which was chosen for the Fock states. But this is really
the only difference.

What, in the end, did we achieve? By the introduction of creation and anni-
hilation operators we could replace the troublesome (anti)symmetrizing of the
N -particle states by the application of a certain product of these operators to
the vacuum state |0〉. The symmetry requirements, in the last analysis follow-
ing from the principle of indistinguishability, are accounted for by three sim-
ple commutation relations. By this, in particular, the in principle not allowed
(not reasonable) particle numbering is dropped. The observables also could be
expressed by creators and annihilators. The matrix elements, which physically
characterize the operator, are in normal cases easily calculable. In addition,
they have to be determined only once, fixing the operator then for all times.
It turns out to be a special advantage that the complete one-particle basis, for
which there exist in general several realizations, can be chosen purely according
to convenience.

8.3.3 Special Operators

As a start, we want to exercise the just developed formalism of second quan-
tization by an example of application. Let us consider thereto a system of N
identical (spinless) particles with an only distance-dependent pair interaction:

V
(i, j)
2 ≡ v

(∣∣∣r(i) − r(j)
∣∣∣
)

.
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The Hamilton operator therefore in the normal quantum-mechanical formula-
tion reads:

H =

N∑

i=1

p2
i

2
+

1

2

i �= j∑

i, j

v
(∣∣∣r(i) − r(j)

∣∣∣
)

. (8.115)

The (continuous) momentum or wave number representation appears to be con-
venient:

|k〉 ←→ 〈r|k〉 = 1

(2π)3/2
eik·r (plane wave) ,

because in this representation the one-particle operator (kinetic energy) becomes
diagonal. The pre-factor in the plane wave is for continuous wave numbers k
different from that in the case of discrete k-values (periodic boundary conditions,
(2.38), (2.78), (Vol. 6)). It is chosen such that the one-particle states |k〉 are
normalized to δ-functions :

〈k′|k〉 =
∫

d3r〈k′|r〉〈r|k〉 = 1

(2π)3

∫
d3r ei(k−k′)·r = δ(k′ − k) . (8.116)

For the kinetic energy we use the formula (8.113):

N∑

i=1

p2
i

2m
=

∫∫
d3k d3k′〈k| p

2

2m
|k′〉a+k′ak .

The matrix element is quickly calculated:

〈k| p
2

2m
|k′〉 = �

2k′2

2m
〈k|k′〉 = �

2k′2

2m
δ(k − k′) .

The one-particle part of the Hamilton operator (8.115) therewith reads:

N∑

i=1

p2
i

2m
=

∫
d3k

�
2k2

2m
a+k ak . (8.117)

The interaction-matrix element must be calculated of course also in the one-
particle basis {|k〉}. The position representation would actually be more conve-
nient. We therefore insert at proper positions the identity in the form

1l1 =

∫
d3r|r〉〈r| ; (8.118)
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a trick, which we have already used for the calculation of (8.116):

〈k1 k2|V (1,2)
2 |k3 k4〉 =

〈
k
(1)
1

∣∣∣
〈
k
(2)
2

∣∣∣V (1,2)
2

∣∣∣k(1)
3

〉 ∣∣∣k(2)
4

〉

=

∫
· · ·

∫
d3r1 · · · d3r4

(〈
k
(1)
1

∣∣∣ r(1)1

〉 〈
r
(1)
1

∣∣∣
)

·
(〈

k
(2)
2

∣∣∣ r(2)2

〉 〈
r
(2)
2

∣∣∣
)
V

(1,2)
2

(∣∣∣r(1)3

〉 〈
r
(1)
3

∣∣∣ k(1)
3

〉)(∣∣∣r(2)4

〉 〈
r
(2)
4

∣∣∣ k(2)
4

〉)

=

∫
· · ·

∫
d3r1 · · · d3r4 v (|r3 − r4|)

〈
k
(1)
1

∣∣∣ r(1)1

〉

·
〈
k
(2)
2

∣∣∣ r(2)2

〉 〈
r
(1)
3

∣∣∣ k(1)
3

〉 〈
r
(2)
4

∣∣∣ k(2)
4

〉 〈
r
(1)
1

∣∣∣ r(1)3

〉 〈
r
(2)
2

∣∣∣ r(2)4

〉

=

∫∫
d3r1 d

3r2 v (|r1 − r2|) (2π)−6 ei(k3 − k1)·r1 ei(k4 −k2)·r2 .

The further evaluation recommends the transition to relative and center-of-mass
coordinates,

r = r1 − r2 ; R =
1

2
(r1 + r2) ,

which with the representation (8.116) of the δ-function leads to

〈k1 k2|V (1,2)
2 |k3 k4〉 = v(k1 − k3) δ(k1 − k3 + k2 − k4) .

It is thereby

v(q) =
1

(2π)3

∫
d3r v(r) eiq·r = v(−q) (8.119)

the Fourier transform of the interaction potential. With the substitutions

k1 → k+ q ; k2 → p− q ; k3 → k ; k4 → p

it eventually comes out as interaction operator:

1

2

i �= j∑

i, j

V
(i, j)
2 =

1

2

∫∫∫
d3k d3p d3q v(q)a+k+ q a

+
p−q ap ak . (8.120)

The operator combination describes illustratively the interaction process as an
annihilation of two particles with the wave numbers p and k (incoming arrows
in Fig. 8.3) and subsequent creation of two particles with the wave numbers
k + q and p − q (outgoing arrows in Fig. 8.3). The momentum �q is thereby
exchanged and the interaction energy v(q) expended. (The discrete analog to
(8.120) is calculated as Exercise 8.3.7!)

At the end of this subsection we will introduce some special operators, which
are typical for the formalism of second quantization.
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Figure 8.3: Representation of an interaction process by annihilation (incoming
arrows) and creation (outgoing arrows) of two particles with momentum and
energy exchange

1) Occupation density operator

n̂α = a+α aα . (8.121)

A continuous one-particle basis (e.g. position-eigen states) is presumed. The
mode of action results from (8.92) and (8.97):

n̂α|ϕα1 · · · ϕαN 〉(±) =

=
[
δ(α− α1)|ϕα ϕα2 · · ·〉(±) +

+(±)1 δ(α− α2)|ϕα ϕα1 ϕα3 · · ·〉(±) +

+ . . . +

+(±)N−1 δ(α− αN )|ϕα ϕα1 ϕα2 · · · ϕαN−1〉(±)
]
=

=

[
N∑

i=1

δ(α − αi)

]
|ϕα1 · · · ϕαN 〉(±) . (8.122)

(Note that we interchanged in the second line ϕα into the second position with
a factor (±)1. In the fifth line we brought ϕα to the Nth position with a factor

(±)N−1.) The basis states of the H(±)
N are eigen-states of the occupation den-

sity operator n̂α. The corresponding eigen-value is the microscopic occupation
density

∑N
i=1 δ(α− αi).

2) Occupation number operator

n̂αr = a+αr
aαr . (8.123)

This operator is for the case of a discrete one-particle basis the analog to
(8.121). The Fock states (8.83) are eigen-states, where one finds according to
(8.103) and (8.107):

n̂αr |N ; · · · nαr · · ·〉(±) = nαr |N ; · · · nαr · · ·〉(±) . (8.124)

The occupation number nαr appears as eigen-value.
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3) Particle number operator

N̂ =

∫
dα n̂α (continuous) (8.125)

=
∑

r

n̂αr (discrete) . (8.126)

N̂ has obviously the same eigen-states as n̂α and n̂αr , respectively. The eigen-
value is in both cases the particle number N :

N =

∫
dα

N∑

i=1

δ(α− αi) (continuous)

=
∑

r

nαr (discrete) .

8.3.4 Exercises

Exercise 8.3.1
Prove the fundamental commutation relations,

[aαr , aαs ]∓ = [a+αr
, a+αs

]∓ = 0 ,

[aαr , a
+
αs
]∓ = δrs ,

for creation and annihilation operators in the discrete Fock space ((8.109) and
(8.110)).

Exercise 8.3.2
Let |0〉 be the normalized vacuum state, and a+α and aα creation and annihila-
tion operators for a particle in the one-particle state |ϕα〉. By the use of the
fundamental commutation relations derive the expression:

〈0|aβN · · · aβ1 a
+
α1

· · · a+αN
|0〉 =

∑

Pα

(±)pα Pα [δ(β1, α1) · · · δ(βN , αN )]

Pα is the permutation operator which acts on the state-indexes αi.

Exercise 8.3.3
For the occupation density operator calculate the commutators:

1) [n̂α, a
+
β ]− ; 2) [n̂α, aβ]− .

Are there differences for bosons and fermions?

Exercise 8.3.4
For the occupation number operator calculate the commutators:

1) [n̂αr , a
+
αs
]− ; 2) [n̂αr , aαs ]− .

Are there differences for bosons and fermions?
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Exercise 8.3.5

For fermions show that the following relations are valid:

1.

(aα)
2 = 0 ;

(
a+α

)2
= 0

2.

(n̂α)
2
= n̂α

3.

aα n̂α = aα ; a+α n̂α = 0

4.

n̂α aα = 0 ; n̂α a+α = a+α .

Exercise 8.3.6

The (anti)symmetrized basis states |ϕα1 · · · ϕαN 〉(±) of the H(±)
N are constructed

from continuous one-particle basis states. They are eigen-states of the particle
number operator N̂ . Show that then

1) a+β |ϕα1 · · · ϕαN 〉(±) ; 2) aβ |ϕα1 · · · ϕαN 〉(±)

are also eigen-states of N̂ , and calculate the eigen-values!

Exercise 8.3.7

N electrons in the volume V = L3 exert on each other the Coulomb interaction:

V2 =
1

2

i �= j∑

i, j

V
(i, j)
2 ; V

(i, j)
2 =

e2

4π ε0

1

|r̂i − r̂j |

r̂i, r̂j are the position operators of the ith and the jth electron, respectively.
Formulate the Hamilton operator of the system in second quantization. Use
as one-particle basis plane waves with discrete wave vectors k due to periodic
boundary conditions on V = L3.

Exercise 8.3.8

For a system of N electrons the operator of the electron density is given by

ρ̂(r) =

N∑

i=1

δ(r− r̂i) .

(ρ̂ and r̂i are operators, while r is as a variable a so-called c-number, i.e., not an
operator.) How does ρ̂(r) read in second quantization? Use, as in Exercise 8.3.7,
as one-particle basis plane waves with discrete wave vectors k.
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Exercise 8.3.9

For the construction of the states and the observables of an N electron system
one uses as one-particle basis that of the noninteraction system:

|kσ〉 = |k〉 |σ〉 ; k : discrete wave number

|↑〉 =

(
1
0

)
|↓〉 = (

0
)
.

Find therewith the following operators in second quantization:

1. Total momentum;

P =

N∑

i=1

pi

2. Total spin (x-component)

Sx =

N∑

i=1

sxi

3. Calculate with the results from 1. and 2. the commutator

[Sx, P]− .

Exercise 8.3.10

Show that the Hamilton operator of the interacting N -electron system, calcu-
lated in Exercise 8.3.7,

HN =
∑

kσ

ε0(k) a
+
kσ akσ +

1

2

∑

k,p,q
σσ′

v0(q) a
+
k+qσ a

+
p−qσ′ apσ′ akσ

commutes with the particle number operator,

N̂ =
∑

kσ

a+kσ akσ .

What does that physically mean?

Exercise 8.3.11

a+iσ and aiσ are the creation and annihilation operators of an electron with spin
σ (σ =↑, ↓) at the lattice site Ri. The commutation relations for fermions
(8.109), (8.110) are valid:

[
a+iσ, ajσ′

]
+
=
[
a+iσ, a

+
jσ′

]
+
= 0

[
aiσ, a

+
jσ′

]
+
= δijδσσ′ .
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Show that by

Sz
i =

�

2
(ni↑ − ni↓) ; niσ = a+iσaiσ

S+
i = � a+i↑ai↓

S−
i = � a+i↓ai↑

‘quite normal’ spin operators are defined. For this purpose, verify the commu-
tation relations for spin operators!

8.4 Applications

We want to demonstrate in this section by a few concrete examples of application
the impact of the principle of indistinguishability. We begin with the derivation
of the so-called Hartree-Fock equations, which must be reckoned practically
important, numerically evaluable basic equations for the determination of the
electron distributions in atoms, molecules, and solids. Subsequently we inspect
two relatively simple, but revealing two-electron systems, namely the hydrogen
molecule and the helium atom. Thereby we will get to know the so-called
exchange interaction, upon which important phenomena are based such as
the chemical bond or the entire field of magnetism.

8.4.1 Hartree-Fock Equations

As an example of application of the variational procedure we have derived the
Hartree equations in Sect. 7.1.3. They serve to fix optimal one-particle states for
the description of many-particle systems. The Hartree-Fock equations, which we
will now derive, fulfill the same purpose, but start with a physically more correct
ansatz. To be concrete we will in this subsection think of a many-electron
atom, whose Hamilton operator

HN =

N∑

i=1

H
(i)
1 +

1

2

i �= j∑

i, j

H
(i, j)
2 (8.127)

is composed by a one-particle operator, which incorporates the kinetic energy
of the electrons and their potential energy in the Coulomb field of the Z-fold
positively charged nucleus,

H
(i)
1 =

p2
i

2m
− Z e2

4π ε0 ri
, (8.128)

and a two-particle part, which represents the Coulomb repulsion of the shell
electrons among each other:

H
(i, j)
2 =

e2

4π ε0|ri − rj | . (8.129)
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ri, rj are the electron positions. Let the origin of coordinates coincide with
the position of the nucleus, which is assumed to be point-like and at rest. We
neglect all spin-dependent effects, in particular the spin-orbit interaction. For
the Hartree procedure in Sect. 7.1.3 we had chosen as test wave function for the
N -electron system a simple product ansatz of N one-particle wave functions
(7.18). In the meantime we have learned how systems of identical particles are
to be correctly treated, and we know therefore that the product ansatz does
not comply with the necessary symmetry requirements. Electrons as fermions
are to be described by antisymmetrized states. That is the new aspect of the
Hartree-Fock procedure, which also uses the variational method, but applies
Slater determinants (8.77) as test functionals |HF〉(−) for the to be varied one-
particle states, in order to bring into play from the beginning the correct sym-
metry:

|HF〉(−) =
1√
N !

∑

P
(−1)p P

(∣∣∣ϕ(1)
α1

〉 ∣∣∣ϕ(2)
α2

〉
· · ·

∣∣∣ϕ(N)
αN

〉)
. (8.130)

This state is, according to (8.82), already suitably normalized. The sets of
quantum numbers αi now contain in particular the projection (σ = ↑ or ↓) of
the electron spin:

|ϕα〉 ←→
(|ϕν↑〉
|ϕν↓〉

)
. (8.131)

The task now is, as in the Hartree procedure, to find optimal one-particle states
|ϕαi〉, which we will presume are orthonormalized:

〈ϕαi |ϕαj 〉 = δij . (8.132)

This is a constraint, which we will include later into the variational procedure
by means of Lagrange multipliers (Sect. 1.2.6, Vol. 2). Initially, however, one
has to calculate the functional

〈HN 〉HF =
(−)〈HF|HN |HF〉(−)

(−)〈HF|HF〉(−)
= (−)〈HF|HN |HF〉(−) . (8.133)

in order to vary it then with respect to the one-particle states.

We determine at first the contribution of the one-particle part in the Hamil-
ton operator (8.127):

(−)〈HF|
∑

i

H
(i)
1 |HF〉(−)

=
1

N !

∑

P P′
(−1)p+ p′ 〈ϕα1 · · · ϕαN |P+

∑

i

H
(i)
1 P ′|ϕα1 · · · ϕαN 〉 .

To the double sum only the terms P ′ = P contribute, since the one-particle
states are orthogonal and each of them appears exactly once in the N -particle
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state. For P ′ �= P there exists at least one scalar product with 〈ϕ(j)
αμ |ϕ(j)

αν 〉 = 0
because of μ �= ν:

(−)〈HF|
∑

i

H
(i)
1 |HF 〉(−) =

∑

i

1

N !

∑

P
〈ϕα1 · · · ϕαN |P+ H

(i)
1 P|ϕα1 · · · ϕαN 〉 .

The (N − 1)! permutations, which let the ith particle fixed, but permute the
(N − 1) others, deliver the same contribution:

(−) 〈HF|
∑

i

H
(i)
1 |HF〉 (−) =

(N − 1)!

N !

∑

i

N∑

μ=1

〈
ϕ(i)
αμ

∣∣∣H(i)
1

∣∣∣ϕ(i)
αμ

〉
.

We can now exploit again the equivalence of the one-particle Hilbert spaces
getting therewith the remarkable result that the summation over the particle
indexes is replaced by a summation over the different one-particle states, which
appear in the Slater determinant |HF〉(−), where only one-particle expectation
values remain to be calculated:

(−)〈HF|
N∑

i=1

H
(i)
1 |HF〉(−) =

N∑

μ=1

〈
ϕ(1)
αμ

∣∣∣H(1)
1

∣∣∣ϕ(1)
αμ

〉
. (8.134)

The particle-indexing on the right-hand side has, of course, actually become
redundant.

In the same manner we now treat the two-particle term in the Hamilton
operator (8.127):

(−) 〈HF| 1
2

i �= j∑

i, j

H
(i, j)
2 |HF〉 (−)

=
1

2

i �= j∑

i, j

1

N !

∑

P,P′
(−1)p+ p′ 〈ϕα1 · · · |P+H

(i, j)
2 P ′|ϕα1 · · ·〉 .

Because of (8.132) only the permutations P ′ = P and P ′ = Pij P yield contri-
butions unequal zero. For the number of transpositions in P ′ only p′ = p or
p′ = p± 1 are then possible:

(−) 〈HF| 1
2

i �= j∑

i, j

H
(i, j)
2 |HF〉 (−)

=
1

2

i �= j∑

i, j

1

N !

∑

P

{
〈ϕα1 · · · |P+H

(i, j)
2 P|ϕα1 · · ·〉

−〈ϕα1 · · · |P+H
(i, j)
2 Pij P|ϕα1 · · ·〉

}

=
1

2N(N − 1)

i �= j∑

i, j

N∑

ν, μ=1

{〈
ϕ(i)
αν

ϕ(j)
αμ

∣∣∣H(i, j)
2

∣∣∣ϕ(i)
αν

ϕ(j)
αμ

〉

−
〈
ϕ(i)
αν

ϕ(j)
αμ

∣∣∣H(i, j)
2

∣∣∣ϕ(j)
αν

ϕ(i)
αμ

〉}
.
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In the last step we have exploited, analogous to the line of thought which led to
(8.134), that the (N−2)! permutations P , which keep the particles i and j fixed,
lead to identical summands. In the curly bracket there are non-symmetrized
two-particle states, whose contributions of course do not really depend on the
particle-indexes i and j. The expression can therefore be further simplified:

(−) 〈HF| 1
2

i �= j∑

i, j

H
(i, j)
2 |HF〉 (−) (8.135)

=
1

2

ν �=μ∑

ν, μ

{〈
ϕ(1)
αν

ϕ(2)
αμ

∣∣∣H(1,2)
2

∣∣∣ϕ(1)
αν

ϕ(2)
αμ

〉
−
〈
ϕ(1)
αν

ϕ(2)
αμ

∣∣∣H(1,2)
2

∣∣∣ϕ(2)
αν

ϕ(1)
αμ

〉}
.

With (8.134) and (8.135) the functional 〈HN 〉HF is calculated. The further eval-
uation is then conveniently performed by using the position representation,
where, however, the electron spin must now be taken into account. Since the
spin-orbit interaction remains out of consideration, spin and position parts will
factorize in the basis states:

|rms〉 = |r〉|ms〉 ,
∣∣∣∣ms = +

1

2

〉
=

(
1
0

)
;

∣∣∣∣ms = −1

2

〉
=

(
0
1

)
.

It follows with (8.131) for the one-particle state |ϕα〉 in the position represen-
tation:

〈rms|ϕα〉 ≡ ϕνσ(r) δσms ; α = (ν, σ) , (8.136)

〈r|ϕνσ〉 ≡ ϕνσ(r) ; σ =↑, ↓ . (8.137)

The identity in the one-particle Hilbert space can then be written in the basis
{|rms〉} as:

1l1 =
∑

ms

∫
d3r|rms〉〈rms| . (8.138)

We reformulate (8.134) by a suitable inserting of the identity (αμ ≡ (μ, σμ)):

〈ϕαμ |H1|ϕαμ〉 =
∑

ms

∫
d3r〈ϕαμ |rms〉〈rms|H1|ϕαμ〉

=

∫
d3r 〈ϕμσμ |r〉〈r|H1|ϕμσμ〉

=

∫
d3r ϕ∗

μσμ
(r)

(
− �

2

2m
Δ− Z e2

4π ε0r

)
ϕμσμ(r) .

Here we have at first used that H1 is spin-independent, and then we switched
into the position representation according to the general rule (see (3.253),
Vol. 6).
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The matrix elements in (8.135) are rearranged in the same manner:
〈
ϕ(1)
αν

ϕ(2)
αμ

∣∣∣H(1,2)
2

∣∣∣ϕ(1)
αν

ϕ(2)
αμ

〉

=
∑

ms

∑

m′
s

∫∫
d3r d3r′

〈
ϕ(1)
αν

ϕ(2)
αμ

∣∣∣ (rms)
(1) (r′ m′

s)
(2)
〉

·
〈
(rms)

(1) (r′ m′
s)

(2)
∣∣∣H(1,2)

2

∣∣∣ϕ(1)
αν

ϕ(2)
αμ

〉

=

∫∫
d3r d3r′ ϕ∗

ν σν
(r)ϕ∗

μσμ
(r′)

e2

4π ε0|r− r′| ϕν σν (r)ϕμ σμ (r′) .

Completely analogously one finds for the second summand in (8.135):
〈
ϕ(1)
αν

ϕ(2)
αμ

∣∣∣H(1,2)
2

∣∣∣ϕ(2)
αν

ϕ(1)
αμ

〉

= δσνσμ

∫∫
d3r d3r′ ϕ∗

ν σν
(r)ϕ∗

μ σμ
(r′)

e2

4π ε0|r− r′| ϕν σν (r
′)ϕμσμ(r) .

The Kronecker delta for the spin variable results, because of (8.136), from the
particle interchange in the ket-state. It concerns here obviously an interaction
exclusively between electrons with parallel spins.

All in all we have found for the energy functional (8.133) the following expres-
sion:

〈HN 〉HF =
∑

μσ

∫
d3r ϕ∗

μσ(r)

(
− �

2

2m
Δ− Z e2

4π ε0r

)
ϕμσ(r)

+
1

2

e2

4π ε0

(μ,σ) �=(ν,σ′)∑

μ,ν

σ,σ′

∫∫
d3r d3r′ ϕ∗

μσ(r)ϕ
∗
νσ′ (r′)

1

|r− r′|

·(ϕμσ(r)ϕνσ′ (r′)− δσσ′ ϕμσ′ (r′)ϕνσ(r)
)
. (8.139)

Together with the still to be respected constraints (8.132) we have now to vary
this relation with respect to the one-particle wave functions and to put the first
variation equal to zero:

δ
(
〈HN 〉HF −

∑

μν
σ

εμνσ

∫
d3r ϕ∗

μσ(r)ϕνσ(r)
)

!
= 0 .

The εμνσ are Lagrange multipliers. The performance of the procedure follows
exactly the same line as for the Hartree equations (7.22). We can therefore
restrict ourselves here simply to present the results:

Hartree-Fock equations

(
− �

2

2m
Δ− Z e2

4π ε0r

)
ϕμσ(r) +

e2

4π ε0

(μσ) �= (νσ′)∑

ν,σ′

∫
d3r′ ϕ∗

νσ′(r′)
1

|r− r′|

·(ϕμσ(r)ϕνσ′ (r′)− δσσ′ ϕμσ′ (r′)ϕνσ(r)
)−

∑

ν

εμνσ ϕνσ(r)
!
= 0 . (8.140)
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It is common to diagonalize the last term by a suitable unitary transformation,

εμνσ
U−→ εμσ δμν ,

whereby of course also the wave functions ϕνσ(r) transform into corresponding
linear combinations. Since we do not have these functions to our disposal yet,
and actually intend to determine them, we still utilize the same letter for them.
That yields the following, more frequently used form of the

Hartree-Fock equations

[
− �

2

2m
Δ− Z e2

4π ε0r
+

e2

4π ε0

(μσ) �= (νσ′)∑

ν,σ′

∫
d3r′

|ϕνσ′ (r′)|2
|r− r′|

−Âμσ(r)

]
ϕμσ(r) = εμσ ϕμσ(r) . (8.141)

The Hartree-Fock equations differ from the Hartree equations (7.22) by the
so-called exchange term

Âμσ(r) =

ν �=μ∑

ν

∫
d3r′

e2

4π ε0|r− r′|
ϕ∗
νσ(r

′)ϕμσ(r
′)ϕνσ(r)

ϕμσ(r)
, (8.142)

which is exclusively caused by electrons, whose spins are parallel to that of
the singled out (μ, σ)-electron. One denotes this term as non-local because
there appears in the integrand ϕμσ with the argument r′ �= r. Not the least
of this fact, the integral-differential equations (8.141) are in general analytically
unsolvable. For realistic problems one needs a powerful computer.

The Hartree-Fock equations have the form of eigen-value equations for the
Lagrange multipliers εμσ and the one-particle wave functions ϕμσ(r). The fol-
lowing terms determine these:

1. kinetic energy,

2. Coulomb attraction by the Z-fold positively charged nucleus,

3. (selfconsistent) repulsion by the other electrons,

4. effective attraction by other electrons with parallel spins, due to the exchange
term.

In comparison to the Hartree equations point 4. is new. It is an immediate
consequence of the antisymmetrization principle, and therewith classically not
understandable. It conveys the impression, as if there would exist, for the singled
out electron in the state |ϕμσ〉, an additional effective interaction. One has given
to this term the name exchange interaction. We know that the Pauli principle
is equivalent to the antisymmetrization principle, according to which electrons
with parallel spins draw each other aside. Any mechanism, however, which keeps
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at bay likely charged particles, leads otherwise to a lowering of the potential
energy, and is therefore equivalent to an effective attractive interaction.

The just mentioned influence of the Pauli principle is of course particularly
large when as many as possible electrons orient their spins spontaneously paral-
lel, i.e. without any external enforcement. This fact explains the phenomenon
of band-ferromagnetism in certain solids. On the other hand, the fact that not
all metallic solids are ferromagnetic, is also a consequence of the Pauli principle.
Because of the parallel spin orientation, the electrons have to enter higher and
higher energy levels. In a certain sense, their kinetic energy increases. When
the lowering of the potential energy is stronger than the increase of the kinetic
energy, then the electron spins will be spontaneously parallel. The magnetic
spin moments (5.240) then take care for a spontaneous finite magnetization of
the solid. In the opposite case it is energetically more convenient for the sys-
tem to contain an equal number of σ = ↑- and σ = ↓-electrons. The magnetic
moments (vectors!) compensate each other. The solid is then non-magnetic
(paramagnetic).

The solution of the Hartree-Fock equations (8.141) is carried out by itera-
tion, in the same way as explained in connection with the Hartree equations
after Eq. (7.24). The results are optimal one-particle states ϕμσ(r), by which
an estimation (upper bound) of the ground-state energy E0 is possible. The
comparison of (8.141) and (8.139) yields, together with the variational principle
(7.5):

E0 ≤ 〈HN 〉HF =
∑

μσ

εμσ − 1

2

(μσ) �=(νσ′)∑

μ,ν
σ,σ′

(
Cνσ′

μσ −Aνσ
μσ δσσ′

)
. (8.143)

Here we have used the following abbreviations:

Coulomb integral

Cνσ′
μσ =

e2

4π ε0

∫∫
d3r d3r′

|ϕμσ(r)|2 |ϕνσ′ (r′)|2
|r− r′| , (8.144)

exchange integral

Aνσ
μσ =

e2

4π ε0

∫∫
d3r d3r′

ϕ∗
μσ(r)ϕ

∗
νσ(r

′)ϕμσ(r
′)ϕνσ(r)

|r− r′| . (8.145)

The Hartree-Fock energy is lower than the Hartree energy, and represents there-
with, according to the variational principle, a better approach to the ground-
state energy. However, it is of course also not an exact result, either, because
the Slater determinant (8.130) does agree with the real ground state only in the
case of noninteracting electrons.

8.4.2 Hydrogen Molecule

In this subsection we want to demonstrate by means of a simple model cal-
culation (Heitler-London method) that the covalent (homopolar, chemical)
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Figure 8.4: Distances in the hydrogen molecule

bond of the H2-molecule is a direct consequence of the antisymmetrization prin-
ciple for systems of identical fermions. What concerns the hydrogen molecule,
it of course is actually a four-particle problem, because it is composed of two
electrons (e−1 , e

−
2 ) and two protons (pa, pb). However, the proton mass is about

2000-times larger than the electron mass. We therefore can neglect, as a first
rather well justifiable approximation, the co-motion of the nuclei, and fix the
protons with a constant distance at Ra and Rb. What is then left is effectively
a two-electron problem.

As a further simplification we will incorporate in the Hamilton operator
only Coulomb interactions, and take the spin of the electrons into consideration
only for the classification of the states. Figure 8.4 illustrates, which terms are
relevant:

H =

2∑

i=1

[
p2
i

2m
− e2

4π ε0

(
1

ri a
+

1

ri b

)]
+

e2

4π ε0

(
1

r12
+

1

Rab

)
. (8.146)

Besides the kinetic energy of the two electrons and their Coulomb attraction by
the two protons,

ri a = |ri −Ra| ; ri b = |ri −Rb| , (i = 1, 2) , (8.147)

we still have to include their mutual repulsion, and the analogous repulsion
between the protons:

r12 = |r1 − r2| ; Rab = |Ra −Rb| . (8.148)

The eigen-states and the eigen-values of the total Hamilton operator will have
to be considered as functions of the distance Rab between the protons, which in
our model is a parameter and not at all a dynamical variable.

The Hamilton operator (8.146) is, as required by the general theory, symmet-
ric in the indexes 1 and 2 of the two identical fermions. H does not contain any
spin-parts, and does therefore commute with the square of the absolute value
as well as with the z-component of the total spin operator S of the two-electron
system. The common eigen-states will therefore factorize in a space-part |q〉
and a spin-part:

|ψ2〉 = |q〉|S ms〉 .
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We can exactly write down the spin part. For, from Sect. 5.4.4 we know that
the two spin-(1/2) particles can couple to a total spin S = 0 or S = 1. We have
calculated the corresponding four possible spin states,

|0 0〉 ; |1 − 1〉, |1 0〉, |1 1〉 ,
as Exercise 5.4.1. It results a singlet,

|0 0〉 = 1√
2

(|↑ 〉(1)|↓ 〉(2) − |↑ 〉(2)|↓ 〉(1)) , (8.149)

and a triplet:

|1 − 1〉 = |↓ 〉(1)|↓ 〉(2) ,
|1 0〉 =

1√
2

(|↑ 〉(1)|↓ 〉(2) + |↑ 〉(2)|↓ 〉(1)) , (8.150)

|1 1〉 = |↑ 〉(1)|↑ 〉(2) .
The singlet state is obviously antisymmetric with respect to particle interchange,
while the triplet state is symmetric. Since the total state |ψ2〉 of the two-electron
system has to be in any case antisymmetric, |0 0〉 couples with a symmetric
space-part, and |1ms〉 with an antisymmetric one:

∣∣∣ψ(S)
2

〉
=
∣∣∣q(+)

〉
|0 0〉 ;

∣∣∣ψ(T )
2

〉
=
∣∣∣q(−)

〉
|1ms〉 . (8.151)

Here a remarkable correlation between the symmetry of the space-wave function
and the spin S betokens itself. If it turned out that different energies belong to
|q(+)〉 and |q(−)〉, then a certain spin orientation would be energetically favored,
and that, although the Hamilton operator itself is spin-independent.

The space-part |q(±)〉 can not be calculated exactly. Here we will be content
with a very simple estimation, which, however, reproduces already rather well
the physically important aspects. For the limiting case Rab → ∞, in which the
two protons with their ‘own’ electron are infinitely far away from each other,
the scope of work goes over into that of the normal hydrogen problem, known
from Sect. 6.2, whose solution is already available:

(
p2
1

2m
− e2

4π ε0r1a

) ∣∣∣ϕ(1)
a

〉
= Ea

∣∣∣ϕ(1)
a

〉
,

(
p2
2

2m
− e2

4π ε0r2b

) ∣∣∣ϕ(2)
b

〉
= Eb

∣∣∣ϕ(2)
b

〉
.

We use the eigen-states following from these equations as one-particle states for
the construction of correctly antisymmetrized two-particle states:

∣∣∣q(±)
〉

= S
(±)
2 |ϕa ϕb〉 (8.56)

=
1

2!
(1l2 ± P12)

(∣∣∣ϕ(1)
a

〉 ∣∣∣ϕ(2)
b

〉)

=
1

2

(∣∣∣ϕ(1)
a

〉 ∣∣∣ϕ(2)
b

〉
±
∣∣∣ϕ(2)

a

〉 ∣∣∣ϕ(1)
b

〉)
. (8.152)
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This is the exact eigen-state of course only if the two hydrogen atoms are
infinitely far away from each other. The approximation (Heitler-London
method) consists in applying the two-electron state |q(±)〉 nevertheless even
for finite Rab as approximate eigen-state, in order to calculate with it the
expectation value of the Hamilton operator as an estimation for the system
energy:

E± =

〈
q(±)

∣∣H
∣∣q(±)

〉
〈
q(±)

∣∣ q(±)
〉 . (8.153)

We therewith put up with the fact that the ansatz (8.152) neglects polar states
of the form

∣∣∣ϕ(1)
i1

〉 ∣∣∣ϕ(2)
i2

〉
;

∣∣∣ϕ(1)
b1

〉 ∣∣∣ϕ(2)
b2

〉
,

which concerns situations, in which both electrons are to be found at one and
the same proton. With the focus on the chemical bond, at the qualitative under-
standing of which this model calculation aims, they would be a measure for the
rest ionicity.

We are mainly interested in an estimation of the ground-state energy. It
seems then of course obvious to consider |ϕa〉 and |ϕb〉 as the two ground states
of the electrons in the hydrogen atoms (∼ 1s-wave functions). Since the states
belong to two different nuclei, the Pauli principle need not be obeyed. The
electrons can occupy the ground states even with the same spin projections.
According to the variational principle (7.5), (8.153) represents in any case an
upper bound for the ground-state energy.

At first we will not make explicit use of the fact that |ϕa〉, |ϕb〉 are ground
states, but permit arbitrary eigen-states of the hydrogen atom. These shall
be normalized, but cannot be assumed to be orthogonal to each other. The
so-called overlap integral,

Lab ≡
〈
ϕ(1,2)
a

∣∣∣ ϕ(1,2)
b

〉
=

∫
d3r ϕ∗

a(r)ϕb(r) = L∗
ba , (8.154)

will always be unequal zero, because the hydrogen-eigen functions are centered
around different nuclear positions. Lab will decrease fast, though, with increas-
ing distance Rab of the nuclei. It determines the normalization of the test state
|q(±)〉:

〈
q(±)

∣∣∣ q(±)
〉

=
1

2

(
1± |Lab|2

)
. (8.155)
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For the numerator in (8.153) the following terms are to be calculated:
〈
ϕ(1)
a

∣∣∣
〈
ϕ
(2)
b

∣∣∣H
∣∣∣ϕ(1)

a

〉 ∣∣∣ϕ(2)
b

〉
=
〈
ϕ(2)
a

∣∣∣
〈
ϕ
(1)
b

∣∣∣H
∣∣∣ϕ(2)

a

〉 ∣∣∣ϕ(1)
b

〉

= Ea + Eb +
e2

4π ε0Rab

+
e2

4π ε0

〈
ϕ(1)
a

∣∣∣
〈
ϕ
(2)
b

∣∣∣
(

1

r12
− 1

r1b
− 1

r2a

) ∣∣∣ϕ(1)
a

〉 ∣∣∣ϕ(2)
b

〉

= Ea + Eb +
e2

4π ε0

[
1

Rab
−
〈
ϕ(1)
a

∣∣∣
1

r1b

∣∣∣ϕ(1)
a

〉

−
〈
ϕ
(2)
b

∣∣∣
1

r2a

∣∣∣ϕ(2)
b

〉
+
〈
ϕ(1)
a

∣∣∣
〈
ϕ
(2)
b

∣∣∣
1

r12

∣∣∣ϕ(1)
a

〉 ∣∣∣ϕ(2)
b

〉]
,

〈
ϕ(1)
a

∣∣∣
〈
ϕ
(2)
b

∣∣∣H
∣∣∣ϕ(2)

a

〉 ∣∣∣ϕ(1)
b

〉
=
(〈

ϕ(2)
a

∣∣∣
〈
ϕ
(1)
b

∣∣∣H
∣∣∣ϕ(1)

a

〉 ∣∣∣ϕ(2)
b

〉)∗

=

(
Ea + Eb +

e2

4π ε0Rab

)
|Lab|2 − e2

4π ε0

(〈
ϕ(1)
a

∣∣∣
1

r1b

∣∣∣ϕ(1)
b

〉
L∗
ab

+
〈
ϕ
(2)
b

∣∣∣
1

r2a

∣∣∣ϕ(2)
a

〉
Lab

)
+

e2

4π ε0

〈
ϕ(1)
a

∣∣∣
〈
ϕ
(2)
b

∣∣∣
1

r12

∣∣∣ϕ(2)
a

〉 ∣∣∣ϕ(1)
b

〉
.

One now defines, something differently from that in the Hartree-Fock equations
in (8.144), as Coulomb integral:

Cab =
e2

4π ε0

[
1

Rab
−
∫

d3r1
|ϕa(r1)|2
|r1 −Rb| −

∫
d3r2

|ϕb(r2)|2
|r2 −Ra|

+

∫∫
d3r1 d

3r2
|ϕa(r1)|2 |ϕb(r2)|2

|r1 − r2|
]
. (8.156)

The terms are easily (classically) interpretable. The first results from the
Coulomb repulsion of the two protons, the second from the attraction of the
electron, which belongs to nucleus a, by the nucleus b, the third from the attrac-
tion of the electron, which belongs to nucleus b, by the nucleus a, and the fourth
from the repulsion of the two electrons with each other.

On the other hand, the terms of the exchange integral are classically not
interpretable:

Aab =
e2

4π ε0

[
1

Rab
|Lab|2 − Re

(
L∗
ab

∫
d3r1

ϕ∗
a(r1)ϕb(r1)

|r1 −Rb|
+ Lab

∫
d3r2

ϕ∗
b(r2)ϕa(r2)

|r2 −Ra|
)

+ Re

∫∫
d3r1 d

3r2
ϕ∗
a(r1)ϕ

∗
b(r2)ϕa(r2)ϕb(r1)

|r1 − r2|
]
. (8.157)

When |ϕa〉 and |ϕb〉 are the ground states of the two hydrogen atoms, then all
quantities in (8.157) are real. In addition, the second and the third summand
are then identical.
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Figure 8.5: Singlet and triplet ground-state energies for the hydrogen molecule
as function of the distance of the protons, according to the Heitler-London
method

When we now insert the at last calculated partial results into (8.153) then
we have:

E± = Ea + Eb +
Cab ±Aab

1± |Lab|2 . (8.158)

The energy E+ belongs to the singlet state |ψ(S)
2 〉, the energy E− to the triplet

state |ψ(T )
2 〉 (8.151). The integrals Lab, Cab, Aab are easily evaluated, at least

with a computer, with the known eigen-functions of the hydrogen atom (see
(6.60)–(6.65)). The first analytical calculation traces back to W. Heitler and
F. London (Z. Phys. 44, 455 (1927)) as well as Y. Suguira (Z. Phys. 45, 485
(1927)), where the ground-state wave functions of the hydrogen atoms, centered
around Ra and Rb, were applied. The numerical values of the integrals strongly
depend on the distance Rab of the nuclei (Fig. 8.5). The important result is that
one finds for not too small distances: |Lab| � 1 and Aab < 0. This means:

E+ < E− . (8.159)

For the singlet state with the energy E+ there exists an energetically most

convenient finite (!) distance of the nuclei R
(0)
ab (Fig. 8.5). That explains the

chemical bond of the hydrogen molecule, since the system aims of course to

reach the state with minimal energy. The triplet state |ψ(T )
2 〉, to which the

antisymmetric position-wave function belongs, is obviously non-bonding.
Even though a simple ansatz is used, the agreement of the model results

with experimental data is rather satisfying:

model: R
(0)
ab = 0.869 Å ; (E+ + 2ER)

(0) = −3.14 eV ,

experiment: R
(0)
ab ≈ 0.74 Å ; (E+ + 2ER)

(0) ≈ −4.73 eV .

8.4.3 Helium Atom

The Helium atom is the simplest many-electron atom of the periodic table, but
nevertheless not exactly solvable. The focus is here therefore only to illustrate
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Figure 8.6: Schematic arrangement of electrons and nucleus in the Helium atom

by means of simple approximations, which consequences result from the fact
that the two Helium-electrons are about two identical particles. We will see
that the principle of indistinguishability leads to some interesting, classically
not to be expected effects.

We neglect, as we did in the case of the hydrogen molecule, the co-motion of
the nucleus and put the origin of coordinates at the twofold positively charged
nucleus. We assume, furthermore, that spin-dependent interactions (spin-orbit
interaction, magnetic interactions, . . .) do not play any role, so that the spin
comes up only for the classification of the states. The Coulomb interactions,
which come into consideration, can directly be taken from Fig. 8.6:

H = H
(1)
1 +H

(2)
1 +H

(1,2)
2 =

2∑

i=1

(
p2
i

2m
− 2e2

4π ε0 ri

)
+

e2

4πε0

1

|r1 − r2| . (8.160)

The first two terms are one-particle operators representing the undisturbed prob-
lem of an electron in the Coulomb field of a point charge Z e (Z = 2). We know
the solution from Sect. 6.2. The third summand is as electron-electron interac-
tion a two-particle operator. Since H does not contain spin-parts, the eigen-
states will factorize, as for the H2-molecule (Sect. 8.4.2), into a space (orbital)
and a spin part. The spin states are of course, as in (8.149) and (8.150), a
singlet (S = 0)-state and a triplet (S = 1)-state. Therefore we can start, as in
(8.151), with:

∣∣∣ψ(S)
2

〉
=

∣∣∣q(+)
〉
|0, 0〉 ;

∣∣∣ψ(T)
2

〉
=

∣∣∣q(−)
〉
|1ms〉 . (8.161)

Both total states |ψ(S,T)
2 〉 are antisymmetric with respect to particle interchange,

so that at first nothing speaks against possible transitions between these states.
The transposition operator P12 can formally be written as the product of two
transposition operators, P12 = P position

12 P spin
12 , by which the one interchanges

the particles only with respect to their space-states, and the other with respect
to their spin states. Because of its spin-independence, the Hamilton opera-
tor commutes already with P position

12 . With the same considerations as after
(8.53) (see also Exercise 8.2.1) it can then be concluded that the space-part
|q(±)〉 retains its symmetry character for all times. This means that transitions

between |ψ(S)
2 〉 and |ψ(T )

2 〉 are impossible (prohibition of inter-combinations)
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(see Exercise 8.2.6). Transitions require:

ΔS = 0 . (8.162)

It appears that, and this is a first important consequence of the principle of
indistinguishability, there were two sorts of Helium, the one with S = 0 and the
other with S = 1. For these, special nomenclatures have been established:

∣∣∣ψ(S)
2

〉
←→ S = 0 ←→ para-Helium,

∣∣∣ψ(T )
2

〉
←→ S = 1 ←→ ortho-Helium. (8.163)

It is clear that the exact He-Hamilton operator will not be completely spin-
independent, so that prohibition on the transition will not be valid without
exception. But certainly, transitions with ΔS = 0 will dominate very strongly.
It is, however, interesting in any case that the fact, already observed for the
H2-molecule, namely, the principle of indistinguishability gives rise to dramatic
spin effects although the model-Hamilton operator itself is not spin-dependent!

In the following we want to get a general qualitative idea about the energy
spectrum of the Helium. This we do in three stages:

1) ‘Undisturbed’ Helium spectrum

At first, let us switch off the electron-electron interaction (H
(1,2)
2 ≡ 0). If,

however, the two electrons disregard each other, then what is left is nothing but
the normal Coulomb problem (Z = 2) solved in Sect. 6.2. The eigen-states will
be (anti)symmetrized products of the one-electron states |ϕnlml

〉:
∣∣∣q(±)

〉
(0) ≡

∣∣∣ϕnlml
ϕn′l′m′

l

〉
(±) = A

(∣∣∣ϕ(1)
nlml

〉 ∣∣∣ϕ(2)
n′l′m′

l

〉
±
∣∣∣ϕ(2)

nlml

〉 ∣∣∣ϕ(1)
n′l′m′

l

〉)
.

(8.164)

n, l, ml are the principal quantum number, the azimuthal quantum number,
and the magnetic quantum number. The normalization constant A is equal to
1/2 for (n lml) = (n′ l′m′

l), otherwise equal to 1/
√
2. The one-particle states

|ϕn lml
〉 are the Z = 2-solutions, known from (6.56) and (6.60) to (6.65):

(
H

(1)
1 +H

(2)
1

) ∣∣∣ϕn lml
ϕn′ l′ m′

l

〉
(±) =

(
E(0)

n + E
(0)
n′

) ∣∣∣ϕn lml
ϕn′ l′ m′

l

〉
(±).

For the energies E
(0)
n,n′ it holds with (6.43):

E
(0)

n(′) = − 4ER

n(′)2 ; n(′) = 1, 2, 3, . . .

ER is the Rydberg energy defined in (6.33). The states are in total n2 · n′2-
fold degenerate with respect to l, ml, l

′, m′
l. For ortho-Helium there comes in

addition the threefold degeneracy according to ms. The symmetric states of the
para-Helium |ϕn lml

ϕn′ l′ m′
l
〉(+) can be built for all combinations of quantum

numbers, and therefore also for n′ = n, l′ = l, m′
l = ml. But the latter are
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obviously absent in the spectrum of the ortho-Helium. The corresponding states
are, according to (8.164), identical to zero. This means that in particular the
undisturbed ground state,

|E(0)
100, 100〉 ≡ |ϕ100 ϕ100〉(+) ,

must be ascribed to the para-Helium:

E
(0)
100, 100 = 2E

(0)
1 = −8ER ≈ −108.8 eV . (8.165)

The first excited state of the unperturbed two-electron system has the energy:

E
(0)
100, 2lml

= −5ER ≈ −68.0 eV . (8.166)

That means that one of the two particles remains in the undisturbed ground
state, while the other goes into the first excited state. For the case that both
the electrons enter the first excited state one finds:

E
(0)
2l ml, 2l′ml′

= −2ER ≈ −27.2 eV . (8.167)

This corresponds to an excitation energy of

E
(0)
2l ml, 2l′ml′

− E
(0)
100,100 = 6ER ≈ 81.6 eV .

It is interesting to compare this value with the so-called ionization energy E
(0)
ion.

That is the energy which must be provided in order to shift one of the electrons

from the ground state into the continuum
(
E

(0)
n=∞ = 0

)
:

E
(0)
ion = E

(0)
100,∞ − E

(0)
100,100 = −4ER + 8ER ≈ 54.4 eV . (8.168)

One recognizes that the excitation energy for the state |ϕ2l ml
ϕ2l′ml′ 〉 is already

substantially larger than the ionization energy. This state thus lies already in

the continuum of the spectrum of H0 = H
(1)
1 +H

(2)
1 . If such a state is excited

by absorption of radiation, the subsequent de-excitation must not necessarily
occur into the ground state or any other state of the He-spectrum. It can
also be a singly ionized Helium (He+) together with a free electron, where the
energy law determines the kinetic energy of the electron. One calls this process
autoionization. For all the discrete states below the continuum limit (ionization
limit) one of the two He-electrons stays in the one-particle ground state |ϕ100〉.
To their characterization the specification of the quantum numbers of the other
electron (n lml) is therefore completely sufficient. They accumulate for n → ∞
at the continuum limit. We have plotted in the schematic Fig. 8.7 only the
discrete levels for n = 1, 2, 3.

2) Influence of the electron-electron interaction on the ground state
The ground state

|ϕ100 ϕ100〉(+) = |ϕ(1)
100〉|ϕ(2)

100〉
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Figure 8.7: Energy spectrum of ortho- and para-Helium

belongs to para-Helium and is not degenerate. Let us calculate in the first
order perturbation theory the energy shift, which is to be expected due to the
Coulomb repulsion. According to (7.39) this means to evaluate the expectation

value of the interaction operator H
(1,2)
2 in the unperturbed ground state:

ΔE
(1)
100,100 = (+)〈ϕ100 ϕ100|H(1,2)

2 |ϕ100 ϕ100〉(+) . (8.169)

The easiest way to do it, is using the position representation. For this purpose
we insert into suitable spots the identity,

1l =

∫
d3r|r〉〈r| ,

where |r〉 is an eigen-state of the position operator:

ΔE
(1)
100,100 =

∫∫
d3r1 d

3r2

〈
ϕ
(1)
100

∣∣∣
〈
ϕ
(2)
100

∣∣∣H(1,2)
2

(∣∣∣r(1)1

〉 〈
r
(1)
1

∣∣∣ ϕ(1)
100

〉)

·
(∣∣∣r(2)2

〉 〈
r
(2)
2

∣∣∣ ϕ(2)
100

〉)

=
e2

4π ε0

∫∫
d3r1 d

3r2
1

|r1 − r2| |〈ϕ100|r1〉|2|〈ϕ100|r2〉|2 .

It holds for the one-particle wave function according to (6.56) and (6.60) with
Z = 2:

ϕ100(r) = 〈r|ϕ100〉 =
√

8

π a3B
exp

(
− 2r

aB

)
.

aB is the Bohr radius (6.32):

2aBER =
e2

4π ε0
. (8.170)
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For the energy correction of first order it remains then to be calculated:

ΔE
(1)
100,100 = ER

128

π2a5B

∫∫
d3r1 d

3r2
exp [−(4/aB) (r1 + r2)]

|r1 − r2| . (8.171)

For the r2-integration we consider r1 as the polar axis, and can assume, because
of the symmetry of the integrand, that r2 ≥ r1, where the result is to be
multiplied by a factor 2:

ΔE
(1)
100,100 = ER

83

π a5B
Q ,

Q =

∫
d3r1 e

−(4/aB) r1 Dr1 ,

Dr1 =

∞∫

r1

dr2 r
2
2 e

−(4/aB) r2 Ir1 ≤ r2 .

Ir1 ≤ r2 includes the integration over the polar angles of the r2-integral, for which
it holds because of r2 ≥ r1:

Ir1 ≤ r2 =

+1∫

−1

dx√
r21 + r22 − 2r1r2x

=
2

r2
.

Therewith we calculate Dr1 :

Dr1 = 2

∞∫

r1

dr2 r2 e
−(4/aB) r2 = 2

⎡

⎣− d

dλ

∞∫

r1

dr2 e
−λr2

⎤

⎦

λ=(4/aB)

=
1

2
aB

(
r1 +

1

4
aB

)
e−(4/aB) r1 .

This is inserted into the expression for Q, and then evaluated with the known
integral formula,

∞∫

0

dxxne−ax =
n!

an+1
,

to give:

Q = 2π aB

∞∫

0

dr1

(
r31 +

1

4
aB r21

)
e
− 8

aB
r1 =

5

2

π a5B
83

.

The energy correction is therewith determined:

ΔE
(1)
100,100 =

5

2
ER ≈ 34 eV . (8.172)
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The electrostatic repulsion of the two electrons enhances the energy of the sys-
tem rather substantially. Together with (8.165), the ground-state energy of the
Helium atom, corrected by first order perturbation theory, is obtained asz:

E
(1)
100,100 = −11

2
ER ≈ −74.8 eV . (8.173)

When one compares this with the experimental value,

Eexp
100,100 = −78.98 eV , (8.174)

then the agreement is actually not extremely convincing. As a reason for the
discrepancy one can suppose the screening of the nucleus, according to which
each of the two electrons does not see, because of the presence of the other
electron, the full Z = 2-charge of the nucleus, but rather an effectively somewhat
smaller one. This can nicely be demonstrated by a variational calculation, which
we perform explicitly as Exercise 8.4.3. In the variational ansatz, suggested by
〈r1|ϕ100〉 〈r2|ϕ100〉, Z∗ can be interpreted as effective nuclear charge

ψZ∗ (r1, r2) = exp

[
−Z∗

aB
(r1 + r2)

]
. (8.175)

The variation of the energy functional

〈H〉Z∗ =
〈ψZ∗ |H |ψZ∗〉
〈ψZ∗ |ψZ∗〉 ,

yields an optimal Z∗
0 :

Z∗
0 =

27

16
= 2− 5

16
.

This indeed corresponds to an effective reduction of the nuclear charge due to
screening by (5/16) e. The energy bound,

〈H〉Z∗
0
≈ −5.7ER ≈ −77.49 eV ,

approaches the experimental value already essentially better than the perturba-
tive result.

We still remark that the so calculated screening of the nucleus holds for the
ground state. If the electrons are in excited states, then they will experience
different screenings.

3) Energy shift of the excited states
In the third and the last step we still want to work out a qualitative picture

of the influence of the electron-electron interaction on the excited states. It is to
be expected that the degeneracies with respect to the secondary (orbital angular
momentum) quantum number l are removed. As we have discussed after (6.45)
it is in any case about an accidental degeneracy, which appears exclusively in the
pure Coulomb field. Due to the presence of the second electron the Coulomb field
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of the nucleus is, however, disturbed. In contrast, the ml-degeneracy remains
because of

[
H

(1,2)
2 , Lz

]

−
= 0 . (8.176)

For simplicity, in the following we will always put ml = 0.
We are interested here only in the discrete part of the spectrum, i.e., in

states, whose excitation energies are smaller than the ionization energy. We
had seen that then only one of the two electrons is really excited, while the
other stays in the ground state. We estimate the energy shift of the excited
states by the expectation value of the interaction operator in the corresponding
undisturbed energy states:

ΔE
para
ortho
100, nl0 ≡ (±) 〈ϕ100 ϕnl0|H(1,2)

2 |ϕ100 ϕnl0〉 (±)

=
1

2

{〈
ϕ
(1)
100

∣∣∣
〈
ϕ
(2)
nl0

∣∣∣H(1,2)
2

∣∣∣ϕ(1)
100

〉 ∣∣∣ϕ(2)
nl0

〉

+
〈
ϕ
(2)
100

∣∣∣
〈
ϕ
(1)
nl0

∣∣∣H(1,2)
2

∣∣∣ϕ(2)
100

〉 ∣∣∣ϕ(1)
nl0

〉

±
〈
ϕ
(1)
100

∣∣∣
〈
ϕ
(2)
nl0

∣∣∣H(1,2)
2

∣∣∣ϕ(2)
100

〉 ∣∣∣ϕ(1)
nl0

〉

±
〈
ϕ
(2)
100

∣∣∣ϕ(1)
nl0

∣∣∣H(1,2)
2

∣∣∣ ϕ(1)
100

〉 ∣∣∣ϕ(2)
nl0

〉}
.

The first two and the last two summands yield both the same contribution. For
abbreviation we write:

ΔEpara
100, nl0 = Cnl

10 +Anl
10 , (8.177)

ΔEortho
100, nl0 = Cnl

10 −Anl
10 . (8.178)

Here are Cnl
10 and Anl

10 Coulomb and exchange integrals, which are defined closely
analogously to those of the Hartree-Fock method, (8.144) and (8.145):

Coulomb integral:

Cnl
10 =

e2

4π ε0

∫∫
d3r1 d

3r2
|ϕ100(r1)|2 |ϕnl0(r2)|2

|r1 − r2| . (8.179)

Exchange integral:

Anl
10 =

e2

4π ε0

∫∫
d3r1 d

3r2
ϕ∗
100(r1)ϕ

∗
nl0(r2)ϕ100(r2)ϕnl0(r1)

|r1 − r2| . (8.180)

One finds:

Cnl
10 ≥ 0 ; Anl

10 ≥ 0 . (8.181)

That the Coulomb integrals are non-negative, one directly reads off from (8.179).
The electrostatic interaction energy between two charge densities of equal sign
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Figure 8.8: Schematic representation of the lowest part of the He-energy spec-
trum without and with the Coulomb interaction of the two electrons. Removal
of the degeneracy by the interaction

must of course be positive. That the exchange integral, too, is non-negative, can
be realized immediately only for l = n−1 (see Exercise 8.4.4). Apart from that,
this comes out only by an explicit calculation of Anl

10. The Coulomb integrals
are in general one order of magnitude larger than the exchange integrals (see
Exercise 8.4.7).

We recognize that the physically important effects, namely the energetic
separation of ortho- and para-He states, is again due to the classically not
understandable exchange integrals. The triplet states of the ortho-Helium lie
energetically deeper than the singlet states of the para-Helium. To the triplet
states of the ortho-Helium there belong antisymmetric space-states, for which,
as we had already seen for the H2-molecule, the electrons are separated stronger
from each other (antibonding in the case of H2) than in the symmetric states.
Effects, which keep like charged particles at bay, lower the total energy!

Let us, at the end, schematically (not true to scale) plot the lowest part of the
He-term scheme (Fig. 8.8). The states |ϕ100 ϕ200〉(±) (1s, 2s) and |ϕ100 ϕ210〉(±)

(1s, 2p), which without interaction are degenerate and build the lowest excited
state, split due to the electron-electron interaction according to (8.177) and
(8.178). We calculate explicitly the corresponding exchange and Coulomb inte-
grals in the exercises 8.4.5, 8.4.7, and 8.4.8:

C20
10 ≈ 11.42 eV ; C21

10 ≈ 13.21 eV ,

A20
10 ≈ 1.19 eV ; A21

10 ≈ 0.93 eV . (8.182)

For the disturbed states we have applied in the right part of Fig. 8.8 the usual
spectroscopic notation

2S +1LJ

(L = 0, 1, 2, . . . ←→ S, P,D, . . .). The ortho-states belong to the total spin
S = 1 and can therefore for L ≥ 1, according to the spin-orbit interaction, which
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is neglected in the present treatment, additionally split threefold (J = L− 1, L,
L+ 1) (see (5.259)). For the para-states it is always J = L. They are therefore
uninfluenced by the spin-orbit interaction.

At this stage we have to pass up, though, a further detailed discussion of
the He-spectrum, and have instead to refer the reader to the special literature
of atom physics.

8.4.4 Exercises

Exercise 8.4.1
For an approximate calculation of the ground-state energy of the H2-molecule
use the variational procedure with the test state:

|q〉 = c1

∣∣∣ϕ(1)
a

〉 ∣∣∣ϕ(2)
b

〉
+ c2

∣∣∣ϕ(2)
a

〉 ∣∣∣ϕ(1)
b

〉
; c1, c2 real.

Determine the optimal coefficients c1, c2 and compare the result to that from
Sect. 8.4.2.

Exercise 8.4.2
The Hamilton operator of the H2-molecule, used in Eq. (8.146), does not contain
any spin-dependent terms. The total state of the two-electron system therefore
factorizes in a space-part |q(±)〉 and a spin-part |Sms〉(±). The model Hamilton
operator acts only on |q(±)〉:

〈q(±)|H |q(±)〉
〈q(±)|q(±)〉 = E± .

Construct with the spin operators S1 and S2 of the two electrons an equivalent
Hamilton operator Ĥ , which acts only on the spin-part and yields the energy-
eigen values E±:

Ĥ|S ms〉(∓) = E±|Sms〉(∓) .

Exercise 8.4.3
Calculate with the variational anstz

ψZ∗ (r1, r2) = exp

[
−Z∗

aB
(r1 + r2)

]

an upper bound of the ground-state energy of Helium. Z∗ can be considered
as effective nuclear charge, which is noticed by one of the electrons due to the
screening of the nucleus by the other electron. Determine the optimal Z∗.

Exercise 8.4.4
Show that the exchange integrals (8.180), which are responsible for the energetic
separation of the ortho- and the para-states of Helium, can be written in the
following form:

Anl
10 =

e2

4π ε0(2l + 1)

∞∫

0

dr1 r
2
1

∞∫

0

dr2 r
2
2

rl<

rl+1
>

R10(r1)Rnl(r2)R10(r2)Rnl(r1) .
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The Rnl(r) are thereby the radial functions of the Coulomb-eigen functions
ϕnlm(r) (see (6.56)). Furthermore:

r> = max (r1, r2) ; r< = min (r1, r2) .

Give reasons, why for l = n− 1 the exchange integrals cannot be negative.

Exercise 8.4.5
Calculate the energy splitting of the (1s) (2s)-state (∼ |ϕ100 ϕ200〉(±)) in the
Helium spectrum, due to the electron-electron interaction.

Exercise 8.4.6
Show that the Coulomb integrals (8.179) can be written in the following form:

Cnl
10 =

e2

4π ε0

∞∫

0

dr1 r
2
1

∞∫

0

dr2 r
2
2

1

r>
R2

10(r1)R
2
nl(r2) .

The nomenclatures are the same as in Exercise 8.4.4.

Exercise 8.4.7
Calculate the Coulomb integral C20

10 and compare its order of magnitude with
that of the corresponding exchange integral A20

10 (see Exercise 8.4.5).

Exercise 8.4.8
Calculate the energy shift ΔE

(21)
para
ortho

of the (1s) (2p)-state (∼ |ϕ100 ϕ210〉(±)),

which appears as consequence of the Coulomb interaction between the two
Helium-electrons!

8.5 Self-Examination Questions

To Section 8.1

1. What is the type of the solutions of the time-independent Schrödinger equa-
tion for a system of two distinguishable particles, which do not interact with
each other?

2. Which states does the product space H2 = H(1)
1 ⊗H(2)

1 contain, when H(1,2)
1

are the Hilbert spaces of particle 1 and particle 2?

3. How is the scalar product defined in the product space H2?

4. How does one find an orthonormal basis of the H2?

5. Let |ϕ2〉 ∈ H2, and |an bm〉 = |a(1)n 〉|b(2)m 〉 be a basis state of the H2. What
does then |〈an bm|ψ2〉|2 mean?

6. The eigen-states |a(1)n 〉 of the operator A
(1)
1 are a basis of the H(1)

1 . What is

then the spectral representation of A
(1)
1 in the product space H2 = H(1)

1 ⊗
H(2)

1 ?
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7. Let particle 1 and 2 be distinguishable. Is it then possible to precisely
measure simultaneously the momentum of particle 1 and the position of
particle 2? Explain!

8. How does the Hilbert space HN of a system of N distinguishable particles
look like?

9. How does one find an orthonormal basis in the HN?

10. What can be said about the statistical interpretation of an N -particle state
|ψN 〉?

To Section 8.2

1. What are identical particles?

2. Are there identical particles in Classical Physics also?

3. How does the principle of indistinguishability read?

4. Which basic presumptions must be fulfilled by the observables of a system
of N identical particles?

5. Describe the mode of action of the permutation and the transposition oper-
ator!

6. Are transposition operators generally commutable?

7. Is the permutation (transposition) operator Hermitian in the product space
HN?

8. Which fundamental requirement must be fulfilled by observables of a system
of identical particles?

9. Which important symmetry requirement is to be addressed to the states of
a system of identical particles?

10. Is the product space HN = H(1)
1 ⊗H(2)

1 ⊗ . . .⊗H(N)
1 suitable for the descrip-

tion of N identical particles?

11. Why does the symmetry character of the states of identical particles do not
change in the course of time?

12. How are the spaces H(±)
N defined?

13. What is the result of the scalar product of a state of the H(+)
N with the one

of the H(−)
N ?

14. Why can a system of identical particles not possess simultaneously sym-
metrized as well as antisymmetrized states?
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15. How does one get from a non-symmetrized product state |ϕN 〉 ∈ HN an

(anti)symmetrized state of the H(±)
N ?

16. What comes out when one applies the symmetrization operator S
(±)
N to an

already (anti)symmetrized state |ϕ(±)
N 〉?

17. Is the unification of the partial spacesH(+)
N andH(−)

N identical to the product
space HN?

18. Which basis states span the H(±)
N ?

19. What is a Slater determinant?

20. What does one understand by the occupation number nαi? Which values

can it take in H(−)
N , and which in H(+)

N ?

21. How does the scalar product between the (anti)symmetrized basis states of

the H(±)
N read?

22. What does one understand by occupation number representation?

23. Which particle type is described in the Hilbert space H(+)
N , and which type

in the Hilbert space H(−)
N ?

24. What is expressed by the spin-statistics theorem?

25. What are bosons, what are fermions?

26. To which type of particles does the Pauli principle apply?

27. Can the two electrons of two hydrogen atoms, one here on earth, the other
on the moon, simultaneously be with parallel spins in the ground state?

To Section 8.3

1. Which Hilbert spaces are connected by the creation operator a+α ?

2. In which way can the (anti)symmetrized N -particle state |ϕα1 · · · · · ·
ϕαN 〉(±) be created out of the vacuum state |0〉 by means of creation
operators?

3. How does the fundamental commutation relation read for creation operators
of bosons and fermions, respectively?

4. Which meaning and functionality does the annihilation operator have?

5. What results, when the annihilation operator aγ is applied to an N -particle
state, in which the one-particle state |ϕγ〉 does not occur?

6. How does the fundamental commutation relation for annihilation operators
read?
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7. Which commutation relation holds between creation and annihilation oper-
ators?

8. How is the mode of action of a+r on a Fock state |N ;nα1 · · · nαr . . .〉(±)

defined? How does the annihilation operator act?

9. Which general structure does a one-particle operator in the formalism of
second quantization have?

10. How do two-particle operators look like in second quantization?

11. How is the occupation density (occupation number) operator defined?
Which are its eigen-states and eigen-energies?

12. How is the particle number operator defined? Which are its eigen-states
and eigen-energies?

To Section 8.4

1. What is the objective of the Hartree-Fock procedure?

2. In which way do the Hartree and the Hartree-Fock methods differ?

3. By which term do the Hartree-fock equations differ from the Hartree equa-
tions? How can this additional term physically be interpreted?

4. What does one understand by exchange interaction?

5. By which Hamilton operator is the hydrogen molecule described in the
Heitler-London method?

6. What can be said for the H2-molecule about the connection between the
total electron spin and the symmetry of the position wave function?

7. How can one understand that a special relative spin orientation of the two
electrons is energetically favored, although the model-Hamilton operator of
the H2-molecule is spin-independent?

8. By which state-ansatz is the ground-state energy estimated in the Heitler-
London theory?

9. In which respect does the model calculation for the H2-molecule according to
the Heitler-London theory contribute to the understanding of the chemical
bond?

10. What does one understand in the case of the Helium atom by prohibition of
inter-combination?

11. What is the difference between ortho- and para-Helium?

12. How can one explain the strong spin effects of Helium, although it is
described, to a good approximation, by a spin-independent Hamilton-
operator?
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13. To which type of Helium (para or ortho) does the ground state belong?

14. How can one explain the autoionization of Helium?

15. What is the order of magnitude (in eV) of the electrostatic repulsion-energy
of the two He-electrons in the ground state?

16. Which quantity is responsible for the energetic separation of the excited
ortho- and para-states?



Chapter 9

Scattering Theory

The theoretical investigation and description of scattering (collision) pro-
cesses of atomic particles represents an important field of application of Quan-
tum Mechanics. One can gain therewith valuable information about particle
interactions (e.g., nuclear forces), about elementary interaction potentials, about
the structure of matter (e.g., crystal structures), and so on. The energetic struc-
ture of atoms and molecules, however, is spectroscopically investigated, where
by any kind of energy supply the particle is transferred from its ground state
into an excited state. The energy, which is emitted with the return into the
ground state, e.g. in form of a photon, is analyzed. Initial and final state of
the process stem from the discrete spectrum of the Hamilton operator (bound
states). In contrast, it is typical for scattering processes that the initial and final
state of the considered system both lie in the continuous part of the eigen-value
spectrum. The scattered particle comes from infinity into the sphere of action
of the scatterer, in order to be detected after the collision again asymptotically
at infinity. The particle is therefore not in a bound state.

An example of how one can draw conclusions from scattering processes about
the physical properties of atomic and subatomic particles, we have already got
to know in connection with the classical Rutherford-scattering in Sect. 1.3.3
(Vol. 6). Its analysis led to a first, already rather realistic nuclear model. We
had seen there that in Classical Physics the collision between two particles can
uniquely be described by their velocities and the impact parameter. Although
the latter could not be precisely given, so that we were forced to revert to
means of Statistics, nevertheless the total classical process remained of course in
principle deterministic. That is now different, though, in Quantum Mechanics,
since concepts like path, impact parameter have lost their meaning. Accordingly,
quantum-mechanically, for a scattering process, only probability statements are
possible. In the following, we will have to concentrate ourselves on the question,
with which probability particles are deflected (scattered) at the angle (ϑ, ϕ)
relative to the original direction of motion, as a consequence of their interaction
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with collision partners. That will lead to the concept of the

(differential) cross-section

(Sect. 9.1). This is directly accessible by the experiment. For this purpose,
one shoots a particle beam onto a target and counts by the use of a detector
the number of particles, which are scattered by the angle (ϑ, ϕ) into the solid-
angle element dΩ. Relative to the total number of incident particles this yields
directly the cross-section. The objective of the theory consists now of the task
of bringing the cross-section into contact with basic interaction potentials, in
order to get by comparison with the experimental findings concrete statements
about these potentials. In this chapter some procedures are introduced, which
allow to construct, at least approximately, such a connection.

9.1 Basic Concepts

We want to try in this chapter, at first, to transfer our classical visualization of
the course of a scattering process into a quantum-mechanical formulation.

9.1.1 Model of the Scattering Process

The scattering process is a dynamical event, for the description of which only
the time-dependent Schrödinger equation can come into consideration.
The picture that at a certain point of time from some position a particle is
dispatched in the direction of a scattering center makes the representation of the
particle as wave packet of the kind, as we have discussed in Sect. 2.2.3 (Vol. 6),
necessary. One can then consider the total scattering process as decomposed
into the following partial steps:

1) Before the scattering:
Let the wave packet, which represents the particle, move with the group

velocity vg = vg ez along the z-axis onto the scattering center (Fig. 9.1). We
consider this process in the laboratory system, i.e. in a reference system, whose
origin of coordinates is defined by the position of the scattering center. We

Figure 9.1: Exemplary representation of the scattering process before the
actual scattering act
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assume that the scatterer is a particle very much heavier than the incident
particle or a particle in a space-fixed target. In both the cases the motion of
the scatterer is not of special interest.

We assume that the domain of action of the scattering center is concentrated
on a narrow space region around the origin of coordinates, so that the incident
particle is influenced only within the reach R (Fig. 9.1). At larger distances
from the scatterer the wave packet will therefore move free of forces and will be
describable by the wave function (2.49) (Vol. 6):

ψ(r, t) =

∫
d3k ψ̂(k) ei(k·r−ω(k)t) ,

ω(k) =
� k2

2m
. (9.1)

The amplitude function ψ̂(k) compresses the wave packet to a longitudinal
(transverse) width Δbl(t). The so prepared packet is indeed the solution of the
time-dependent Schrödinger equation, but not an eigen-state of the force-free
Hamilton operator. It does therefore possess neither a sharp momentum nor
a precisely defined energy. The extensions Δbt and Δbl are measures for the
corresponding position-indeterminacies. They should be very much larger than
the average de Broglie wavelength λ of the packet, in order to guarantee that
momentum and energy of the particle are still reasonably well defined:

λ � Δbt,Δbl . (9.2)

On the other hand, in order to be able to remain also in the particle picture, the
packet should of course be sufficiently sharply bunched. With considerations as
those in Sect. 2.2.3 (Vol. 6) one can find out that even for atomic particles these
two running counter requirements can be absolutely conciliated.

It goes without saying that in a real experiment one will not be able to send
a single particle onto another single particle, but one has to deal with particle
beams, i.e. with many wave packets of the just discussed kind. However, we
let the particle density be so small that the interaction among the incident
particles can be neglected, and the whole procedure can be considered as a sum
of independent single processes.

2) The actual scattering act:
In the second step the particle enters the region of influence of the scat-

terer, when the transverse extension Δbt of the scatterer is not smaller than the
perpendicular distance ΔM of the packet-center of gravity from the origin of
coordinates. For ΔM+R > Δbt the particle of course ignores’ the scatterer (see
Fig. 9.2). To avoid that the special structure of the wave packet influences the
scattering process too much, the packet should completely cover the scattering
region:

R � Δbt, Δbl . (9.3)

We furthermore assume that the scattering is elastic, so that the scattered par-
ticle changes only its direction, but not its kinetic energy. We exclude therewith
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Figure 9.2: Exemplary representation of the actual scattering act

inner excitations of the collision partners. In the case of inelastic scattering the
problem would of course become much more complicated, since then the ini-
tial state of the scatterer would play a non-negligible role. In the case of elastic
scattering the presence of the scatterer can be represented by a scattering poten-
tial V (r), which we will assume to be a spherically symmetric central potential
V (r) = V (r).

It is clear that in the experiment normally the scattering is not affected by
a single atom. However, let the target be sufficiently thin, so that only single-
scatterings play a role. For this purpose, in particular, the interatomic distance
must be large compared to the wavelength λ of the incident particles, large
compared to the range R of the potential, and large compared to the extension
of the wave packet. These assumptions are not always well fulfilled, sometimes,
however, even not intended. In crystal-structure investigations (see Sect. 1.4.3
(Vol. 6)), diffraction phenomena in beams of electrons, photons, or thermal
neutrons are intentionally exploited as the source of information. If, however,
the above assumptions, together with those listed under 1), are fulfilled, then
the total scattering process represents a sum of independent single events, which
can be treated as spherically symmetric two-body problems.

3) After the scattering:
Because of the assumed short range of the potential, the particle, after the

scattering, again enters the force-free region. As we still have to justify in detail,
the wave function consists, due to the scattering process, of two components, a
traversing uninfluenced wave packet and a scattered part, which is composed of
spherical waves outgoing in all directions. The situation is completely equiva-
lent to the behavior of reflection and transmission of waves at one-dimensional
potential barriers, which we investigated in the Sects. 4.2 and 4.3 in Vol. 6. The
observation of the scattered particle takes place by means of a suitable detector
at the distance D from the scattering center. This must stand so far away that
the condition of the force-free motion is realized, and the packet is no longer
influenced by the scattering zone:

R, λ � D . (9.4)
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On the other hand, though, the detector should also be close enough, in order
to keep the force-free diffluence of the wave packet, discussed in Sect. 2.2.3 of
Vol. 6, within limits. We had estimated as condition for that in part 2. of
Exercise 2.2.3 (Vol. 6): √

λD

2π
� Δbl . (9.5)

It will not be possible to separate the freely traversing wave and the wave
scattered in the forward direction. In order to avoid that the traversing wave
switches on the detector, the measurement should finally take place at suffi-
ciently large angles ϑ:

Δbt � D sinϑ . (9.6)

The considerations of this section show that it is possible to transfer our illus-
trative understanding of a scattering process into the formalism of Quantum
Mechanics. On the other hand, because of the rather restrictive boundary con-
ditions, this succeeds lastly more or less only asymptotically. All the following
investigations are therefore to be understood under this aspect. We will cer-
tainly beware of trying to calculate explicitly the precise path of the particle,
for instance within the scattering zone. In order to get the actually required
information, fortunately, this will also prove to be not necessary.

9.1.2 Formulation of the Scattering Problem

As described in the preceding section, we assume that a particle beam with
sufficiently sharp (p, E) impinged onto a target with NT scattering centers per
cm2. Let the scattering be elastic, where it is a bunch of incoherent single
processes, so that the problem to be solved can be reduced to a two-body
problem. The interaction potential is presumed as spherically symmetric and
short range:

r V (r) −→
r→∞ 0 . (9.7)

The bare Coulomb potential does not fulfill this requirement and must therefore
be considered separately. The incident particle should be actually described as
wave packet. This can, however, always, as in (9.1), be represented as super-

position of plane waves with suitable amplitude functions ψ̂(k). It therefore
suffices to calculate the scattering of a single plane wave. In order to avoid con-
tradictions and misunderstandings, however, we will have to include at times
the wave-packet picture in our argumentation. As an example the plane wave
is characterized by a sharp momentum and a sharp energy, and therewith by
a completely undetermined position. The plane wave is therefore ‘everywhere
existing’ and consequently also ‘never far away’ from the scattering center. The
requirement, which leads to (9.6), that the traversed wave does not affect the
detector, is of course by the plane wave not satisfiable, either. From time to
time we will therefore have to implicitly utilize in the following that the ampli-
tude function ψ̂(k) in (9.1) guarantees that the plane waves, which are to be
investigated, destructively interfere among themselves everywhere except for a
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Figure 9.3: Exemplary representation of the scattering process after the actual
scattering act

small space region (Fig. 9.3). Of course, the consistent description of the scat-
tering process by wave packets would also be possible, but would turn out to be
mathematically very much more involved.

The plane wave is an energy-eigen state, and the energy does not change
by the elastic scattering. All expectation values become time-independent (sta-
tionary scattering problem! ). Distinctly before the scattering zone, the plane
wave is a solution of the force-free, time-independent Schrödinger equation:

− �
2

2m
Δϕ0(r) = E ϕ0(r) .

The direction of incidence defines the z-direction:

p = �k0 = � k0 ez ; E =
�
2k20
2m

,

ϕ0(r) = ei k0z .

If n0 is the particle density in the incident beam, then we have with ((2.27),
Vol. 6) the following time-independent (stationary) current density:

j0 = n0
�

2mi
(ϕ∗

0(r)∇ϕ0(r) − ϕ0(r)∇ϕ∗
0(r)) = n0

�k0

m
. (9.8)

We had found in Sect. 6.4 a special representation of the plane wave, which turns
out to be extremely useful for our further considerations, namely the expansion
(6.152) in eigen-functions of the orbital angular momentum:

eikz = eikr cosϑ =

∞∑

l=0

il(2l + 1) jl(k r)Pl(cosϑ) .
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This is convenient because the scattering potential is spherically symmetric and
therefore conserves the angular momentum. That means that for the resulting
wave function after the scattering process it appears appropriate to also use
such an expansion in eigen-functions of the angular momentum. (One should
remember at this stage once more the results from Sect. 6.4). For the following
the result (6.125) is especially important, according to which one can consider
the plane wave as composed asymptotically by an outgoing and an incoming
spherical wave. This results from the corresponding behavior of the spherical
Bessel function:

jl(k r) −→
large r

1

2 ikr

(
ei(k r− l π/2) − e−i(k r− l π/2)

)
. (9.9)

The actual scattering problem now consists in the solution of the Schrödinger
equation,

[
p2

2m
+ V (r)

]
ϕ(r) = E ϕ(r) , (9.10)

with E > 0 and

ϕ(r) = ϕ0(r) + ϕs(r) . (9.11)

At the center of scattering the incident wave ϕ0(r) creates a scattered wave
ϕs(r). Since this part is created just there, it must contain of course only
outgoing parts. If one takes into consideration that for r → ∞ again a force-free
motion sets in, it must be expected for ϕ(r) asymptotically a form as in (9.9)
with a proper modification of the outgoing part. For the scattered wave the
following ansatz therewith suggests itself:

ϕs(r) −→
r→∞ f(ϑ)

eikr

r
. (9.12)

That the pre-factor depends only on ϑ, and not on ϕ, is of course due to the
special symmetry, which we have chosen for the scattering process. One calls
f(ϑ) the scattering amplitude, which contains the full information about the
scattering potential.

The mathematical solutions of (9.10) will be normally degenerate. Only
by the physical boundary condition that ϕ(r) must be built up by an incident
plane wave and an outgoing spherical wave with angle-dependent amplitude,
the matter becomes unique. It would of course also be possible to construct an
incident scattered wave as a solution of (9.10). But that would be unphysical.

In the next step let us calculate the current density js of the scattered wave.
With the representation of the nabla operator in spherical coordinates (r, ϑ, ϕ),
derived as Eq. (1.395) in Vol. 1, ,

∇ ≡ er
∂

∂r
+ eϑ

1

r

∂

∂ϑ
+ eϕ

1

r sinϑ

∂

∂ϕ
,
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one easily finds:

ϕ∗
s (r)∇ϕs(r) = er

|f(ϑ)|2
r

(
i k

r
− 1

r2

)
+ eϑ

1

r3
f∗(ϑ)

∂f(ϑ)

∂ϑ
.

ϕs(r)∇ϕ∗
s (r) is just the conjugate-complex hereof. Therewith it follows as

current density of the scattered wave:

js(r) = n0
�

2mi
(ϕ∗

s (r)∇ϕs(r)− ϕs(r)∇ϕ∗
s (r))

= n0
� k

m

|f(ϑ)|2
r2

er +O
(

1

r3

)
. (9.13)

The second summand can be neglected asymptotically. js has then only a radial
component. The radial particle current through the surface of a sphere of the
radius r,

∫∫
dϕd cosϑ r2 (er · js) −→ const > 0 ,

is independent of r and positive, corresponding to the fact that ϕs(r) is an
outgoing spherical wave.

If we would take the ansatz (9.11) really in every sense as serious, then the
above considerations were of course not completely correct. The current density
of the solving solution ϕ(r) is naturally not simply the sum of the current density
of the incident and the scattered wave. There will appear interference terms.
In order to justify the separate calculation of js, we have rather to recall again
the picture of the wave packet, according to which the incident beam has only
a minor transversal expansion. We are interested, however, only in the current
density, which falls onto the detector. Because of (9.6) contributions of the
incident wave are excluded from that. The total current density, seen by the
detector, will therefore be composed only of scattering contributions.

Let us finally try to get contact to the experiment. That succeeds by means
of the cross-section, which is generally defined as

number of processes per unit time

incident particle current density

The process, which we are interested in here, is the traversing of a particle
through the area dF which is covered by the detector (Fig. 9.4). With

dF = r2dΩ er (dΩ = sinϑ dϑ dϕ)

one finds for the number of the particles, which are scattered into the solid-angle
element dΩ, and which penetrate per second the surface dF:

js · dF = n0
� k

m
|f(ϑ)|2 dΩ +O

(
1

r

)
.
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Figure 9.4: Angle relations for fixing the cross-section

This yields the differential cross-section

dσ(ϑ) =
js · dF
|j0| = |f(ϑ)|2 dΩ , (9.14)

where we have used (9.8) and k = k0 (elastic scattering). The cross-section is
thus completely determined by the scattering amplitude. dσ has the dimension
of an area. The unit, in use for nuclear physical scattering experiments, is
1 barn = 10−24 cm2. When one integrates (9.14) over the total solid angle, then
one gets the total cross-section

σ =

∫
dΩ

dσ

dΩ
= 2π

π∫

0

dϑ sinϑ|f(ϑ)|2 . (9.15)

In the experiment N0 is the number of particles, which impinge on the target
per second and per cm2, NT the number of atomic scatterers in the target per
cm2, and dn(ϑ) the number of the particles, which are scattered per second into
the angle element dΩ. All the three quantities are measurable and therefore
also the differential cross-section:

dσ(ϑ) =
dn(ϑ)

NTN0
. (9.16)

This means lastly that |f(ϑ)|2 can be experimentally determined. The task of
the theory is, consequently, to bring |f(ϑ)|2 into contact with the interaction
potential V (r).

9.1.3 Exercises

Exercise 9.1.1
Calculate the current density of the wave function composed by the incident
plane wave ϕ0(r) and the scattered wave ϕs(r) (9.11):

ϕ(r) = ϕ0(r) + ϕs(r) ,

ϕ0(r) = eikr cosϑ ,

ϕs(r) = f(ϑ)
eikr

r
.
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Which terms of interference appear in the current density?

Exercise 9.1.2
Show that the asymptotic solution (9.11) of the scattering problem,

ϕ(r) = eikz + f(ϑ)
eikr

r

(
k2 =

2mE

�2

)
,

fulfills the Schrödinger equation, if the scattering potential for r → ∞ decreases
stronger than 1/r.

9.2 Partial Wave Method

9.2.1 Decomposition in Partial Waves

The Hamilton operator (9.10) of the full scattering problem commutes with the
angular momentum operators L2 and Lz. Therefore it is natural to expand
the solution in eigen-functions of angular momentum, i.e., in spherical harmon-
ics. According to the agreed arrangement, the scattering problem possesses
azimuthal symmetry (ml = 0), i.e., no dependence on the angle ϕ. The spheri-
cal harmonics are then reduced to Legendre polynomials (5.103),

Yl0 (ϑ, ϕ) =

√
2l + 1

4π
Pl(cosϑ) .

We therefore choose the ansatz

ϕ(r) =

∞∑

l=0

ul(r)

r
Pl(cosϑ) . (9.17)

As exemplified in detail in connection with Eq. (6.19), the time-independent
Schrödinger equation leads with such an ansatz to the following differential
equation for ul(r):

u′′
l (r) +

(
k2 − veff(r)

)
ul(r) = 0 . (9.18)

Thereby we have used, as already done often earlier, the abbreviation:

k2 =
2m

�2
E

The effective potential contains the centrifugal part (6.20):

veff(r) =
2m

�2
Veff(r) =

2m

�2

[
V (r) +

�
2l(l+ 1)

2mr2

]
. (9.19)

We have solved in Sect. 6.4 a completely analogous problem for the free particle,
i.e., for the special case V = 0. The solution (6.152) indeed has the structure of
(9.17) with

u
(0)
l (r) = il (2l + 1) r jl (k r) .
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At this point the asymptotic behavior (k r � l) of the Bessel function (6.125)
is important:

u
(0)
l (r) ∼ 1

k
il(2l + 1) sin

(
k r − l π

2

)
. (9.20)

The wave function ϕ(r) of the full scattering problem must also be asymptoti-
cally describable as a solution of a force-free motion, because, according to the
presumption (9.7), the potential V (r) is of sufficiently short range. Therefore
one can safely assume that the influence of the potential will asymptotically
manifest itself essentially by a phase shift:

ul(r) ∼ αl sin

(
k r − l π

2
+ δl

)
. (9.21)

One calls δl the scattering phase of the lth partial wave. It is of course
characteristic of the respective potential V (r), and will be a function of the
energy E via k.

With the ansatz (9.21), the solution (9.17) can be asymptotically written
as an incoming and an outgoing spherical wave:

ϕ(r)∼
(
eikr

r

∑

l

αl

2i
eiδl e−i(l π/2) Pl(cosϑ)+

e−ikr

r

∑

l

αl

2i
e−iδl ei(l π/2) Pl(cos ϑ)

)
.

The sums run in principle over all quantum numbers of the angular momentum.
One has to therefore ask oneself, whether and how, for l → ∞, the presumption
kr � l can be fulfilled for the asymptotic behavior. At the end of this section,
though, we will convince ourselves that for a short-range potential V (r) only the
lowest quantum numbers l must be taken into consideration, for which k r � l
is always realizable.

The above asymptotic form of the solution ϕ(r), however, has to now have
the structure (9.11), (9.12), i.e., it should also hold with (9.20):

ϕ(r) ∼
{
eikr

r

[
1

k

∑

l

il

2i
(2l+ 1) e−i(l π/2) Pl(cosϑ) + f(ϑ)

]

+
e−ikr

r

1

k

∑

l

il

2i
(2l + 1) ei(l π/2) Pl(cosϑ)

}
.

Here we find, among other points, the fact that only the outgoing spherical
wave can be influenced by the scattering center. In order to guarantee that, in
contrast, the incoming wave part can be exclusively ascribed to the plane wave,
it must obviously hold in our ansatz

αl =
1

k
il(2l + 1) eiδl =

1

k
(2l+ 1) ei(δl+(l π/2)) . (9.22)
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But then, by comparison of the two asymptotic expressions for ϕ(r), the scat-
tering amplitude f(ϑ) is also fixed:

f(ϑ) =
1

k

∑

l

(2l + 1)
1

2i

(
e2i δl − 1

)
Pl(cosϑ)

=
1

k

∑

l

(2l + 1) ei δl sin δl Pl(cosϑ) . (9.23)

If we know the scattering phases δl, the scattering amplitude f(ϑ) is then calcu-
lable, which in turn determines the cross-section (9.14). At first glance, however,
it looks as if we would not have gained very much. Quite the contrary, instead of
one sought-after function we now have to determine infinitely many partial
waves. The representation (9.23) becomes useful surely only when, because of
some reasons, the l-sum can be terminated after a few terms (l ≤ l0). As already
agreed upon, only then the asymptotic (k r � l) ansatz (9.21) can strictly be
justified. At the end of this section we will try to estimate the really efficient
angular momentum quantum numbers l ≤ l0 by an analogy-consideration to the
classical scattering process.

With the scattering amplitude in the forward-direction f(ϑ = 0) a sum-rule
for scattering phases can be formulated:

f(0) =
1

k

∑

l

(2l + 1) ei δl sin δl . (9.24)

The differential cross-section (9.14) can now also be expressed with (9.23) by
the scattering phases:

dσ

dΩ
=

1

k2

∑

l, l′
(2l + 1) (2l′ + 1) sin δl sin δl′ e

i(δl − δl′) Pl(cosϑ)Pl′ (cosϑ) . (9.25)

For the calculation of the total cross-section (9.15) we use the orthogonality
relation (5.98) of the Legendre polynomials:

σ = 2π

+1∫

−1

d cosϑ
dσ

dΩ
=

4π

k2

∑

l

(2l + 1) sin2 δl . (9.26)

The comparison of this expression with (9.24) yields an interesting relation,
which is called the optical theorem:

σ =
4π

k
Im f(0) . (9.27)

This theorem can be qualitatively understood as follows: The scattering process
does not change the particle number. Therefore, all that the total cross-section
registers as scattered intensity, should have been interfered away from the inci-
dent wave. Interference is possible, however, only with the wave scattered in
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forward-direction (ϑ = 0).This interference is responsible, in primary beam
direction, for a particle shadow, which just corresponds to the newly added
scattering current. The fact that only the imaginary part of f(0) appears in
the optical theorem must be justified by a more detailed consideration, which
we have to skip here.

We already mentioned that the problem seems, at first, to have become more
complicated with the introduction of the partial waves. Only when the series for
σ and dσ/dΩ are quickly converging, so that only few scattering phases play a
role, the decomposition with respect to partial waves, done in (9.23), (9.25) and
(9.26), can be of practical use. But under which conditions can we count with
such a quick convergence? Let us try to answer this question by an analogy
consideration from Classical Mechanics.

From a classical point of view, scattering can not happen, when the impact
parameter b (Fig. 9.5) is larger than the effective range R0 of the potential
V (r). We remember that the impact parameter is defined as the perpendicular
distance, with which the incident particle would pass the scatterer if no potential
force influenced the flight path. (To avoid confusion with the momentum we use
here (Fig. 9.5) for the impact parameter the letter b instead of p as in Sect. 1.3.3
(Vol. 6)).

Since the particle is scattered by a central potential, the classical angular
momentum is an integral of motion:

|L| = |r× p| = const = b p∞ = b
√
2mE .

p∞ is the absolute value of the particle momentum at a large distance from
the scattering center. The condition that for a scattering the impact parameter
must be smaller than the range of the potential, does obviously, for given particle
energy E, not permit arbitrarily large angular momenta:

|L| ≤ R0

√
2mE . (9.28)

If we transfer now this consideration, in the sense of the principle of correspon-
dence (Sect. 3.5 (Vol. 6)), into Quantum Mechanics, then it has to be required
correspondingly

l ≤
√
l(l+ 1) ≤ 1

�
R0

√
2mE = kR0 . (9.29)

Figure 9.5: Definition of the impact parameter for a classical scattering process
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We can therefore assume that the sums (9.23), (9.25) and (9.26) can be ter-
minated at a maximal angular momentum quantum number l0 of the order of
magnitude kR0. In the next subsections we will substantiate this supposition
by some examples.

One denotes the contribution to l = 0 as s-scattering, the one to l = 1 as
p-scattering, and so on, in analogy to the corresponding orbital nomenclature
which we introduced in Sect. 5.1.6. According to (9.29) we expect for small par-
ticle energies and very short-range potentials pure s-scattering with a spherically
symmetric cross-section:

dσ

dΩ
−→

s-scattering

1

k2
sin2 δ0 . (9.30)

We will be able to confirm this in the next section by an explicit evaluation of
the scattering at a simple idealized potential.

In principle we can of course solve the radial equation (9.18) for a given
potential V (r) and for arbitrary quantum numbers of the angular momentum
l with the aid of a computer. For r-values, which are outside the reach of the
potential, the comparison of the numerical solution with (9.21), (9.22) should
determine the scattering phases δl. The explicit analytic calculation of scatter-
ings at simple potentials, however, is to be preferred here, because they lead to
a better understanding of the intrinsic physical connections.

9.2.2 Scattering by a Hard Sphere

Let us demonstrate the method of scattering phases at first for the simple model
of a hard sphere:

V (r) =

{
∞ for r ≤ R0 ,

0 for r > R0 .
(9.31)

One can simulate by this potential, as a very simple approximation, the scatter-
ing of microscopic particles by an atomic nucleus. The range R0 of the potential
would then correspond to the nuclear radius.

The wave function (ϕ(r)), to be determined, obviously has to fulfill the
boundary condition

ϕ(r) ≡ 0 for r ≤ R0 . (9.32)

For r > R0 the potential vanishes. The particle then moves, in a certain sense,
in a central field of the strength zero, as we have discussed it in Sect. 6.4. The
potential V is zero, but the centrifugal barrier (6.20) (�2l(l + 1))/(2mr2) still
acts. Therefore an ansatz as that in (6.16) and (9.17), respectively, is recom-
mended, where we can already exploit again the azimuthal symmetry of the
scattering process:

ϕ(r) =

∞∑

l=0

Rl(r)Pl(cosϑ) . (9.33)

As explained in detail in Chap. 6, the radial part Rl(r) has to fulfill also here
the Bessel differential equation (6.114). The general solution can be formulated
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by the spherical Bessel functions (jl) and the spherical Neumann functions (nl)
((6.120), (6.121)),

Rl(r) = al jl(k r) + bl nl(k r)

(
k =

√
2mE

�2

)
,

or also with the Hankel functions defined in (6.127):

Rl(r) = cl h
(+)
l (k r) + dl h

(−)
l (k r) .

ϕ(r) must of course possess, first of all, the solution structure (9.11), i.e., it
must be composed of a plane wave ϕ0(r) and a scattered wave ϕs(r). According
to (9.12) the latter must asymptotically behave like an outgoing spherical wave.

Of all the four types of solution (jl, nl, h
(+)
l , h

(−)
l ) this is guaranteed only by

the Hankel function h
(+)
l (k r) (see (6.129)):

h
(+)
l (k r) ∼ − i

k r
ei(k r− (l π/2)) .

Together with the expansion of the plane wave (6.152) it follows therewith an
ansatz for the solution, which is, compared to (9.33), already essentially more
detailed:

ϕ(r) =
∑

l

(2l+ 1) il
[
jl(k r) + γl h

(+)
l (k r)

]
Pl(cosϑ) . (9.34)

In this form ϕ(r) has the right asymptotic behavior, and the radial part solves
the Bessel differential equation (6.114). The coefficients are still to be fixed by
the boundary condition (9.32):

γl = − jl(k R0)

h
(+)
l (k R0)

= − jl (k R0)

jl (k R0) + i nl (k R0)
. (9.35)

ϕ(r) is therewith completely determined for the entire space, i.e., not only
asymptotically.

The second summand in (9.34) represents the scattered wave ϕs(r). Its
behavior for r → ∞ must, according to (9.12), fix the scattering amplitude
f(ϑ):

f(ϑ) =
∑

l

(2l+ 1) il γl

(
− i

k
e−i(l π/2)

)
Pl(cosϑ)

=
1

k

∑

l

(2l + 1) (−i) γl Pl(cosϑ) .

If we equate this expression with the scattering phase representation (9.23) for
f(ϑ), then it follows, because of the orthogonality of the Legendre polynomials,
that the equality must already be valid for each single summand:

γl = i eiδl sin δl =
1

2

(
e2iδl − 1

)
. (9.36)
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Via (9.35) and (9.36) we now have the possibility to represent all scattering
phases δl as functions of the energy E (in k) and the potential range R0:

tan 2δl =
sin 2δl
cos 2δl

=
2 Im γl

2 Re γl + 1
=

2jl (k R0)nl (k R0)

n2
l (k R0)− j2l (k R0)

.

The comparison with

tan 2δl =
2 tan δl

1− tan2 δl

leads to:

tan δl =
jl (k R0)

nl (k R0)
. (9.37)

There is with tan δl = −nl (k R0)/ jl (kR0) still another mathematical solution,
which, however, violates the physical boundary condition, that for R0 → 0 all
scattering phases must vanish.

If we now insert

sin2 δl =
tan2 δl

1 + tan2 δl

into Eq. (9.26), using (9.37), then we can find the exact expression for the cross-
section for the scattering by a hard sphere:

σ =
4π

k2

∑

l

(2l+ 1)
j2l (k R0)

n2
l (k R0) + j2l (k R0)

. (9.38)

We will comment a bit on this result concerning its limiting behavior:

1) Limiting case: k R0 � 1
Let us at first assume that the de Broglie wave length of the scattered particle

is very much larger than the range of the potential. According to our semi-
classical estimation (9.29) we expect in this limit almost pure s-scattering with
an isotropic cross-section (9.30).

Using the approximation formulas (6.123) and (6.124) for the Bessel and
Neumann functions with small argument, it can be estimated:

l = 0 : tan δ0 ≈ −kR0 ≈ sin δ0 ,

l ≥ 1 : tan δl ≈ − (k R0)
2l+1

(2l − 1)!! (2l+ 1)!!
≈ sin δl .

We recognize here that with increasing quantum number l of the angular
momentum the scattering phases become very quickly very small or lie very
closely to an integral multiple of π,

sin2 δl+1

sin2 δl
≈ tan2 δl+1

tan2 δl
≈ (k R0)

4

(2l+ 1)2 (2l + 3)2
� 1 , (9.39)

so that in fact almost pure s-scattering is present. In the sum (9.26) the l = 0-
term dominates:

σ ≈ 4π

k2
sin2 δ0 ≈ 4πR2

0 . (9.40)
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The cross-section is thus in the limit of large de Broglie wave lengths just the
fourfold of the geometric cross-section of the sphere.

2) Limiting case: k R0 � 1
Since in this limit the de Broglie wave length is very much smaller than

the linear extensions of the scattering center, the quantum-mechanical cross-
section should approach its classical counterpart σcl = π R2

0. At least one should
suppose this according to the principle of correspondence.

The boundary conditions, which lead to (9.37), are independent of k R0.
Equation (9.37) is therefore also valid in the present limit, but where we now
have to apply the asymptotic forms (6.125) and (6.126) of the Bessel and Neu-
mann functions:

tan δl −→
kR0 
 l

− tan

(
k R0 − l π

2

)
.

By this we can read off the scattering phase δl, at least except for an integral
multiple of π:

δl −→ −kR0 + l
π

2
(+nπ) . (9.41)

Presuming the validity of our semi-classical estimation (9.29) we will approxi-
mately terminate the sum of partial waves (9.26) for the total cross-section at an
angular momentum quantum number l0. This number is the maximal positive
integer, for which

√
l0(l0 + 1) ≤ k R0 . (9.42)

It is therefore certainly l0 � 1, so that σ can be calculated as follows:

σ ≈ 4π

k2

l0∑

l=0

(2l + 1) sin2 δl

(9.41)≈ 4π

k2

l0∑

l=0

[
(l + 1) cos2

(
kR0 − (l + 1)

π

2

)
+ l sin2

(
kR0 − l

π

2

)]

=
4π

k2

l0∑

l′=1

l′
[
cos2

(
k R0 − l′

π

2

)
+ sin2

(
k R0 − l′

π

2

)]

+
4π

k2
(l0 + 1) cos2

[
kR0 − (l0 + 1)

π

2

]

=
4π

k2

l0∑

l′=1

l′ +O(l0) .

The sum has the value (1/2) l0(l0+1), so that we can estimate the cross-section,
because of l0 � 1 and with (9.42), to be:

σ ≈ 2π

k2
l20 ≈ 2π R2

0 . (9.43)
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Contrary to our expectations, the cross-section is for high energies (small wave
lengths) of the incident particle twice as large as the classical cross-section,
which is identical to the geometric cross-section π R2

0 of the sphere. The reason
is the same as that which explains the optical theorem (9.27). The cross-section
consists of two terms, a real scattering term, which exactly corresponds to the
classical expectation, and a diffraction term, which is concentrated in forward
direction and takes care for the shadow behind the hard sphere. As already
thought through in connection with the optical theorem, the cancellation of the
incident wave intensity in the shadow region of the sphere by the in forward
direction scattered wave corresponds exactly to the scattered intensity reflected
by finite angles, because the particle number can not change by the scattering
process. The scattering intensity in forward direction (ϑ = 0) thus is exactly as
large as the residual scattering intensity. But because the classical cross-section
registers only the really scattered radiation, it is just half as large as the total
quantum-mechanical cross-section, which also incorporates the diffraction term.

9.2.3 Scattering of Slow Particles by a Potential Well

As a further example of application we look at the scattering on a three-
dimensional potential well :

V (r) =

{
−V0 if r < a ,

0 if r ≥ a

We have already worked on this potential problem in Sect. 6.3, and thereby
investigated especially the bound states (Sect. 6.3.3) for energies −V0 < E < 0.
Here we are interested in the case E > 0, which we could only shortly broach
in Sect. 6.3.4. We use in the following the abbreviations:

q2 =

{
k20 for r < a ,

k2 for r ≥ a ,

k2 =
2m

�2
E ; k20 =

2m

�2
(E + V0) . (9.44)

According to (6.17) and (6.114) we have to search for the solution of the radial
equation [

d2

dr2
+

2

r

d

dr
+

(
q2 − l(l + 1)

r2

)]
Rl(r) = 0 .

This type of differential equation we have evaluated often enough in the mean-
time. We are therefore able to directly display the structure of the solution.
With the requirement that Rl(r) is regular in the origin, it remains only the
choice (see (6.140)):

Rl(r) =

{
al jl(k0r) for r < a ,

αl jl(k r) + βl nl (k r) for r ≥ a .
(9.45)
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jl and nl are here of course again the Bessel and Neumann functions. Once
more, the asymptotic (r → ∞)-behavior of the particle wave will be important
for the following considerations. With (6.125) and (6.126) the ansatz (9.45) for
the radial function in this limit has the form:

Rl(r) −→ 1

k r

[
αl sin

(
k r − l π

2

)
− βl cos

(
k r − l π

2

)]
.

On the other hand, it is, very generally, because of (9.21) and (9.22), to require:

Rl(r) −→ il(2l + 1)
1

k r
sin

(
k r − l π

2
+ δl

)
eiδl

= il(2l+ 1)
eiδl

k r

[
sin

(
k r − l π

2

)
cos δl + cos

(
k r − l π

2

)
sin δl

]
.

The comparison of the last two equations provides the relationship between the
coefficients αl, βl and the scattering phases δl:

αl = il(2l + 1) eiδl cos δl ,

βl = −il(2l+ 1) eiδl sin δl .

The ratio of the amplitudes
βl

αl
= − tan δl (9.46)

has already been found in (6.142) for the special case l = 0. Further statements
on the quotient βl/αl can be derived from the continuity conditions for the
radial function Rl(r) and its derivative (d/dr)Rl(r) at the discontinuity of the
potential at r = a. These two requirements can be combined to yield the fitting
condition:

1

Rl(r)

d

dr
Rl(r)

∣∣∣∣
r= a

continuous !

The coefficients al of the ansatz (9.45) drop out. But for our purposes here,
they are in fact unimportant and can later be post-determined, if necessary, via
the normalization of the solution:

k0
j′l (k0a)
jl (k0a)

!
= k

αl j
′
l (k a) + βl n

′
l (k a)

αl jl (k a) + βl nl (k a)
. (9.47)

The prime means differentiation with respect to the full argument. We further
reformulate (9.47) a bit,

k0 j
′
l (k0a)

[
jl (k a) +

βl

αl
nl (k a)

]
= k jl (k0a)

[
j′l (k a) +

βl

αl
n′
l (k a)

]
,

and solve it for βl/αl. It follows then with (9.46):

tan δl =
k j′l (k a) jl (k0a)− k0 j

′
l (k0a) jl (k a)

k n′
l (k a) jl (k0a)− k0 j′l (k0a)nl (k a)

. (9.48)
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Therewith all the scattering phases δl = δl(E, V0) are completely determined.
The right-hand side looks complicated, but can be evaluated without problem
on a computer. We want to provide here, however, only a certain overview of the
physical content of (9.48) and consider for this slow particles, i.e., the limiting
case

k a � 1 .

Of course, this need not necessarily also mean k0 a � 1. We can therefore
apply in (9.48) the approximate formulas (6.123) and (6.124) for the Bessel and
Neumann functions in fact only for small arguments k a:

jl(z) ≈ zl

(2l + 1)!!
−→ j′l(z) ≈

l zl−1

(2l+ 1)!!
,

nl(z) ≈ − (2l + 1)!!

(2l+ 1) zl+1
−→ n′

l(z) ≈
(l + 1) (2l+ 1)!!

(2l + 1) zl+2
.

After a few simple rearrangements we obtain therewith instead of (9.48):

tan δl =
2l + 1

[(2l + 1)!!]2
(k a)2l+1 P̂l(k0a) . (9.49)

where we have used the abbreviation:

P̂l(k0a) =

(
l jl(z)− z j′l(z)

(l + 1) jl(z) + z j′l(z)

)

z= k0a

. (9.50)

If the denominator is not zero,—an interesting special case, which we will investi-
gate in the next subsection—then P̂l (k0a) will behave ‘reasonably’ as function of
the particle energy, i.e., will not show any peculiarities. Because of k a � 1, then
tan δl also must be very small. We will have reasons to assume tan2 δl ≈ sin2 δl,
finding therewith

sin2 δl+1

sin2 δl
≈ (k a)4

(2l + 1)2 (2l+ 3)2
� 1 (9.51)

an estimation, which agrees exactly with that for the hard sphere (see (9.39)),
if the radii of the sphere and the well are equal (R0 = a). As was done there,
we can conclude that in the expansion (9.26) for the total cross-section σ the
s-term (l = 0) dominates. For the slow (low-energy) particles we have, in the
case of the potential well also, almost pure isotropic s-scattering:

σ ≈ 4π

k2
sin2 δ0 . (9.52)

This holds, though, under the above assumption that P̂l(k0a) is well-behaved,
i.e., first of all it must not become singular as a function of E.

The scattering phase δ0 needed in (9.52) can be calculated with (9.48). The
direct calculation of the l = 0-scattering phase is even simpler, as we did it in
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Figure 9.6: Distance-dependence of the effective potentials for the hard sphere
and the potential well, respectively

Sect. 6.3.4. We can take the result (6.143), which is exactly valid, i.e., without
restriction to small k a:

δ0 = arctan

(
k

k0
tan k0a

)
− k a (+nπ) . (9.53)

The scattering phase is of course determined only except for an integral multiple
of π. In Sect. 9.2.5 we will pick up once more the discussion of the s-scattering
by the potential well.

At first glance, the similarity of the results (9.51), (9.52) for the poten-
tial well with those for the hard sphere ((9.39), (9.40)) may be a bit puzzling,
but can be explained relatively simply. The cause is the centrifugal barrier
(∼ �

2l(l+ 1)/2mr2 (6.20)), which for l ≥ 1, for low energies prevents the wave
from approaching the region of action of the bare potential too closely. The
wave is obviously not able to penetrate the ‘centrifugal barrier’. For r > R0 = a,
however, the effective scattering potential Veff(r) = V (r) + �

2l(l + 1)/2mr2 is
the same for the hard sphere and for the potential well (see Fig. 9.6). The result

tan δl ∼ (k a)2l+1 (9.54)

at low particle energies is therefore typical for all potentials of finite range. One
speaks of potential scattering in such a case, from which we have seen that it
is s-like for all potentials of this kind. For s-scattering, though, the centrifugal
barrier vanishes. This partial scattering is therefore determined by the bare
potential only.

9.2.4 Resonance Scattering

For the analysis of the scattering result (9.49) so far we have always presumed

that the term P̂l(k0a), defined in (9.50), is well behaved. In a certain sense that
is the basic precondition for potential scattering. It is now definitely possible
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that at certain particle energies E the denominator of P̂l(k0a) becomes zero.
Then, in particular, the estimation (9.51) is simply wrong. In the region of the
so-called resonance energy ER, which solves the following equation,

0
!
= [(l + 1) jl(k0a) + k0a j

′
l(k0a)]E=ER

, (9.55)

another type of scattering appears, which is called resonance scattering.
P̂l(k0a) diverges at E = ER. In order to see what is physically the reason
for this singularity, let us approximately evaluate (9.55) for the special case of
a very deep potential well

k0a � l (l ≥ 1) .

In this case we can apply for the spherical Bessel function jl(k0a) the asymptotic
form (6.125):

jl(k0a) ≈ 1

k0a
sin

(
k0a− l π

2

)
,

j′l (k0a) ≈ − 1

(k0a)2
sin

(
k0a− l π

2

)
+

1

k0a
cos

(
k0a− l π

2

)
.

Therewith (9.55) becomes:

0
!
=

l

k0a
sin

(
k0a− l π

2

)
+ cos

(
k0a− l π

2

)

=
l

k0a
cos

[
k0a− (l + 1)

π

2

]
− sin

[
k0a− (l + 1)

π

2

]
.

This means:

tan
[
k0a− (l + 1)

π

2

]
=

l

k0a
� 1 .

Since the right-hand side is very small, the tangent must be, except for an
integral multiple of π, approximately equal to its argument:

k0a− l
π

2
≈
(
n+

1

2

)
π +

l

k0a
(n = 0, 1, 2, . . .) . (9.56)

Negative values of n are, because of k0a � l, out of question. Without the
last summand, which as per presumption is small compared to 1, (9.56) rep-
resents just the condition for a bound state (discrete level) in the (very deep)
three-dimensional potential well (see the solution of Exercise 6.3.4). Always
when the energy of the incident particle corresponds to the energy of such a
bound state (Fig. 9.7) resonance scattering sets in. In the resonance tan δl
diverges according to (9.49) and (9.50). Since in the region of potential scatter-
ing tan δl � 1, so that δl lies close to an integral multiple of π, the δl must, as
a function of E, obviously have jump in the neighborhood of ER, abruptly from
mπ to (m± 1)π, thereby traversing in the resonance the value

δl(E = ER) = mπ ± π

2
. (9.57)
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Figure 9.7: Illustration of the resonance scattering at the potential well

We should investigate in a bit more detail the energy region around ER. At
first, the numerator of P̂l(k0a) can be expanded as a Taylor series around ER,
which we cut off after the linear term:

(l + 1) jl (k0a) + k0a j
′
l (k0a)

= 0 + (E − ER)

[
(l + 1)

d

dE
jl (k0a) +

d

dE
(k0a j

′
l (k0a))

]

E=ER

+O [
(E − ER)

2
]
.

In the numerator of P̂l(k0a) we can directly replaceE by ER. With the definition

γl =
2l+ 1

[(2l+ 1)!!]2

[
l j0 (k0a)− k0a j

′
l(k0a)

(l + 1) (d/dE) jl (k0a) + (d/dE) (k0a j′l (k0a))

]

E=ER

(9.58)

in the immediate surrounding of the resonance we then have:

tan δl ≈ γl
(k a)2l+1

E − ER
. (9.59)

If one assumes that δl as function of E increases monotonically from 0 to π (or
from mπ to (m + 1)π) and takes at ER the value π/2 (or (m + 1/2)π), then
it must obviously be γl < 0. The partial cross-section σl (l-contribution to the
cross-section σ (9.26)),

σl =
4π(2l + 1)

k2
sin2 δl =

4π(2l + 1)

k2
tan2 δl

1 + tan2 δl
,

gets therewith a Lorentzian profile:

σl =
4π(2l+ 1)

k2
γ2
l (k a)

4l+2

(E − ER)2 + γ2
l (k a)

4l+2
. (9.60)
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Figure 9.8: Resonance behavior of the partial cross-section

This relation is called Breit-Wigner formula. In the resonance E = ER σl

takes its maximal value

σmax
l =

4π(2l+ 1)

k2
. (9.61)

When we define as half width ΔEl the distance between the points on the E-axis,
at which σl drops to half of its maximal value (Fig. 9.8),

ΔEl = 2|γl| (k a)2l+1 , (9.62)

then we recognize that, because of k a � 1, it is an extremely sharp resonance.
The other partial cross-sections σl′ , whose quantum numbers l′ do not fulfill
the resonance condition (9.56), lie in the region of potential scattering and are
then negligible compared to σl.

Outside the resonance an l ≥ 1-partial wave experiences only an unim-
portant scattering, and can not significantly penetrate the potential region,
either. The scattering features turn out as almost independent of the actual
potential. In the region of the resonance the corresponding partial wave obvi-
ously tunnels to a great part into the centrifugal barrier, and occupies there
a quasi-bound state, which can be calculated via a relation like (9.56). After
a relatively long time span the particle is then re-emitted, which is the rea-
son for the high scattering cross-section. The particle thus spend only a finite
lifetime τ inside the potential. The resonance is therefore in fact not a real
bound state (metastable). According to the energy-time uncertainty relation
(3.221) (Vol. 6) it possesses an energy-indeterminacy of the order of magnitude
ΔE = �/τ .

9.2.5 S-Scattering by the Potential Well

The considerations and interpretations of the last subsection excluded s-
scattering, because for l = 0 the centrifugal barrier does not exist. We therefore
now consider this case separately.
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The scattering phase δ0 we already know. The version (9.53) is valid even
for all particle energies. For low energies and for the case that tan k0a is not

right diverging (k0a �= (n̂+ 1/2)π; n̂
!
= Z), we can replace the arc tangent by

its argument:

δ0 ≈ k

k0
tan k0a− k a+ nπ . (9.63)

One defines as scattering length the expression

as = a

(
1− tank0a

k0a

)
(9.64)

and can write therewith:
δ0 ≈ nπ − k as . (9.65)

This means for the cross-section (l = 0):

σ0 ≈ 4π

k2
sin2 k as ≈ 4π a2s . (9.66)

It can be shown that the first corrections to this result are of the order of
magnitude k2.

In order to get further information about the scattering phase δ0 and the
partial cross-section σ0, let us consider the relation (9.53) in the form

tan(k a+ δ0)

tan k0a
=

k

k0
=

k√
k2 + 2mV0/�2

. (9.67)

The right-hand side is a positive, monotonically from 0 to 1 increasing function
of k. Consequently it holds for the left-hand side:

lim
k→∞

tan(k a+ δ0)

tan k0a
= lim

k→∞
tan(k a+ δ0)

tan k a

!
= 1 . (9.68)

We can conclude from (9.65) and (9.68) that for k → 0 as well as for k → ∞
the scattering phase δ0 must be an integral multiple of π. On the other hand,
scattering phases are by definition (9.21) afflicted with an arbitrariness mod-
ulo π. We have therefore the freedom to lift this arbitrariness by the following
convention: When k0a lies in the interval

π

(
n̂− 1

2

)
< k0a < π

(
n̂+

1

2

)
; n̂ = 0, 1, 2, . . . , (9.69)

we require that this is also the case for k a + δ0. According to (9.68) it must
then obviously be for k → ∞

lim
k→∞

δ0(k) = 0 , (9.70)
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and because of (9.69) for k → 0:

lim
k→ 0

δ0(k) = n̂ π . (9.71)

In order to see the meaning of the non-negative integer n̂, we investigate (9.69)
for k → 0. Then k0 there is to be replaced by

k00 = k0 (k = 0) =

√
2mV0

�2
. (9.72)

(9.69) is therewith for V0 = 0 fulfilled by n̂ = 0. It is plausible that
for this limiting case the scattering phase vanishes. If we enhance the
depth of the potential well so far that k00a > π/2, then n̂ jumps onto the
value 1 and δ0(0) is equal to π. But on the other hand, k00a > π/2 also
means

V0 >
π2

�
2

8ma2
,

and that is, in turn, according to (6.138), the condition for a first bound state
in the potential well. With increasing V0 more and more bound states appear,
whose number N− is calculated according to (6.137) and according to the
considerations in connection with (4.48) in Vol. 6:

N− =

[
1

π

√
2mV0a2

�2
− 1

2

]
=

[
k00 a

π
− 1

2

]

([x] is the first integer above x.) Equation (9.69) can be read as:

n̂− 1 <
k00 a

π
− 1

2
< n̂.

The number n̂ in (9.71) is thus equal to the number of bound states in the
potential well of the depth V0. It is therewith uniquely fixed. Let us assume for
the moment that the depth V0 of the potential well is just so that n̂ = 3 bound
states appear, then it follows from (9.70) and (9.71) for (continuous) δ0 as
function of k, and therewith as function of the particle energy E, qualitatively
a curve shape as sketched in Fig. 9.9. With (9.66) the k → 0-value of the
cross-section σ0,

σ0 =
4π

k2
sin2 δ0 ,

is known, so that we obtain for σ0 even as function of the particle energy
E quite a detailed picture. There arise typical oscillations (resonances) as a
function of the energy of the incident particle.
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Figure 9.9: Connection between scattering phase and cross-section for s-
scattering at the potential well

9.2.6 Integral-Representation for Scattering Phases

The calculation of scattering phases is in general rather complicated and nor-
mally possible only under strongly restrictive assumptions. Different represen-
tations offer different starting points for approximations, what can be of great
importance for the treatment of scattering problems. We therefore want to
derive in this subsection an alternative integral-representation of the scattering
phases.

The general ansatz (9.17) for the solution ϕ(r), which respects the symmetry
of the scattering problem, leads to the differential equation (9.18) for the radial
function ul(r) = r Rl(r), which we want to apply in the following form:

u′′
l (r) +

[
k2 − 2m

�2
V (r) − l(l+ 1)

r2

]
ul(r) = 0 . (9.73)

ul(r) solves this equation with the boundary condition (6.21)

ul(0) = 0 ,

and exhibits, according to (9.21), (9.22) for r → ∞ the asymptotic behavior

ul(r) ∼ 1

k
il(2l + 1) eiδl sin

(
k r − l π

2
+ δl

)
.

In the limiting case of vanishing interaction potential the differential equation,
analogous to (9.73), reads:

u
′′(0)
l (r) +

[
k2 − l(l+ 1)

r2

]
u
(0)
l (r) = 0 . (9.74)
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The solution, which belongs to the boundary condition u
(0)
l (0) = 0, is already

known to us (9.20):

u
(0)
l (r) = il (2l + 1) r jl (k r) ∼

r→∞
1

k
il (2l+ 1) sin

(
k r − l π

2

)
.

We now multiply (9.73) by u
(0)
l (r) and (9.74) by ul(r), subtract the two equa-

tions from each other, and integrate over all r:
∞∫

0

dr
(
u′′
l (r)u

(0)
l (r) − u

(0)′′
l (r)ul(r)

)
=

2m

�2

∞∫

0

dr V (r)ul(r)u
(0)
l (r) .

We further evaluate the left-hand side using integration by parts, where we

apply the two boundary conditions for ul und u
(0)
l :

∞∫

0

dr
(
u′′
l (r)u

(0)
l (r) − u

(0)′′
l (r)ul(r)

)

=
(
u′
l(r)u

(0)
l (r) − u

(0)′
l (r)ul(r)

)∣∣∣
∞

0
−

∞∫

0

dr
(
u′
l(r)u

(0)′
l (r) − u

(0)′
l (r)u′

l(r)
)

= lim
r→∞

(
u′
l(r)u

(0)
l (r) − u

(0)′
l (r)ul(r)

)
.

By inserting in the next step the asymptotic solution profiles, we bring into play
the scattering phases δl, which we are actually interested in:

lim
r→∞

(
u′
l u

(0)
l − u

(0)′
l ul

)

=

(
1

k
(2l + 1) il

)2

eiδl lim
r→∞

[
k cos

(
k r − l π

2
+ δl

)
sin

(
k r − l π

2

)

−k sin

(
k r − l π

2
+ δl

)
cos

(
k r − l π

2

)]

= k

(
1

k
(2l+ 1) il

)2

eiδl lim
r→∞

[
cos

(
k r − l π

2

)
cos δl

· sin
(
k r − l π

2

)
− sin2

(
k r − l π

2

)
sin δl

− sin

(
k r − l π

2

)
cos δl cos

(
k r − l π

2

)
− cos2

(
k r − l π

2

)
sin δl

]

= −k

(
1

k
(2l + 1) il

)2

eiδl sin δl .

We have therewith found an exact integral-representation for the scattering
phases δl:

il(2l+ 1) eiδl sin δl = −2m

�2

∞∫

0

dr V (r) [k r jl(k r)] ul(r) . (9.75)
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This relation reveals the close entanglement of scattering phases and interaction
potential. However, it of course does not yet represent a solution of the scat-
tering problem, because there appears on the right-hand side the full, unknown
solution function ul(r).

If the interaction potential V (r) is sufficiently weak, the full solution ul(r)

will differ only slightly from the free solution u
(0)
l (r). Simultaneously, the scat-

tering phases δl, aside from an integral multiple of π, will be very small. We
therefore will not make too large a mistake, when we replace on the right-hand

side of (9.75) ul(r) by u
(0)
l (r), and furthermore approximate on the left-hand

side eiδl sin δl by δl:

δl ≈ −2m

�2

1

k

∞∫

0

dr V (r) [k r jl(k r)]
2
. (9.76)

One calls this the Born approximation for scattering phases.
We will try to estimate the rating of this approximation and its region of

validity, respectively. The steps, which led to (9.76), illustrate that only weak
scattering processes can come into consideration. The scattering phases δl must
be small, consequently also the right-hand side of (9.76).

1) Small energies ←→ small k
We know from Sect. 6.3.2 that the function z jl(z) has an inflection point at

z =
√
l(l + 1) and increases up to this point like zl+1. In order to guarantee

that the integral in (9.76) is small, k r jl(k r) has to stay small within the effective
range R0 of the potential. The latter is valid up to

r ≤ 1

k

√
l(l + 1) .

The right-hand side of this inequality is just the quantum-mechanical ana-
log, discussed in Sect. 9.2.1, to the classical impact parameter (9.28). For
small k the approximation (9.76) can then be good at most if it can be
assumed:

kR0 ≤
√
l(l + 1)

On the other hand, however, this condition is just fulfilled by those quantum-
numbers l of the angular momentum, which may be unimportant for the scat-
tering process (see (9.299)). For small particle energies the Born approximation
(9.76) therefore appears rather questionable.

2) High energies ←→ large k
The term [k r jl(k r)]

2 is bound for all values of the argument (see Sect. 6.3.2).
The right-hand side of (9.76) is therefore in any case small, if one assumes

2m

�2k

∞∫

0

dr|V (r)| � 1 . (9.77)
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For higher particle energies and weak interaction potentials the Born approxi-
mation is thus acceptable for all quantum numbers l of the angular momentum.
At high energy the incident particle hardly feels the weak potential. The

approximation ul(r) ≈ u
(0)
l (r) obviously becomes appropriate.

9.2.7 Exercises

Exercise 9.2.1
It has been measured for pure s-scattering the differential cross-section

dσ

dΩ
= a ; a > 0 .

Determine the complex scattering amplitude f(ϑ)!

Exercise 9.2.2
For elastic scattering at the central potential

V (r) = V (r) =
c

r2
; c > 0

the scattering phases δl(k) are to be determined under the simplifying assump-
tion

c � �
2

2m
.

Furthermore, the scattering amplitude is to be found.
Useful formula: ∞∑

l=0

Pl(cosϑ) =
1

2 sin(ϑ/2)
.

Exercise 9.2.3
Consider the s-scattering at a spherical potential well with the radius a:

V (r) =

{
V0 > 0 for r < a ,

0 for r ≥ a .

1. Find for the caseE < V0 a conditional equation for the scattering phase δ0.

2. Estimate for small energies E of the incident particle the scattering phase
δ0 and determine the partial cross-section σ0. Investigate also the limiting
case V0 → ∞.

Exercise 9.2.4
Consider the scattering at a centrally symmetric, δ-like potential:

V (r) = V0 δ(r −R) ; (V0 > 0) .

The incorporated energies are all so low that one can restrict oneself to pure
s-scattering.
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1. Derive a conditional equation for the scattering phase δ0, i.e., calculate
tan δ0!

2. Show that in the neighborhood of resonances tan δ0 takes the form of
(9.59):

tan δ0,n = γn
kR

E − En
; (n = 1, 2, . . .)

En = �
2k2n/2m are here the resonance energies, of which there exist pos-

sibly more than one. Which sign do the γn have?

3. Estimate for strong couplings V0R � 1 the resonance energies En and
discuss the results!

4. Show that for strong coupling the following approximate relation exists
between the coefficients γn and the resonance energies En:

γn ≈ −1

2
En

(
�
2

mV0R

)2

.

Exercise 9.2.5
The differential cross-section dσ/dΩ for elastic scattering can be expressed by
scattering phases δl (9.25). Therewith, the integrals

∫
dΩ

dσ

dΩ
and

∫
dΩ cosϑ

dσ

dΩ

are to be calculated, and it is to be found out, how these integrals influence an
expansion of dσ/dΩ in Legendre polynomials.

9.3 Integral-Equations for Scattering Problems

At high particle energies many scattering phases contribute to the cross-section
and the scattering amplitude, respectively, so that the practicability of the
method of partial waves appears to be rather questionable. We therefore now
consider another approach to the scattering amplitude f(ϑ), the determination
of which solves, as we know, the scattering problem. We try to reformulate
the problem by integration of the Schrödinger equation, hoping therewith to
get via the corresponding integral equation hints of new, perhaps promising
approximations.

9.3.1 Integral Form of the Scattering Amplitude

For the calculation of the scattering amplitude f(ϑ) the solution of the time-
independent Schrödinger equation (9.10) is necessary, which we can bring, with
the abbreviations

k2 =
2mE

�2
; v(r) =

2m

�2
V (r) .
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into the following form:

(Δr + k2)ϕ(r) = v(r)ϕ(r) (9.78)

The assumption that V (r) is a central potential, will be brought into play only
later. We want to transform the linear inhomogeneous differential equation
(9.78) into an integral equation, which incorporates already explicitly the bound-
ary conditions.

Let ϕ0(r) be the solution of the associated homogeneous differential equa-
tion: (

Δr + k2
)
ϕ0(r) = 0 . (9.79)

But then each solution of the integral equation

ϕ(r) = ϕ0(r) +

∫
d3r′ G(r − r′) v(r′)ϕ(r′) (9.80)

is also a solution of the Schrödinger equation (9.78), if the so-called

Green’s function G(r− r′)

fulfills the equation

(
Δr + k2

)
G(r− r′) = δ(r− r′) . (9.81)

In a certain sense, G(r − r′) is the solution of the scattering problem for a
fictitious point-like scattering source at r′. The method of the Green’s function
we already got to know in Electrodynamics (Sects. 2.3.3 and 4.5.1, Vol. 3). The
procedure is here completely analogous.

In (9.80) we have to fix ϕ0(r) and G(r − r′) regarding the boundary condi-
tions. That is uniquely and simply done for ϕ0(r):

ϕ0(r) = eikz (r = (x, y, z)) . (9.82)

In order to find G(r − r′), we solve (9.81) by Fourier transformation:

G(r− r′) =
1

(2π)3/2

∫
d3q eiq·(r− r′) G(q) ,

δ(r− r′) =
1

(2π)3

∫
d3q eiq·(r− r′) .

If one inserts both expressions into (9.81), then a conditional equation for G(q)
is obtained:

∫
d3q eiq·(r−r′)

[
(2π)3/2 G(q) (k2 − q2)− 1

]
= 0 .

It follows after Fourier inversion:

G(q) =
1

(2π)3/2
1

k2 − q2
.
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On the right-hand side one could of course still add the solution

[a+(q) δ(q + k) + a−(q) δ(q − k)]

of the homogeneous relation G(q) (k2 − q2) = 0 (see (4.330), Vol. 3). However,
one recognizes very soon that then the physical boundary conditions would be
violated. Therewith, we have found:

G(r− r′) =
1

(2π)3

∫
d3q

eiq·(r− r′)

k2 − q2
. (9.83)

With the direction of (r− r′) as polar axis the angle integrations can easily be
done:

+1∫

−1

dx ei q|r− r′|x =
2 sin(q|r− r′|)

q|r− r′| .

We obtain as intermediate result:

G(r− r′) =
1

2π2

∞∫

0

dq
sin(q|r− r′|)

|r− r′|
q

k2 − q2
.

For the further evaluation a slight rearranging is recommendable:

∞∫

0

dq sin (q |r− r′|) q

k2 − q2

=
1

4i

∞∫

0

dq

(
1

k − q
− 1

k + q

)
ei q|r− r′|

− 1

4i

−∞∫

0

d(−q)

(
1

k + q
− 1

k − q

)
ei q|r− r′|

=
1

4i

+∞∫

−∞
dq

(
1

k − q
− 1

k + q

)
ei q|r− r′| .

With the definition

J± ≡
+∞∫

−∞
dq ei q|r− r′| 1

q ± k
(9.84)

the Green’s function can now be written as:

G(r− r′) =
i

8π2|r− r′| (J+ + J−) . (9.85)

We evaluate J± by complex integration by means of the residue theorem
((4.424), Vol. 3). The integration path C is closed by a semi-circle in the upper



326 CHAPTER 9. SCATTERING THEORY

Figure 9.10: Integration path C in the complex q-plane for the calculation of
the Green’s function of the scattering problem

half-plane at infinity (Fig. 9.10), where, because of the exponential function,
no finite contribution appears. There are four possibilities to circumscribe the
poles at ±k. The related arbitrariness will later be removed by the physical
boundary condition. With the residue theorem we find the following solutions
for J+ and J−:

1) J+ = J− = 0

2) J+ = 0 ; J− = 2π i ei k|r− r′|

3) J+ = 2π i e−ik|r− r′| ; J− = 0

4) J± = 2π i e∓ik|r− r′|

This yields for the Green’s function:

G(r− r′) =
−1

4π|r− r′|

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 (1) ,

ei k|r− r′| (2) ,

e−ik|r− r′| (3) ,

2 cos (k|r− r′|) (4) .

(2) and (3) are linearly independent solutions. Since the scattering part of
the solution ϕ(r) (second summand in (9.80)) must asymptotically behave like
an outgoing spherical wave, only (2) can come into consideration as the phys-
ically correct Green’s function: When we insert (2) together with (9.82) into
(9.80), then the to be solved integral equation, which now contains already
the correct boundary conditions being therewith equivalent to the Schrödinger
equation with boundary conditions, reads:

ϕ(r) = eikz − m

2π �2

∫
d3r′ V (r′)

eik|r− r′|

|r− r′| ϕ(r′) . (9.86)

We want to verify once more, whether this solution really possesses the right
asymptotic behavior, and thereby we want to find the explicit integral represen-
tation of the scattering amplitude. We will come from the general presumption,
agreed upon in Sect. 9.1.1, that the scattering potential has a finite effective
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Figure 9.11: Scattering potential of finite range

range (Fig. 9.11). We observe the scattered wave at a distance r � R0. The
integrand (9.86) is unequal zero only if r′ remains in the sphere of influence
of the potential (r′ ≤ R0). It is therefore also r′ � r. We can thus certainly
approximate the denominator by

1

|r− r′| ≈
1

r
.

In the exponential function (oscillations!) we have to perform the approximation
more carefully:

|r− r′| =
√
r2 + r′2 − 2 r · r′ ≈ r

(
1− 2 r · r′

r2

)1/2

≈ r − r · r′
r

= r − er · r′ .

Hence, asymptotically (9.86) changes into:

ϕ(r) −→ eikz − eikr

r

m

2π �2

∫
d3r′ V (r′)ϕ(r′) e−ik(er·r′) . (9.87)

The boundary condition (9.12) is obviously fulfilled. Simultaneously, we have
found therewith a (so far still exact) integral equation for the scattering ampli-
tude:

f(ϑ, ϕ) = − m

2π �2

∫
d3r′ V (r′)ϕ(r′) e−ik(er ·r′) . (9.88)

At no point we had to assume that V (r) is a central potential. In general, f
will therefore depend on both the angles ϑ and ϕ. (Distinguish angle ϕ from
wave function ϕ(r′)!) In the case of a central-symmetric potential V (r′) = V (r′)
there remains only the ϑ-dependence.

9.3.2 Born’s Series

The exact results (9.86) and (9.88) of the last subsection suggest an iterative
procedure. The formal solution of (9.86) is called Born’s series:

ϕ(r) =

∞∑

n=0

ϕ(n)(r) ,

ϕ(0)(r) = eikz , (9.89)

ϕ(n)(r) = − m

2π �2

∫
d3r′ V (r′)

ei k|r− r′|

|r− r′| ϕ(n− 1)(r′) .
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By insertion of the Born’s series into the exact expression (9.88) for the scatter-
ing amplitude one has the possibility to follow up an approximation procedure:

f(ϑ, ϕ) = − m

2π �2

∞∑

n=0

∫
d3r′ V (r′) e−ik(er ·r′) ϕ(n)(r′) . (9.90)

One speaks of the nth Born approximation, if the series for ϕ(r) is terminated
after the nth summand, and the series for f(ϑ, ϕ) after the (n−1)-st summand.
In practice, however, one uses almost exclusively the

first Born approximation

f (1)(ϑ, ϕ) = − m

2π �2

∫
d3r′ V (r′) e−ik(er−ez)·r′ (9.91)

(
z′ = r′ · ez ; ϑ = �(er, ez)

)
.

In the first approximation the scattering amplitude is, essentially, equal to the
Fourier transform V (K)

(
K = k(er − ez)

)
of the interaction potential. For

the further evaluation, if we restrict ourselves now to centrally symmetric
potentials

V (r′) = V (r′) ,

then we can explicitly perform the angle integrations in (9.91). We take from
Fig. 9.12:

K = k(er − ez) ;

K = 2k sin
ϑ

2
. (9.92)

When we orient the polar axis parallel to r′, then it follows for the integral in
(9.91):

∫
d3r′ V (r′) e−ik(er − ez)·r′

= 2π

∞∫

0

dr′ r′2 V (r′)

+1∫

−1

dx e−iKr′x =
4π

K

∞∫

0

dr′ r′ V (r′) sin(K r′) .

Figure 9.12: Angle-relations for the calculation of the scattering amplitude in
the first Born approximation
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The scattering amplitude f (1)(ϑ) therewith depends only on the momentum
transfer K :

f (1)(ϑ) = −2m

�2

1

K

∞∫

0

dr′ r′ V (r′) sin(K r′) . (9.93)

We recognize immediately one shortcoming of the first Born approximation by
the fact that f (1)(ϑ) is real, which means the optical theorem (9.27) is violated.
The approximation (9.93) can therefore be accepted of course only for weak
scattering processes.

It is not so easy to mark out the region of validity of the Born approxi-
mation. However, it is certainly a necessary precondition for the applicability
of (9.91) and (9.93) that

|ϕ(1)(r)| � |ϕ(0)(r)| = 1 .

This is equivalent to

m

2π �2

∣∣∣∣∣

∫
d3r′ V (r′)

ei k|r− r′|

|r− r′| eikz
′
∣∣∣∣∣ � 1 .

Because of r � R0 ≥ r′ the term 1/(|r−r′|) represents something like a damping
factor for the scattering potential. The validity-condition is thus fulfilled only
when it is satisfied for r = 0. After elimination of the angle integrations,

∫
d3r′ V (r′)

1

r′
eikr

′(1+ cosϑ′) =
2π

i k

∞∫

0

dr′ V (r′) eikr
′ (

eikr
′ − e−ikr′

)
,

it then remains the requirement:
∣∣∣∣∣∣

∞∫

0

dr V (r)
(
e2ikr − 1

)
∣∣∣∣∣∣
� �

2k

m
. (9.94)

In order to see, whether or not the condition is actually satisfiable, we investigate
two limiting cases:

1) High energies: kR0 � 1
In this case the exponential function oscillates very rapidly, so that for a

‘more or less’ continuous potential V (r) the first summand on the left-hand
side of the inequality (9.94) can be neglected:

∣∣∣∣∣∣

∞∫

0

dr V (r)

∣∣∣∣∣∣
� �

2k

m
. (9.95)

When V (r) has approximately the shape of a well with an effective Radius R0

and an effective depth V0 (Fig. 9.13), then (9.95) can further be simplified:

V0 R0 � �
2k

m
.
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Figure 9.13: Typical sketch of a potential with the ‘shape of a well’, for which
effective range and effective depth are still definable

For high particle energies and weak scattering potential (9.95) is fulfilled. The
Born approximation (9.93) should then be trustworthy. f (1)(ϑ) in this limit
is only a small quantity, and therewith also the total cross-section σ(1). We
have come to practically the same result as in (9.95) with (9.77) where we
estimated the region of validity of the Born approximation for scattering phases
in Sect. 9.2.6.

2) Low energies: k R0 � 1
In this case we can expand the exponential function in (9.94) up to the linear

term: ∣∣∣∣∣∣

∞∫

0

dr r V (r)

∣∣∣∣∣∣
� �

2

2m
. (9.96)

This condition means for a well-like V (r):

V0 R
2
0 � �

2

m
.

The requirement (9.96) is indeed rather restrictive. The scattering potential has
to be even very much smaller than the already rather small particle energy!

All in all we have found that the Born approximation is very much better
for high particle energies (k R0 � 1) than for small ones (k R0 � 1). The same
conclusion was reached in Sect. 9.2.6 in connection with the scattering phases.
We prove the equivalence of the Born approximations for the scattering phases
in (9.76), and for the scattering amplitude in (9.91) as Exercise 9.3.5.

9.3.3 Exercises

Exercise 9.3.1
A particle of mass m is scattered by the screened Coulomb potential

V (r) =
α

r
exp

(
− r

R0

)
, α > 0 (Yukawa potential) .

1. Calculate in the first Born approximation the scattering amplitude f(ϑ)
and the differential cross-section dσ/dΩ.
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2. In which range of values for α and R0, respectively, does the Born approx-
imation represent a reasonable approximation at low energies?

3. What comes out for the limiting case of the Coulomb potential?

Exercise 9.3.2
A particle of mass m is scattered at the potential

V (r) = −V0 e
−r/R0 , V0 > 0 .

1. Calculate in the first Born approximation the scattering amplitude f(ϑ).

2. Evaluate the general criterion of validity (9.94) for the Born approxima-
tion.

3. With the result from part 1. determine the phase δ0 for s-scattering.

4. Determine the phase δ1 for p-scattering.

Exercise 9.3.3
A particle of mass m is scattered at the potential well:

V (r) =

{
−V0 for r < R0

0 for r > R0,
V0 > 0

1. Calculate in the first Born approximation the scattering amplitude f(ϑ).

2. Find the differential cross-section dσ/dΩ and discuss this for low particle
energies (k R0 � 1).

3. Under which conditions, according to the criterion of validity (9.94), is
the Born approximation allowed? Consider in particular the limits of low
(k R0 � 1) and high particle energies (k R0 � 1).

4. Let the potential well be so deep that at least one bound state can exist.
What can then be said about the Born approximation for low-energy par-
ticle scattering?

Exercise 9.3.4
Discuss the scattering of electrons by neutral hydrogen atoms. Consider thereby
exclusively single scattering processes. Each electron is scattered by exactly one
H-atom. The hydrogen atoms are in their ground states.

1. Write down the scattering potential. Demonstrate in particular that it is
a central potential.

2. Calculate the scattering amplitude in the first Born approximation!

3. Determine with 2. the differential cross-section.

4. Derive the total cross-section!
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5. What is the condition for the validity of the first Born approximation?

Formulas:

x0∫

0

dx e−αx xn =
n!

αn+1

(
1− e−αx0

n∑

ν =0

(αx0)
ν

ν!

)
,

∞∫

x0

dx e−αx xn =
n!

αn+1
e−αx0

n∑

ν =0

(αx0)
ν

ν!
.

Exercise 9.3.5
Prove the equivalence of the Born approximation for scattering phases (9.76),

δl ≈ −2m

�2

1

k

∞∫

0

dr V (r) [k r jl (k r)]
2 ,

and the Born approximation for the scattering amplitude (9.91),

f (1)(ϑ) = − m

2π �2

∫
d3r′ V (r′) e−ik(er − ez)·r′ .

9.4 Formal Scattering Theory

So far we have formulated the scattering problem exclusively in the illustrative
position representation. The incident particle was interpreted as a wave packet.
Since this is built up by plane waves, we could focus the full theory on the
investigation of an incident plane wave. Furthermore, since, in contrast to
the wave packet, the plane wave is an energy-eigen state of the free Hamilton
operator, the scattering problem became stationary. In this section we will now
look for more abstract representations, in order to have the freedom to choose
a particular realization which is most suitable for evaluation.

9.4.1 Lippmann-Schwinger Equation

Let the particle (system), which undergoes the scattering process, be described
in the Schrödinger picture by the time-dependent state |ϕ(t)〉. Its time-behavior
under the influence of the Hamilton operator

H = H0 +H1

contains of course the full information about the scattering process, if H1 is the
operator of the interaction between particle and scattering center. Let the free
operator H0 = p2/2m, which alone acts far away from the scattering center,
have a continuous eigen-value spectrum:

H0

∣∣∣E(0)
n

〉
= E(0)

n

∣∣∣E(0)
n

〉
.
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n is thereby a set of quantum numbers, as for instance the Cartesian wave-

number components kx, ky, kz . Let the eigen-states |E(0)
n 〉 be complete and

orthonormalized to δ-functions:
∫

dn
∣∣∣E(0)

n

〉 〈
E(0)

n

∣∣∣ = 1l ;
〈
E(0)

n

∣∣∣ E(0)
m

〉
= δ(n−m) .

When we, at first, switch off the interaction and prepare the particle state at
the time t = 0, e.g., as wave packet,

|ϕ0(0)〉 =

∫
dnαn

∣∣∣E(0)
n

〉
;

∫
dn |αn|2 = 1 ,

then it would hold for the time t:

|ϕ0(t)〉 = e−(i/�)H0t

∫
dnαn

∣∣∣E(0)
n

〉
=

∫
dnαn e

−(i/�)E(0)
n t

∣∣∣E(0)
n

〉
. (9.97)

The expansion coefficients αn can thereby be considered as known. For the
switched on interaction, though, |ϕ0(t)〉 can be an exact eigen-state only for
t → −∞ (the time long before the scattering). By means of Schrödinger’s
time evolution operator ((3.177), Vol. 6) we can, however, find a formally exact
relation between |ϕ0(t → −∞)〉 and the general scattering state |ϕ(t)〉:

|ϕ(t)〉 = lim
t′ →−∞

e−(i/�)H(t− t′) |ϕ0(t
′)〉

= e−(i/�)Ht lim
t′ →−∞

∫
dnαn e

−(i/�)(E(0)
n −H)t′

∣∣∣E(0)
n

〉
. (9.98)

We have of course to ask ourselves how to perform such a limiting process. We
want to presume here without explicit proof that the limiting value does indeed
exist for reasonable scattering potentials. Then the following consideration will
help: Let f(t) be a function with a limiting value for t → −∞:

f(−∞) = f(−∞)

0∫

−∞
dx ex = lim

η→ 0+

0∫

−∞
dx ex f

(
x

η

)

= lim
η→ 0+

η

0∫

−∞
dt eηt f(t) . (9.99)

Note in the second partial step that, because of the special limits of integration,
x is always negative. The limiting process thus leads indeed to f(−∞). With
(9.99) we calculate the limiting process in (9.98):

lim
t′ →−∞

e−(i/�)(E(0)
n −H)t′

∣∣∣E(0)
n

〉
= lim

η→ 0+
η

0∫

−∞
dt e−(i/�)(E(0)

n −H+i�η)t
∣∣∣E(0)

n

〉

= lim
η→ 0+

η
1

−(i/�) (E
(0)
n −H + i � η)

∣∣∣E(0)
n

〉
=

i 0+

E
(0)
n −H + i 0+

∣∣∣E(0)
n

〉
.

(9.100)
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With the new state vector
∣∣∣E(+)

n

〉
= lim

t′ →−∞
e−(i/�)(E(0)

n −H)t′
∣∣∣E(0)

n

〉
=

i 0+

E
(0)
n −H + i 0+

∣∣∣E(0)
n

〉
(9.101)

we are now able to write (9.98) as follows:

|ϕ(t)〉 = e−(i/�)Ht

∫
dnαn|E(+)

n 〉 . (9.102)

This expression can be further manipulated, as soon as we have shown that

|E(+)
n 〉 is an eigen-state of the Hamilton operator H . But one realizes that

immediately when one applies to both sides of the definition equation (9.101)

the operator (E
(0)
n −H + i 0+):

(
E(0)

n −H + i 0+
) ∣∣∣E(+)

n

〉
= i 0+

∣∣∣E(0)
n

〉
⇐⇒

(
E(0)

n −H
) ∣∣∣E(+)

n

〉
= 0 .

(9.103)

The states |E(+)
n 〉 are thus eigen-states of H with the eigen-values E

(0)
n of the

free system. We can therefore write instead of (9.102):

|ϕ(t)〉 =

∫
dnαn e

−(i/�)E(0)
n t

∣∣∣E(+)
n

〉
. (9.104)

The states |E(+)
n 〉 obviously solve the scattering problem, whose time-dependence

has already been separated off in (9.104).

If one exploits in (9.101) that the number E
(0)
n of course commutes with the

operator H (eA eB = eA+B only if [A,B]− = 0!), then |E(+)
n 〉 can be cast into

the form,
∣∣∣E(+)

n

〉
= lim

t′ →−∞
e(i/�)Ht′ e−(i/�)E

(0)
n t′

∣∣∣E(0)
n

〉
= lim

t′ →−∞
e(i/�)Ht′ e−(i/�)H0t

′ ∣∣∣E(0)
n

〉
,

from which we can read off the later needed orthonormalization of these states.
It is identical to that of the free states:

〈
E(+)

m

∣∣∣ E(+)
n

〉
=
〈
E(0)

m

∣∣∣ E(0)
n

〉
= δ(m− n) . (9.105)

The according to (9.104) remaining task now consists in the determination of

|E(+)
n 〉. At first, it follows from the definition (9.101):

∣∣∣E(+)
n

〉
=

1

E
(0)
n −H + i 0+

[
i 0+ +

(
E(0)

n −H0

)] ∣∣∣E(0)
n

〉
; .

This is equivalent to:

1

E
(0)
n −H0 + i 0+

(
E(0)

n −H + i 0+
) ∣∣∣E(+)

n

〉

=

(
1l− 1

E
(0)
n −H0 + i 0+

H1

) ∣∣∣E(+)
n

〉
=
∣∣∣E(0)

n

〉
.
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We define:

Green operator to H0

R(±)
n =

1

E
(0)
n −H0 ± i 0+

. (9.106)

We do not need the operator R
(−)
n before the next subsection. But here it is

simply co-introduced. From the last equation we get, with the definition of the
Green operator, the

Lippmann-Schwinger equation
∣∣∣E(+)

n

〉
=
∣∣∣E(0)

n

〉
+R(+)

n H1

∣∣∣E(+)
n

〉
, (9.107)

which turns out to be fundamental for the formal scattering theory. This equa-
tion can be iterated,

∣∣∣E(+)
n

〉
=

∞∑

m=0

∣∣∣E(m)
n

〉
, (9.108)

∣∣∣E(m=0)
n

〉
=

∣∣∣E(0)
n

〉
;

∣∣∣E(m)
n

〉
= R(+)

n H1

∣∣∣E(m− 1)
n

〉
, (9.109)

and strongly resemblesBorn’s series (9.89) in Sect. 9.3.2. This similarity is not
by chance. The Born’s series is just the position representation of the abstract
Lippmann-Schwinger equation. This we will now check.

At first, we can reformulate Eq. (9.107) by an arbitrary complete system
{|ρ〉} of the Hilbert space:

〈
ρ
∣∣∣E(+)

n

〉
=
〈
ρ
∣∣∣E(0)

n

〉
+

∫∫
dρ′ dρ′′

〈
ρ
∣∣∣R(+)

n

∣∣∣ ρ′
〉
〈ρ′|H1 |ρ′′〉

〈
ρ′′
∣∣∣E(+)

n

〉
.

(9.110)

In the special position representation the interaction H1 is diagonal:

〈r′|H1 |r′′〉 = V (r′)δ(r′ − r′′) .

If we specify the set of quantum numbers to n = (kx, ky kz) = k, then

〈
r
∣∣∣E(0)

n

〉
=⇒ ϕ

(0)
k (r) = eikr

denotes the (not normalized) plane wave. It is then

〈
r
∣∣∣E(+)

n

〉
=⇒ ϕ

(+)
k (r)

the solution wave function:

ϕ
(+)
k (r) = ϕ

(0)
k (r) +

∫
d3r′ 〈r|R(+)

k |r′〉V (r′)ϕ(+)
k (r′) . (9.111)
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We now show that, except for an unimportant factor, the position representation

of the Green operator R
(+)
k agrees with the Green’s function (9.83). When

inserting

H0 =
�
2

2m
k̂2 ; E(0)

n =
�
2

2m
k2

we have to take into consideration that k̂ is the operator of the wave number k,
while the latter is a c-number, and not an operator:

〈r|R(+)
k |r′〉 = 〈r| 1

E
(0)
n −H0 + i 0+

|r′〉

=
2m

�2
〈r| 1

k2 − k̂2 + i 0+
|r′〉

=
2m

�2

∫
d3q〈r| 1

k2 − k̂2 + i 0+
|q〉〈q|r′〉

=
2m

�2

∫
d3q

〈r|q〉〈q|r′〉
k2 − q2 + i 0+

.

〈r|q〉 = (2π)−3/2 exp(iq · r) is the normalized plane wave:

〈r|R(+)
k |r′〉 = 2m

�2

1

(2π)3

∫
d3q

eiq·(r− r′)

k2 − q2 + i 0+
. (9.112)

Except for the factor 2m/�2 this is now just the Green’s function G(r − r′)
(9.83). The factor can be explained by the integral equation (9.80), which defines
G(r − r′). There we had taken instead of the real potential the renormalized
potential v(r) = 2m/�2 V (r). The integrand in (9.112) has poles at the positions

q = ±
√
k2 + i 0+ = ±(k + i 0+) .

The infinitesimal +i 0+ in (9.112) has therefore the same effect as the ‘circum-
scribing’ of the poles, which we discussed after Eq. (9.85) in connection with
the evaluation of the Green’s function. It just corresponds to the path 2) of
integration, which we denoted there as the physically correct one. The integral
equations (9.111) and (9.80) are therefore identical. The Lippmann-Schwinger
equation (9.107), for which (9.111) is a special realization, now still allows,
according to (9.110), also for other representations. That can mean a rather
significant advantage for the practical solution of a scattering problem.

Let us finally try to also find for the important scattering amplitude a
generalized, abstract representation. For this purpose we reformulate (9.88):

fk(ϑ, ϕ) =
−m

2π �2
(2π)3

∫
d3r′

∫
d3r′′ V (r′) δ(r′ − r′′)〈k er|r′〉〈r′′|E(+)

k 〉

= −4π2m

�2

∫
d3r′

∫
d3r′′〈k er|r′〉〈r′|H1|r′′〉〈r′′|E(+)

k 〉 .
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The direction of k defines the polar axis; ϑ, ϕ are the spherical angles of the
unit vector er:

fk(ϑ, ϕ) = −4π2m

�2
〈k er|H1|E(+)

k 〉 . (9.113)

In this form also other representations can be applied for the calculation of the
scattering amplitude.

9.4.2 S - and T -Matrix

The considerations of the last subsection can further be generalized. They
provide an abstract access to scattering theory via the important scattering
matrix (S-matrix), whose elements can be interpreted as transition probabil-
ities between given initial states and well-defined final states. The scattering
matrix therefore holds a close relationship to basic quantities of the scattering
theory, as, e.g., the cross-section or the scattering amplitude. The corresponding
connections are the topic of this concluding section.

The task of the preceding section was focused on the calculation of the state
|ϕ(t)〉 of the system from the free state,

|ϕ0(t)〉 =

∫
dnαn e

−(i/�)E(0)
n t

∣∣∣E(0)
n

〉
,

which for t → −∞, i.e., long before the actual act of scattering, is identical with
the actual state. The expansion coefficients αn can be considered as known.
The determination of the state |ϕ(t)〉 for finite times t,

|ϕ(t)〉 = lim
t′ →−∞

e−(i/�)H(t−t′) |ϕ0(t
′)〉 ,

solves the scattering problem, and can be traced back with (9.104) to the deter-

mination of the time-independent scattering state |E(+)
n 〉 (9.101).

The total scattering formalism in this section, though, was conceived asymp-
totically. Finite times t up to now were not the matter of our investigations.
Instead of |ϕ(t)〉 we are actually more interested in transition probabilities
between the force-free states long time before (t → −∞) and long time after
(t → +∞) the actual scattering process. In this direction we will modify the
procedure of Sect. 9.4.1. At first, it is advisable to expand the initial state as

well as the final state in the complete set of the eigen-states |E(0)
n 〉 of the free

Hamilton operator H0:

lim
t→−∞ |ϕ(t)〉 = lim

t→−∞

∫
dnαn e

−(i/�)E(0)
n t

∣∣∣E(0)
n

〉
, (9.114)

lim
t→+∞ |ϕ(t)〉 = lim

t→+∞

∫
dn βn e

−(i/�)E(0)
n t

∣∣∣E(0)
n

〉
. (9.115)

We postulate again that these limiting values do exist for physically reason-
able scattering potentials. The αn of the initial state (9.114) are known (by
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preparation). The main problem therefore consists in the determination of the
coefficients βn of the final state (9.115) in terms of the given αn.

It proves to be advantageous to use for the following considerations the
interaction representation (Dirac picture, Sect. 3.4.4 (Vol. 6)), in which the time-
dependence of the states is due to the interaction H1 and that of the operators
due to H0. Since the particle moves for t → ±∞ outside the interaction domain
(H1 �= 0), the limiting processes (9.114) and (9.115) become very simple in the
Dirac picture. We mark in the following the states of the Dirac picture by the
index D and assume that they coincide with those of the Schrödinger picture
(without index) at the time t = 0 ((3.196), Vol. 6). Then it holds in particular
((3.198), Vol. 6):

|ϕD(t)〉 = e(i/�)H0t |ϕ(t)〉 .

For the time evolution operator UD(t, t
′),

|ϕD(t)〉 = UD(t, t
′) |ϕD(t

′)〉 ,

we had found in ((3.200), Vol. 6):

UD(t, t
′) = e(i/�)H0t e−(i/�)H(t− t′) e−(i/�)H0t

′
. (9.116)

Without interaction (H1 = 0), UD is the identity.
The limiting processes in (9.114) and (9.115), respectively, substantially sim-

plify in the interaction representation:

lim
t→−∞ |ϕD(t)〉 = lim

t→−∞ e(i/�)H0t |ϕ(t)〉

= lim
t→−∞ e(i/�)H0t

∫
dnαn e

−(i/�)E(0)
n t

∣∣∣E(0)
n

〉

=

∫
dnαn

∣∣∣E(0)
n

〉
. (9.117)

In the same manner one shows:

lim
t→+∞ |ϕD(t)〉 =

∫
dn βn

∣∣∣E(0)
n

〉
. (9.118)

The probability amplitude for the situation that the particle is at the time t in a

free energy-eigen state |E(0)
m 〉, when it at the time t′ occupied the state |ϕD(t

′)〉,
corresponds to the scalar product:

〈
E(0)

m

∣∣∣ϕD(t)
〉

=
〈
E(0)

m

∣∣∣UD(t, t
′) |ϕD(t

′)〉

=

∫
dn

〈
E(0)

m

∣∣∣UD(t, t
′)
∣∣∣E(0)

n

〉 〈
E(0)

n

∣∣∣ϕD(t
′)
〉

. (9.119)

This expression, for which we have exploited in the last step the completeness

relation of the |E(0)
n 〉, represents the probability amplitudes for transitions at
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arbitrary times t and t′, especially for t → +∞ and t′ → −∞. Because of
(9.117) and (9.118) we also have:

lim
t→+∞

〈
E(0)

m

∣∣∣ϕD(t)
〉

= βm ,

lim
t′→−∞

〈
E(0)

n

∣∣∣ϕD(t
′)
〉

= αn .

This we use in (9.119):

βm =

∫
dn

〈
E(0)

m

∣∣∣UD(+∞,−∞)
∣∣∣E(0)

n

〉
αn .

For that one writes in brief,

βm =

∫
dnSmn αn , (9.120)

and defines by

Smn ≡
〈
E(0)

m

∣∣∣UD(+∞,−∞)
∣∣∣E(0)

n

〉
(9.121)

the (m,n)-element of the so-called

scattering matrix (S-matrix) UD(+∞,−∞).

The physical meaning of the S-matrix elements is evident. They correspond to

the asymptotic transition-probability amplitudes between the free states |E(0)
n 〉

and |E(0)
m 〉. With (9.116) we rearrange Smn a bit:

Smn = lim
t→+∞ lim

t′ →−∞

〈
E(0)

m

∣∣∣UD(t, t
′)
∣∣∣E(0)

n

〉

= lim
t→+∞ lim

t′ →−∞

〈
E(0)

m

∣∣∣ e(i/�)(E
(0)
m −H)t e−(i/�)(E(0)

n −H)t′
∣∣∣E(0)

n

〉
.

(9.122)

For the calculation of these limiting values we can apply the same procedure as
that in the preceding subsection. The relation (9.100) for the transition t → −∞
can even be directly taken over. For t → +∞ we argue completely analogously
as for (9.99). If the function f(t) has such a limiting value, one can write:

lim
t→+∞ f(t) = f(∞)

∞∫

0

dx e−x = lim
η→ 0+

∞∫

0

dx e−x f

(
x

η

)

= lim
η→ 0+

η

∞∫

0

dt′ e−ηt′ f(t′) .

This formula interests us in the following context:

lim
t→+∞ e−(i/�)(E(0)

m −H)t
∣∣∣E(0)

m

〉
= lim

η→ 0+
η

∞∫

0

dt′ e−(i/�)(E(0)
m −H− i�η)t′

∣∣∣E(0)
m

〉

= lim
η→ 0+

−η

−(i/�)
(
E

(0)
m −H − i� η

)
∣∣∣E(0)

m

〉
=

−i 0+

E
(0)
m −H − i 0+

∣∣∣E(0)
m

〉
.
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This distinctly resembles the result (9.101). We therefore combine both the
limiting values by the following definition:

∣∣∣E(±)
n

〉
= lim

t→∓∞ e−(i/�)(E(0)
n −H)t

∣∣∣E(0)
n

〉
=

±i 0+

E
(0)
n −H ± i 0+

∣∣∣E(0)
n

〉
. (9.123)

|E(−)
n 〉 is exactly as |E(+)

n 〉 an eigen-state of the full Hamilton operator H with

the eigen-value E
(0)
n of the free Hamilton operator H0. The explanatory state-

ment is the same as that to (9.103):

H
∣∣∣E(±)

n

〉
= E(0)

n

∣∣∣E(±)
n

〉
. (9.124)

Even the normalization of the states |E(−)
n 〉 is identical to that for the |E(+)

n 〉
(9.105): 〈

E(±)
m

∣∣∣E(±)
n

〉
= δ(m− n) . (9.125)

If we finally still replace in the derivation of (9.107) everywhere i 0+ by −i 0+,

|E(+)
n 〉 by |E(−)

n 〉, and R
(+)
n by R

(−)
n , then we get for |E(−)

n 〉, compared to (9.107),
a formally unchanged

Lippmann-Schwinger equation
∣∣∣E(±)

n

〉
=
∣∣∣E(0)

n

〉
+R(±)

n H1

∣∣∣E(±)
n

〉
. (9.126)

For the following conclusions, however, a second version of the Lippmann-

Schwinger equation is also interesting and useful, which applies instead of R
(±)
n

the

Green operator to H

G(±)
n =

1

E
(0)
n −H ± i 0+

. (9.127)

In contrast to the definition (9.106) of the operators R
(±)
n , there appears here

in the denominator the full Hamilton operator H . Starting at (9.123) we find:
∣∣∣E(±)

n

〉
=

1

E
(0)
n −H ± i 0+

[(
E(0)

n −H ± i 0+
)
+
(
H0 +H1 − E(0)

n

)] ∣∣∣E(0)
n

〉

=
[
1l +G(±)

n H1

] ∣∣∣E(0)
n

〉
.

The following expression for the scattering states |E(±)
n 〉 is therefore equivalent

to (9.126): ∣∣∣E(±)
n

〉
=
∣∣∣E(0)

n

〉
+G(±)

n H1

∣∣∣E(0)
n

〉
. (9.128)

We now come back to the scattering matrix, whose investigation we interrupted
after Eq. (9.122). Instead of (9.122), we can now write with (9.123):

Smn =
〈
E(−)

m

∣∣∣E(+)
n

〉
. (9.129)
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For a further rearrangement we apply (9.128):
∣∣∣E(−)

m

〉
−
∣∣∣E(+)

m

〉
=
(
G(−)

m −G(+)
m

)
H1

∣∣∣E(0)
m

〉
.

We multiply this equation scalarly by the bra-state 〈E(+)
n | and respect the nor-

malization condition (9.125):

S∗
mn =

〈
E(+)

n

∣∣∣E(−)
m

〉
= δ(n−m) +

〈
E(+)

n

∣∣∣
(
G(−)

m −G(+)
m

)
H1

∣∣∣E(0)
m

〉
.

H1 is Hermitian, and it holds for the Green operator (9.127):

[
G(±)

m

]+
= G(∓)

m .

This means:

Smn = δ(n−m) +
〈
E(0)

m

∣∣∣H1

(
G(+)

m −G(−)
m

)∣∣∣E(+)
n

〉
.

|E(+)
n 〉 is eigen-state of H with the eigen-value E

(0)
n . We thus know also the

action of the Green operators on this state:

(
G

(+)
m −G

(−)
m

) ∣∣∣E(+)
n

〉
=

(
1

E
(0)
m − E

(0)
n + i 0+

− 1

E
(0)
m − E

(0)
n − i 0+

) ∣∣∣E(+)
n

〉

=
−2i 0+

(
E

(0)
m −E

(0)
n

)2
+ (0+)2

∣∣∣E(+)
n

〉
.

Using the special representation of the δ-function ((1.7), Vol. 3),

δ(x) = lim
η→ 0+

1

π

η

x2 + η2
,

we find a form of the scattering matrix, which turns out to be fundamental for
the abstract scattering theory:

Basic formula of scattering theory

Smn = δ(m− n)− 2π i δ
(
E(0)

m − E(0)
n

)〈
E(0)

m

∣∣∣H1

∣∣∣E(+)
n

〉
. (9.130)

Note that the two δ-functions are not equivalent!
In practice one defines besides the S-matrix also a so-called

Transfermatrix (T-matrix)

T (n) ≡ H1

(
1l +G(+)

n H1

)
, (9.131)

for which one finds because of (9.128):

H1

∣∣∣E(+)
n

〉
= H1

(
1l +G(+)

n H1

) ∣∣∣E(0)
n

〉
= T (n)

∣∣∣E(0)
n

〉
. (9.132)
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The basic formula (9.130) takes therewith the following equivalent form:

Smn = δ(m− n)− 2π i δ
(
E(0)

m − E(0)
n

)〈
E(0)

m

∣∣∣T (n)
∣∣∣E(0)

n

〉
. (9.133)

In the case that the T -matrix is known, the state after the scattering is com-
pletely determined. If we insert namely (9.133) into (9.120), then we can calcu-
late the coefficients βm of the asymptotic final state (9.118) out of the coefficients
αn of the asymptotic initial state (9.117):

βm = αm − 2π i

∫
dn δ

(
E(0)

m − E(0)
n

)
αn

〈
E(0)

m

∣∣∣T (n)
∣∣∣E(0)

n

〉
. (9.134)

The first term on the right-hand side must be ascribed to the traversing wave.
When there is no interaction (H1 = 0 =⇒ T (n) = 0), then the initial and the
final state should of course be identical (βm = αm). Even when the interaction is
switched on, there exists a traversing part. The second term in (9.134) describes
the scattered wave, where the δ-function takes care for energy conservation (elas-
tic scattering!). At first glance, this energy conservation may be a bit puzzling,
namely if one asks oneself, at which point of the preceding derivation could it
actually have entered the considerations. That has happened indeed somewhat
hiddenly, namely by the fact that we have investigated from the beginning only
the states of the scattered particle. Thereby it was implicitly presumed that
the scattering center does not experience any internal excitations. Only for this
reason, the scattering center could be simulated by a potential V (r) (remember
the considerations subsequent to (9.3)). But when there does not exist a part-
ner for energy exchange, the scattering must be elastic in order to fulfill the
energy conservation law. In the case of inelastic scattering, the Hamilton oper-
ator of the total system (∼= scattering particle plus scattered particle) with its
eigen-states and eigen-values should have been included in the theory. Energy
conservation in the total system would have been to be required, which then
would not exclude energy exchange between the two particles.

The T -matrix, according to (9.134), obviously is the decisive operator for the

scattering. Its matrix elements 〈E(0)
m |T (n)|E(0)

n 〉 determine the strength of the
scattering. T (n) will not always be precisely calculable for realistic problems.
We will therefore need approximate methods for the determination of the T -
matrix. In this respect, the integral equation, which we derive in the following,
may be a good starting basis. We begin with the definition equation (9.131):

T (n) =
(
1l +H1 G

(+)
n

)
H1 =

(
E(0)

n −H + i 0+ +H1

)
G(+)

n H1

=
(
R(+)

n

)−1
[(

R(+)
n

)−1

−H1

]−1

H1 =
(
1l−H1 R

(+)
n

)−1

H1 .

From this we read off the useful relation

T (n) = H1 +H1 R
(+)
n T (n) , (9.135)
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which can formally be solved by iteration:

T (n) =

∞∑

m=0

[
T (n)

](m)

,

[
T (n)

](0)
= H1 ,

[
T (n)

](m)

= H1 R
(+)
n

[
T (n)

]m−1

. (9.136)

Let us finally represent the scattering matrix in the special basis of the

eigen-states of the momentum operator |k〉 .
(n → k; m → k′). The particle, which comes in in the direction of k, is
scattered into the direction of k′. We need in (9.130) and (9.133), respectively:

δ
(
E(0)

m − E(0)
n

)
−→ δ

(
�
2k′2

2m
− �

2k2

2m

)
=

2m

�2
δ(k′2 − k2)

=
2m

�2

1

2k
[δ (k′ + k) + δ (k′ − k)] =

m

�2k
δ (k′ − k) .

Because of k, k′ > 0 δ(k′ + k) vanishes. Therewith the scattering matrix reads:

Sk′k = δ(k′ − k)− 2π i
m

�2k
δ(k − k′)

〈
k′
∣∣∣H1

∣∣∣E(+)
k

〉

= δ(k′ − k)− 2π i
m

�2k
δ(k − k′)

〈
k′
∣∣∣T (k)

∣∣∣k
〉

. (9.137)

Notice that in the argument of the first δ-function there appear the vectors
k and k′, but in the argument of the second δ-function only the magnitudes
k, k′. The comparison of (9.137) with (9.113),

〈
k′
∣∣∣T (k)

∣∣∣k
〉

= − �
2

4π2m
fk(ϑ, ϕ) , (9.138)

shows that in the momentum representation, the elements of the T -matrix are
equivalent to the centrally important scattering amplitude fk(ϑ, ϕ), which
was extensively discussed in the preceding (sub)sections. The direction of k
defines thereby the polar axis, and ϑ, ϕ are the polar angles of the scattering
direction k′/k. The abstract operator relations (9.135) and (9.136), respectively,
obviously correspond in the momentum representation to the Born series
(9.90) for the scattering amplitude. That emphasizes once more the importance
of the T -matrix.

9.4.3 Møller Operators

In this subsection we concern ourselves with an alternative and complementary
representation of the scattering process, in order to understand better the state-
ments of the abstract formalism of the last subsection. Starting point is again
a Hamilton operator of the form

H = H0 +H1 ,
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where H1 describes the interaction of the particle with the scattering center.
We decompose the Hilbert space into two partial spaces,

H = Hd +HS , (9.139)

where Hd is spanned by the (bound) states of the discrete spectrum of H . These
can of course not come into consideration for the description of scattering pro-
cesses. HS contains all those states, which are orthogonal to Hd, and represents
therewith the space of the scattering states. The states in HS belong to the
continuous spectrum of H . Only these are here interesting to us.

Let us consider once more the ‘scattering process’. An arbitrary state |ψ〉 ∈
HS , which one can imagine in the position representation as a somehow prepared
wave packet, will be modified in the interaction zone by H1, where its time-
dependence is given, according to ((3.156)) and ((3.177)) in Vol. 6, by

|ψ(t)〉 = exp

(
− i

�
Ht

)
|ψ(0)〉 . (9.140)

It is now illustratively clear that the wave packet travels, for t → +∞, eventually
out of the region of influence of the scattering potential H1, and moves then
practically as a free, only by H0 determined wave packet. Thus it should hold
for ‘sufficiently large’ times t0 and t > t0:

|ψ(t)〉 ≈ exp

(
− i

�
H0(t− t0)

)(
exp

(
− i

�
Ht0

) ∣∣∣ψ
〉)

= exp

(
− i

�
H0t

)[
exp

(
i

�
H0t0

) ∣∣∣ψ(t0)
〉]

. (9.141)

The state in the square bracket may surely exist for ‘normal’ scattering poten-
tials as an element of H. Consequently, it is a state |ϕ〉 from H, which develops
in the course of time under the action only of H0 asymptotically in the same
manner as the scattering state |ψ〉 under the influence of the full Hamilton
operator H . In general, of course, |ϕ〉 will be different from |ψ〉.

The same considerations are of course also valid for very early times, when
the wave packet has not yet entered the region of influence of the scattering
potential, i.e., when its time-evolution is still exclusively due to H0. Summa-
rized, there should therefore exist to each |ψ〉 ∈ HS limiting states |ϕ∓〉 as
elements of H 1:

|ϕ∓〉 = lim
t→±∞ exp

(
i

�
H0t

)
exp

(
− i

�
Ht

)
|ψ〉 ∈ H . (9.142)

That can be formulated also as follows:

lim
t→±∞

∥∥∥∥exp
(
− i

�
H0t

)
ϕ∓ − exp

(
− i

�
Ht

)
ψ

∥∥∥∥ = 0 . (9.143)

1The perhaps somewhat contra-intuitive indexing of the states |ϕ∓〉 was chosen here inten-
tionally to be in accordance with the indexing in Sect. 9.4.1. The limiting state, which is
ascribed to the incoming wave packet, gets the plus sign, that for the outgoing wave packet
the minus sign.
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When we indeed assume that the states |ϕ∓〉 exist as elements of the Hilbert
space H,—the exact, rather involved mathematical proof we have to skip here—
then it should be possible to expand them in plane waves |k〉, which represent
as eigen-states of H0 a complete orthonormal system:

exp

(
− i

�
H0t

)
|ϕ∓〉 = exp

(
− i

�
H0t

) ∫
d3k ϕ̂∓(k) |k〉

=

∫
d3k ϕ̂∓(k) exp

(
−i

�k2

2m
t

)
|k〉 . (9.144)

In the position representation,

ϕ∓(r) ≡ 〈r|ϕ∓〉 ; 〈r|k〉 = 1

(2π)3/2
eik·r , (9.145)

this reads:

exp

(
− i

�
H0t

)
ϕ∓(r) =

1

(2π)3/2

∫
d3k

(
ϕ̂∓(k) exp

(
−i

�k2

2m
t

))
eik·r .

(9.146)
On the right-hand side we have a free propagating wave packet, fixed by the
wave-number distribution ϕ̂∓(k) (see (2.49), Vol. 6). Because of (9.143), it
belongs to each |ψ〉 ∈ HS for t → −∞ an incoming and for t → +∞ an
outgoing free wave packet. But that corresponds precisely to the scattering
process: ϕ̂+(k) identifies a free incoming wave packet before the scattering act,
which is then influenced in the interaction zone by the scattering potential, and
which, after leaving this zone, moves asymptotically again as a free wave packet,
but that in general with a modified momentum distribution ϕ̂−(k). The task
thus is to find out for a distribution ϕ̂+(k), prepared at t → −∞, whether
and with what probability the distribution ϕ̂−(k) appears in the scattered wave
packet.

The actual goal is therefore the determination of scattering states |ψ±〉 ∈ HS ,
which asymptotically correspond to pre-given distributions ϕ̂±(k):

lim
t→±∞

∥∥∥e−
i
�
H0t ϕ∓ − e−

i
�
Ht ψ∓{ϕ̂∓(k)}

∥∥∥ = 0 . (9.147)

In the Schrödinger picture the scattering state changes with the time under the
influence of H ,

exp

(
− i

�
Ht

) ∣∣∣ψ∓ {ϕ̂∓(k)}
〉
,

and under compliance of the boundary conditions for t → ±∞. In the Heisen-
berg picture the scattering state is time-independent. |ψ∓ {ϕ̂∓(k)}〉 then corre-
sponds to, respectively, the ‘incoming’ and the ‘outgoing situation’. Therewith

∣∣∣
〈
ψ+ {ϕ̂+(k)}

∣∣∣ψ− {ϕ̂−(k)}
〉∣∣∣

2
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is the probability to measure, long time after the scattering, a wave packet with
the amplitude function ϕ̂−(k), if, long time before the scattering, a wave packet
with the amplitude function ϕ̂+(k) were prepared.

So far we have argued that to each scattering state from HS there can be
ascribed asymptotically a free wave packet. In a certain sense, however, the
‘reversal’ should also be valid. In principle, any arbitrary distribution (ampli-
tude function) ϕ̂(k) can be prepared, and, as such, can be sent into the scatter-
ing zone. But in the case of a ‘sufficiently normal’ scattering potential, there
should then also exist for each wave packet |ϕ〉, scattering states |ψ∓〉 ∈ HS ,
which behave for t → ±∞ like |ϕ〉. It should therefore hold, analogous to (9.143)

lim
t→±∞

∥∥∥∥exp
(
− i

�
H0t

)
ϕ− exp

(
− i

�
Ht

)
ψ∓

∥∥∥∥ = 0 , (9.148)

and equivalently therewith, the limiting value

lim
t→±∞ exp

(
i

�
Ht

)
exp

(
− i

�
H0t

)
|ϕ〉 (9.149)

should, for each |ϕ〉 ∈ H, lead to a scattering state of HS .
Our hitherto performed considerations can be summarized as follows: For

‘normal’ scattering potentials the so-called

Møller operators M±, M̂±
should exist:

M± ≡ lim
t→∓∞ exp

(
i

�
Ht

)
exp

(
− i

�
H0t

)
; M± : H ⊆ HS (9.150)

M̂± ≡ lim
t→∓∞ exp

(
i

�
H0t

)
exp

(
− i

�
Ht

)
PS ; M̂± : H(S) ⊆ H (9.151)

PS is the projection operator onto the partial space HS of the scattering states.
Let us list some obvious properties of the Møller operators.

• It follows directly from the definition (9.151), because of P 2
S = PS :

M̂± PS = M̂± (9.152)

• Because e−i/�H0t and e−i/�Ht are unitary operators, it follows immedi-
ately:

‖M±ϕ‖ = ‖ϕ‖ ∀ |ϕ〉 ∈ H . (9.153)

The reasoning is indeed very simple:

‖M±ϕ‖2 = 〈M±ϕ|M±ϕ〉
= lim

t→∓∞

〈
e

i
�
Hte−

i
�
H0tϕ

∣∣∣e
i
�
Hte−

i
�
H0tϕ

〉

= lim
t→∓∞

〈
e−

i
�
H0tϕ

∣∣∣ e−
i
�
Hte

i
�
Ht

∣∣∣e−
i
�
H0tϕ

〉

= lim
t→∓∞

〈
ϕ
∣∣∣e

i
�
H0te−

i
�
H0t

∣∣∣ϕ
〉

= 〈ϕ|ϕ〉 = ‖ϕ‖2 .
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• Since the projection operator is Hermitian but not unitary (P+
S PS �= 1l),

it holds for the other Møller operator:

∥∥∥M̂±ϕ
∥∥∥ = ‖PSϕ‖ ∀ |ϕ〉 ∈ H . (9.154)

Also this is easily understood:

∥∥∥M̂±ϕ
∥∥∥
2

= 〈M̂±ϕ|M̂±ϕ〉

= lim
t→∓∞

〈
e

i
�
H0te−

i
�
HtPSϕ

∣∣∣e
i
�
H0te−

i
�
HtPSϕ

〉

= lim
t→∓∞ 〈PSϕ |PSϕ〉

= ‖PSϕ‖2

• In the next step we prove the following connection between the two Møller
operators:

M+
± = M̂± . (9.155)

Let |ϕ1〉 and |ϕ2〉 be two arbitrary states of H. With them we get:

〈
ϕ1

∣∣∣M̂±
∣∣∣ϕ2

〉
= lim

t→∓∞

〈
ϕ1

∣∣∣e
i
�
H0te−

i
�
Ht PS

∣∣∣ϕ2

〉

= lim
t→∓∞

〈
PSe

i
�
Hte−

i
�
H0t ϕ1

∣∣∣ϕ2

〉

=
〈
PS M±ϕ1︸ ︷︷ ︸

∈HS

∣∣∣ϕ2

〉

=
〈
M±ϕ1

∣∣∣ϕ2

〉

=
〈
ϕ1

∣∣∣M+
±
∣∣∣ϕ2

〉
.

That proves the assertion (9.155).

• The relation

M+
± M± = 1l (9.156)

represents a further important property, which can be derived as follows:
For an arbitrary state |ϕ〉 in H it holds:

∥∥(M+
± M± − 1l

)
ϕ
∥∥2 =

〈(
M+

± M± − 1l
)
ϕ
∣∣(M+

± M± − 1l
)
ϕ
〉

=
〈
M+

± M±ϕ
∣∣M+

± M±ϕ
〉
+ 〈ϕ|ϕ〉

−
〈
ϕ
∣∣M+

± M±ϕ
〉− 〈

M+
± M±ϕ

∣∣ϕ
〉
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=
∥∥M+

± M±ϕ
∥∥2 + ‖ϕ‖2 − 2 〈M±ϕ |M±ϕ〉

=
∥∥M+

± M±ϕ
∥∥2 + ‖ϕ‖2 − 2 ‖M±ϕ‖2

‖M±ϕ‖2 (9.153)
= ‖ϕ‖2

∥∥∥M+
± M±ϕ︸ ︷︷ ︸

=|ψ〉∈HS

∥∥∥
2

=
∥∥M+

±ψ
∥∥2 (9.155)

=
∥∥∥M̂±ψ

∥∥∥
2 (9.154)

= ‖PSψ‖2

= ‖ψ‖2 = ‖M±ϕ‖2 (9.153)
= ‖ϕ‖2

�
∥∥(M+

± M± − 1l
)
ϕ
∥∥2 = 0 .

Since |ϕ〉 is an arbitrary state of H, the last line proves (9.156).

• In the same manner one shows:

M±M+
± = PS . (9.157)

We choose again an arbitrary element |ϕ〉 ∈ H:

∥∥(M± M+
± − PS

)
ϕ
∥∥2

=
∥∥M± M+

±ϕ
∥∥2

+ ‖PSϕ‖2

−
〈
M± M+

±ϕ
∣∣∣PSϕ

〉
−
〈
PSϕ

∣∣∣M± M+
±ϕ

〉

∥∥∥M± M+
±ϕ

∥∥∥
2

=
〈
M± M+

±ϕ
∣∣∣M± M+

±ϕ
〉

=
〈
M+

±ϕ
∣∣∣M+

±M± M+
±ϕ

〉

(9.156)
=

〈
M+

±ϕ
∣∣∣M+

±ϕ
〉

(9.155)
=

∥∥∥M̂±ϕ
∥∥∥
2

(9.154)
= ‖PSϕ‖2〈

M± M+
±ϕ

∣∣∣PSϕ
〉

=
〈
M+

±ϕ
∣∣∣M+

±PSϕ
〉

(9.155)
(9.152)
=

〈
M̂±ϕ

∣∣∣M̂±ϕ
〉
=
∥∥∥M̂±ϕ

∥∥∥
2

(9.154)
= ‖PSϕ‖2〈

PSϕ
∣∣∣M± M+

±ϕ
〉

=
〈
M± M+

±ϕ
∣∣∣PSϕ

〉∗

= ‖PSϕ‖2

�
∥∥(M±M

+
± − PS

)
ϕ
∥∥2

= 0 .

The property (9.157) is therewith verified.

• The up to now derived properties show that the Møller operators ascribe
to each element from H one and only one element of HS , i.e., in (9.150)
already the equality sign is correct:

M± : H = HS . (9.158)
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• We derive a further important relation by the following consideration:

e−
i
�
Ht0 M± = lim

t→∓∞ e
i
�
H(t−t0)e−

i
�
H0(t−t0)e−

i
�
H0t0

= lim
t′→∓∞

e
i
�
Ht′e−

i
�
H0t

′
e−

i
�
H0t0

= M± e−
i
�
H0t0 .

Since t0 can be chosen arbitrarily, this equation must be valid for each
summand in the exponential function:

HnM± = M±Hn
0 ; n ∈ N . (9.159)

This is true especially for n = 1:

HM± = M±H0 . (9.160)

When one eventually goes over to the Hermitian conjugate, then (9.159)
reads:

M+
± Hn = Hn

0 M+
± ; n ∈ N . (9.161)

9.4.4 Scattering Operator

We will now try to establish, with the aid of the Møller operators, the connec-
tion to the time-independent scattering theory of Sect. 9.3. For this purpose,
we bring, at first, the operators in a form convenient for the following. That
succeeds by means of limiting-value representations, which we have got to know
and have justified in connection with (9.99) and (9.122):

M± = lim
η→0+

(∓η)

∓∞∫

0

dt e±ηt e
i
�
Ht e−

i
�
H0t (9.162)

M̂± = M+
± = lim

η→0+
(∓η)

∓∞∫

0

dt e±ηt e
i
�
H0t e−

i
�
Ht . (9.163)

These expressions can further be rewritten. For that we consider the operator
function

f(t) = e
i
�
Ht e−

i
�
H0t ; f(t = 0) = 1l . (9.164)

It obeys the differential equation

d

dt
f(t) =

i

�
e

i
�
Ht(H −H0)e

− i
�
H0t =

i

�
e

i
�
HtH1e

− i
�
H0t . (9.165)



350 CHAPTER 9. SCATTERING THEORY

We exploit this for a new representation of the Møller operators. For (9.162)
we get:

M± = lim
η→0+

(∓η)

∓∞∫

0

dt e±ηt f(t)

= − lim
η→0+

∓∞∫

0

dt

(
d

dt
e±ηt

)
f(t)

= − lim
η→0+

⎧
⎨

⎩
(
e±ηt f(t)

)∓∞
0

−
∓∞∫

0

dt e±ηt df

dt

⎫
⎬

⎭ .

It follows then with (9.164) and (9.165):

M± = 1l +
i

�
lim

η→0+

∓∞∫

0

dt e±ηt e
i
�
Ht H1 e

− i
�
H0t (9.166)

M̂± = M+
± = 1l− i

�
lim

η→0+

∓∞∫

0

dt e±ηt e
i
�
H0t H1 e

− i
�
Ht . (9.167)

As elements of H, the limiting states |ϕ∓〉 (9.142) can be expanded in eigen-
states of H0,

|ϕ{ϕ̂(k)}〉 =
∫

d3k ϕ̂(k)
∣∣∣E(0)

k

〉
(9.168)

H0

∣∣∣E(0)
k

〉
= E

(0)
k

∣∣∣E(0)
k

〉
;

〈
E

(0)
k

∣∣∣E(0)
k′

〉
= δ(k − k′) , (9.169)

We therefore consider at first a special eigen-vector of the free part H0 of the
Hamilton operator and define to that vector incoming and outgoing states:

∣∣∣E(±)
k

〉
= M±

∣∣∣E(0)
k

〉
. (9.170)

It follows additionally, with (9.156):
∣∣∣E(0)

k

〉
= M+

±
∣∣∣E(±)

k

〉
. (9.171)

One recognizes that these new states are normalized to δ-functions:
〈
E

(±)
k′

∣∣∣E(±)
k

〉
=

〈
E

(0)
k′

∣∣∣M+
± M±

∣∣∣E(0)
k

〉

(9.156)
=

〈
E

(0)
k′

∣∣∣E(0)
k

〉
= δ(k − k′) . (9.172)

Moreover, they are eigen-states of the full Hamilton operator H with eigen-
energies, which correspond to those of H0:

H
∣∣∣E(±)

k

〉
= H M±

∣∣∣E(0)
k

〉
(9.160)
= M±H0

∣∣∣E(0)
k

〉

= E
(0)
k M±

∣∣∣E(0)
k

〉
= E

(0)
k

∣∣∣E(±)
k

〉
. (9.173)
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The Eqs. (9.172) and (9.173) correspond exactly to (9.124) and (9.125). The

special scattering states
∣∣∣E(±)

k

〉
, introduced in (9.170), are thus just the state

vectors, discussed in connection with (9.101) and (9.123) in Sect. 9.4.1.
For a general scattering state in HS (Heisenberg picture) it now follows with

(9.169)

∣∣∣E(±){ϕ̂(k)}
〉

= M± |ϕ{ϕ̂(k)}〉

= M±
∫

d3k ϕ̂(k)
∣∣∣E(0)

k

〉

=

∫
d3k ϕ̂(k)

(
M±

∣∣∣E(0)
k

〉)

=

∫
d3k ϕ̂(k)

∣∣∣E(±)
k

〉
(9.174)

with a time-dependence,

e−
i
�
Ht

∣∣∣E(±){ϕ̂(k))}
〉
=

∫
d3k ϕ̂(k) e−

i
�
E

(0)
k t

∣∣∣E(±)
k

〉
,

which agrees with that in (9.104). Since the wave-number distribution (ampli-

tude function) ϕ̂(k) can be assumed as given, the determination of the
∣∣∣E(±)

k

〉

obviously solves the full scattering problem.2 To show this, we now insert (9.166)
into (9.170):

∣∣∣E(±)
k

〉
=
∣∣∣E(0)

k

〉
+

i

�
lim

η→0+

∓∞∫

0

dt exp

(
i

�

(
H − E

(0)
k ∓ iη�

)
t

)
H1

∣∣∣E(0)
k

〉
.

The integration can be easily performed, where the integrated part vanishes at
the upper limit because of η > 0:

∣∣∣E(±)
k

〉
=

∣∣∣E(0)
k

〉
− 1

H − E
(0)
k ∓ i0+

H1

∣∣∣E(0)
k

〉

=
∣∣∣E(0)

k

〉
+

1

E
(0)
k −H ± i0+

H1

∣∣∣E(0)
k

〉
. (9.175)

We recognize on the right-hand side the Green operator to H G
(±)
k from (9.127):

∣∣∣E(±)
k

〉
=
∣∣∣E(0)

k

〉
+G

(±)
k H1

∣∣∣E(0)
k

〉
. (9.176)

That is exactly the Lippmann-Schwinger equation in the form (9.128).

2This justifies by the way the treatment of the scattering problem in Sect. 9.4.1.
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In order to confirm also the other version (9.126) of the Lippmann-Schwinger
equation, we now insert (9.167) into (9.171):

∣∣∣E(0)
k

〉
=

∣∣∣E(±)
k

〉
− i

�
lim

η→0+

∓∞∫

0

dt e±ηt e
i
�
H0t H1 e

− i
�
Ht

∣∣∣E(±)
k

〉

(9.173)
=

∣∣∣E(±)
k

〉
− i

�
lim

η→0+

∓∞∫

0

dt e
i
�

(
H0−E

(0)
k ∓iη�

)
t
H1

∣∣∣E(±)
k

〉

=
∣∣∣E(±)

k

〉
+

1

H0 − E
(0)
k ∓ i0+

H1

∣∣∣E(±)
k

〉

=
∣∣∣E(±)

k

〉
−R

(±)
k H1

∣∣∣E(±)
k

〉
.

In the last step we have inserted the Green operator to H0 from (9.106). We
have indeed reproduced therewith the Lippmann-Schwinger equation in the form
(9.126):

∣∣∣E(±)
k

〉
=
∣∣∣E(0)

k

〉
+R

(±)
k H1

∣∣∣E(±)
k

〉
. (9.177)

Using the position representation we had found in Sect. 9.4.1 a special realiza-
tion of the Lippmann-Schwinger equation (9.111), and we could identify it with
Born’s series (9.90), which we derived by another method. Obviously we have
succeeded in finding via the representation-independent Lippmann-Schwinger
equation the link-up to the time-independent treatment of the scattering prob-
lem in the position representation (Sect. 9.3).

We will finally construct the connection between the Møller operators and
the fundamental scattering matrix (9.121). We want to show that the definition

S ≡ M+
− M+ (9.178)

as scattering operator or S-operator is compatible with the expressions (9.129)
and (9.121) for the elements of the scattering matrix.

〈
E(0)

m

∣∣∣S
∣∣∣E(0)

n

〉
=

〈
E(0)

m

∣∣∣M+
− M+

∣∣∣E(0)
n

〉

(9.170)
=

〈
E(−)

m

∣∣∣E(+)
n

〉

(9.129)≡ Smn . (9.179)

If one uses, on the other hand, the expressions (9.150), (9.155), and (9.151) for
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the Møller operators, it also follows
〈
E(0)

m

∣∣∣S
∣∣∣E(0)

n

〉
=

〈
E(0)

m

∣∣∣M+
− M+

∣∣∣E(0)
n

〉

= lim
t→+∞

〈
E(0)

m

∣∣∣ e
i
�
H0t e−

i
�
Ht PS M+︸ ︷︷ ︸

≡M+

∣∣∣E(0)
n

〉

= lim
t→+∞ lim

t′→−∞

〈
E(0)

m

∣∣∣ e
i
�
H0t e−

i
�
Ht e

i
�
Ht′ e−

i
�
H0t

′
∣∣∣E(0)

n

〉

(9.116)
= lim

t→+∞ lim
t′→−∞

〈
E(0)

m

∣∣∣UD(t, t′)
∣∣∣E(0)

n

〉

=
〈
E(0)

m

∣∣∣UD(+∞,−∞)
∣∣∣E(0)

n

〉

(9.121)≡ Smn . (9.180)

The ansatz (9.178) for the scattering operator appears reasonable. In the basis
of the eigen-states of the free Hamilton operator H0 the matrix elements of
the scattering operator agree with the previously introduced elements of the
scattering matrix ((9.121), (9.129)). They correspond thus to the asymptotic
transition probabilities between two free energy-eigen states.

The following two properties of the scattering operator (9.178) are still
important. At first, the operator turns out to be unitary in H:

S S+ = S+ S = 1l . (9.181)

That can easily be proven with our earlier considerations:

S S+ = M+
−M+M

+
+M−

(9.157)
= M+

−PSM−
(9.150)
= M+

−M−
(9.156)
= 1l

S+ S = M+
+M−M+

−M+
(9.157)
= M+

+PSM+
(9.150)
= M+

+M+
(9.156)
= 1l .

In addition one also realizes that the scattering operator commutes with the
free Hamilton operator:

[S, H0]− = 0 . (9.182)

We perform the explicit proof as Exercise 9.4.3. The matrix elements (9.179)
of the scattering operator and the scattering matrix, respectively, can thus be

different from zero only if E
(0)
n = E

(0)
m :

[S, H0]− = 0 �

〈
E(0)

n

∣∣∣ [S, H0]−
∣∣∣E(0)

m

〉
= 0

�

(
E(0)

m − E(0)
n

)〈
E(0)

n

∣∣∣S
∣∣∣E(0)

m

〉
= 0

〈
E(0)

n

∣∣∣S
∣∣∣E(0)

m

〉
�= 0 � E(0)

m = E(0)
n .

Physically that means of course nothing else but the initially presumed elastic
scattering.3

3Note hereto also the remarks subsequent to (9.134).
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The further considerations up to the basic formula of scattering theory
(9.130) are identical with those in Sect. 9.4.2. There is therefore no need to
repeat them here once more.

9.4.5 Exercises

Exercise 9.4.1
Show that the Green operators R

(±)
n (9.106) and G

(±)
n (9.127) fulfill the Dyson

equation
G(±)

n = R(±)
n +R(±)

n H1 G
(±)
n

Exercise 9.4.2
Show that (9.128) represents a formal solution of the Lippmann-Schwinger equa-
tion (9.126). For that use the Dyson equation from Exercise 9.4.1.

Exercise 9.4.3
Show that the scattering operator S commutes with the interaction-free Hamil-
ton operator H0:

[S, H0]− = 0 .

Exercise 9.4.4
Differently from (9.178) the scattering operator is sometimes also defined as

Ŝ = M+M+
− .

Confirm the following properties of this operator:

1.
ŜŜ+ = Ŝ+Ŝ = PS (= 1l in HS)

2.
[Ŝ, H ]− = 0

3.
Ŝ
∣∣∣E(−)

n

〉
=
∣∣∣E(+)

n

〉
.

9.5 Self-Examination Questions

To Section 9.1

1. Which information can be derived from scattering processes?

2. For the scattering process the incoming particle is described, before the
actual scattering act, as a wave packet. Which demands have to be placed
to the longitudinal and the transversal extensions of the wave packet?

3. Under which preconditions can the scattering center be represented by a
potential?
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4. Which boundary conditions must be fulfilled with respect to the position
of the detector, which counts the scattered particles?

5. Which asymptotic shape should the scattered wave possess when scattered
by a central potential V (r)?

6. How is the scattering amplitude f(ϑ) defined?

7. How is f(ϑ) connected to the current density js of the scattered wave?

8. What is the general definition of the cross-section ?

9. What is the relation between the differential cross-section and the scat-
tering amplitude?

To Section 9.2

1. Why is an expansion in spherical harmonics recommendable for the wave
function of the scattering problem?

2. How does the influence of the scattering potential on the wave function of
the scattering problem manifest itself asymptotically (k r � 1)?

3. What does one understand by the scattering phase of the lth partial wave?
By which quantities are they essentially determined?

4. What do we understand by the optical theorem? How can we physically
interpret it?

5. How can we estimate, which partial waves play a role for the scattering of
a particle of energy E at a potential of the effective range R0?

6. What is meant by s- or p-scattering?

7. Under which conditions is pure s-scattering to be expected?

8. For the scattering at the hard sphere, how do the scattering phases δl
depend on the radius of the sphere R0, and on the particle energy E?

9. What is the relationship in a scattering process at the hard sphere between
the cross-section σ and the geometric cross-sectional area of the sphere
(= π R2

0) in the case of large de Broglie wavelength (k R0 � 1) of the
incident particle?

10. How can it be explained that for the scattering at the hard sphere in
the limit k R0 � 1 the cross-section σ is just twice the geometric cross-
sectional area of the sphere?

11. How can we explain the relative similarity of the scattering processes of
slow particles at all potentials of finite range?

12. What does one understand by potential scattering?
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13. When does resonance scattering appear for the scattering at the potential
well?

14. What happens with the scattering phase δl in the resonance?

15. How does the partial cross-section σl qualitatively look like in the neigh-
borhood of the resonance?

16. For low particle energies, how are the phase δ0 and the partial cross-section
σ0 for s-scattering at the potential well connected with the scattering
length as?

17. What can be said about the scattering phase δ0 for E → 0 and E → ∞?

18. Which arbitrariness (indeterminacy) remains when fixing scattering
phases?

19. The indeterminacy of δ0 is removed in such a way that limk→ 0 δ0(k) =
n̂ π, limk→∞ δ0(k) = 0. Which physical meaning does the integer n̂ have?

20. How does σ0 for n̂ = 3 qualitatively look like as function of k?

21. Which preconditions and assumptions enter Born’s approximation for the
scattering phases?

22. What is the region of validity of Born’s approximation for scattering
phases?

To Section 9.3

1. Which differential equation is fulfilled by the Green’s function of the scat-
tering problem?

2. Which structure does the exact integral equation for the scattering ampli-
tude f(ϑ, ϕ) have? How does the interaction potential V (r) enter the
equation?

3. Which condition must be fulfilled by V (r), in order that the scattering
amplitude depends only on the angle ϑ?

4. What does one understand by Born’s series?

5. How is the nth Born approximation defined?

6. In which way in first Born approximation, the scattering amplitude is con-
nected to the wave number-dependent Fourier transform of the interaction
potential?

7. Does the first Born approximation fulfill the optical theorem?

8. What can be said about the region of validity of the first Born approxi-
mation?
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To Section 9.4

1. How is the Green operator R
(±)
n defined?

2. Formulate and interpret the Lippmann-Schwinger equation.

3. What is the relation between the Lippmann-Schwinger equation and the
Born’s series?

4. How are Green operator and Green’s function related?

5. How is the scattering matrix defined?

6. Which physical meaning does the (m,n)-element of the scattering matrix
have?

7. How is the Green operator G
(±)
n defined?

8. What is the difference between the Green operators R
(±)
n and G

(±)
n ?

9. What is the relationship of the scattering states |E(±)
n 〉 with the scattering

matrix?

10. How do the Lippmann-Schwinger equations differ for |E(+)
n 〉 and |E(−)

n 〉?

11. What is the adjoint operator of G
(+)
n and R

(+)
n , respectively?

12. What can be considered as the basic formula of the abstract scattering
theory?

13. How is the T -matrix defined?

14. How are the T -matrix and the scattering amplitude related?



Appendix A
Solutions of the Exercises

Section 5.1.7

Solution 5.1.1
For the unit vectors ei of the space-fixed system of coordinates

∑
, we have in

the co-rotated system
∑

:

ei =
∑

j

x
(i)
j ej −→ x

(i)
j = (ej · ei) (5.27)

= Dij .

It follows:
ei =

∑

j

Dij ej .

Orthonormalization of the basis vectors:

δij = ei · ej =
∑

km

Dik Djm (ek · em) =
∑

km

Dik Djm δkm

=
∑

k

Dik Djk

Solution 5.1.2

1. Rows and columns of the matrix are obviously orthonormalized. We check
the determinant:

detD =

∣∣∣∣∣∣∣∣

−1

2

√
2 0 −1

2

√
2

0 1 0
1

2

√
2 0 −1

2

√
2

∣∣∣∣∣∣∣∣
=

2

4
+ 0 + 0 +

2

4
− 0− 0 = 1 .

Thus, it is a rotation

Dij = (ei · êj) = cosϕij .

© Springer International Publishing AG 2017
W. Nolting, Theoretical Physics 7, DOI 10.1007/978-3-319-63324-4

359



360 APPENDIX A. SOLUTIONS OF THE EXERCISES

ϕij : angle between ith axis (before) and jth axis (after). That means
here:

cosϕ11 = cosϕ33 = −1

2

√
2 � ϕ11 = ϕ33 = 135◦ .

It is therefore a rotation around the y-axis by 135◦.

2.

â = D

⎛

⎝
0
−2
1

⎞

⎠ =

⎛

⎜⎜⎝

−1

2

√
2 0 −1

2

√
2

0 1 0
1

2

√
2 0 −1

2

√
2

⎞

⎟⎟⎠

⎛

⎝
0
−2
1

⎞

⎠ =

⎛

⎜⎜⎝

−1

2

√
2

−2

−1

2

√
2

⎞

⎟⎟⎠

b̂ = D

⎛

⎝
3
5
−4

⎞

⎠ =

⎛

⎜⎜⎝

−1

2

√
2 0 −1

2

√
2

0 1 0
1

2

√
2 0 −1

2

√
2

⎞

⎟⎟⎠

⎛

⎝
3
5
−4

⎞

⎠ =

⎛

⎜⎜⎝

1

2

√
2

5
7

2

√
2

⎞

⎟⎟⎠

Scalar product:

• before:

a · b =
(
0 −2 1

)
⎛

⎝
3
5
−4

⎞

⎠ = −14

• after:

â · b̂ =

(
−1

2

√
2 −2 −1

2

√
2

)
⎛

⎜⎜⎝

1

2

√
2

5
7

2

√
2

⎞

⎟⎟⎠ = −14

Therefore, the scalar product remains unchanged after the rotation.

3. Notations as in (5.26):

x̂i =

3∑

j=1

Dij xj

‘length’ :

3∑

1=1

x̂2
i =

∑

ijk

DijDik xjxk

=
∑

jk

(
∑

i

DijDik

)

︸ ︷︷ ︸
δjk

xjxk =
∑

j

x2
j
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Here we have exploited the orthonormality of the columns of a rotation
matrix. The ‘lengths’ of vectors thus remain uninfluenced by the rotation!

Solution 5.1.3
For each component (5.12) is valid; εimn is real:

L+
i =

∑

m,n

εimn (xm pn)
+ =

∑

m,n

εimn p
+
n x+

m

=
∑

m,n

εimn pn xm =
∑

m,n

εimn xm pn = Li .

The last step is allowed, because m �= n can be assumed. For m = n we have
εimn = 0!

Solution 5.1.4

1.

[Lx, Ly]− = [y pz − z py, z px − x pz]− = [y pz, z px]− + [z py, x pz]−
= y[pz, z]−px+x[z, pz]−py = −i�y px+i�xpy = i�(xpy−ypx)

= i �Lz ,

[Ly, Lz]− = [z px − x pz, x py − y px]− = [z px, x py]− + [x pz, y px]−
= z[px, x]− py + y[x, px]− pz = −i � z py + i � y pz

= i �(y pz − z py) = i �Lx ,

[Lz, Lx]− = [x py − y px, y pz − z py]− = [x py , y pz]− + [y px, z py]−
= x[py , y]− pz + z[y, py]− px = −i �x pz + i � z px

= i �(z px − x pz) = i �Ly .

2.

[L2, Lx]− = [L2
x, Lx]− + [L2

y, Lx]− + [L2
z, Lx]−

= 0 + Ly [Ly, Lx]− + [Ly, Lx]Ly + Lz [Lz, Lx]− + [Lz, Lx]Lz

= −i �Ly Lz − i �Lz Ly + i �Lz Ly + i �Ly Lz = 0 .

Analogously, since symmetric in x, y, z:

[L2, Ly]− = [L2, Lz]− = 0 .

3.

[Lx, r
2]− = [y pz − z py, x

2 + y2 + z2]−
= [y pz, z

2]− − [z py, y
2]− = y[pz, z

2]− − z[py, y
2]−

= y z[pz, z]− + y[pz, z]−z − z y[py, y]− − z[py, y]−y
= −i � y z − i � y z + i � z y + i � zy = 0 .
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4.

[Ly,p
2]− = [z px − x pz , p

2
x + p2y + p2z]− = [z px, p

2
z]− − [x pz, p

2
x]−

= [z, p2z]− px − [x, p2x]− pz = pz[z, pz]− px + [z, pz] pzpx −
−px[x, px]− pz − [x, px]− pxpz

= i � pz px + i � pz px − i � px pz − i � px pz = 0 .

5.

[Lz, x]− = [x py − y px, x]− = −[y px, x]− = −y[px, x] = i � y

[Lz, px]− = [x py − y px, px]−
= [x py, px]− = [x, px]−py = i � py .

6.

[Li, xj ]−
(5.12)
=

∑

mn

εimn[xmpn, xj ]−

=
∑

mn

εimnxm[pn, xj ]−

= −i�
∑

mn

εimnxm δnj

= −i�
∑

m

εimj xm

= i�
∑

m

εijm xm (5.19)

[Li, pj ]−
(5.12)
=

∑

mn

εimn[xmpn, pj ]−

=
∑

mn

εimn[xm, pj ]−pn

= i�
∑

mn

εimnpn δmj

= i�
∑

n

εijn pn (5.20) .

Solution 5.1.5

[Li, Lj ]− = i �Lk ; (i, j, k) cyclic from (1, 2, 3) .

Let A be an operator with

[Li, A]− = [Lj , A]− = 0 .
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Then it follows:

[Lk, A]− =
1

i �
[[Li, Lj]−, A]− =

1

i �
{[Li Lj, A]− − [Lj Li, A]}

=
1

i �
{Li[Lj , A]− + [Li, A]−Lj − Lj[Li, A]− − [Lj , A]Li}

=
1

i �
{0 + 0− 0− 0} = 0

Solution 5.1.6

L+ L− = (Lx + i Ly) (Lx − i Ly) = L2
x + L2

y + i [Ly, Lx]− = L2 − L2
z + �Lz,

L− L+ = (Lx − i Ly) (Lx + i Ly) = L2
x + L2

y + i [Lx, Ly]− = L2 − L2
z − �Lz.

Solution 5.1.7

1. It follows directly from (5.19):

[Lz, z]− = 0 ,

[Lz, x± i y]− = [Lz, x]− ± i[Lz, y]− = i � y ± i(−i �x)

= i � y ± �x = ±�(x± i y) .

2. We use once more (5.19):

[L2, x]− = [L2
y, x]− + [L2

z, x]−
= Ly [Ly, x]− + [Ly, x]− Ly + Lz [Lz, x]− + [Lz, x]− Lz

= i �{−Ly z − z Ly + Lz y + y Lz} .

In the same manner the other components are calculated:

[L2, y]− = i �{Lx z + z Lx − Lz x− xLz} ,

[L2, z]− = i �{Ly x+ xLy − Lx y − y Lx} .

Therewith we derive now the given commutator relation for the x-
component:

[
L2, [L2, x]−

]
− = i�[L2,−Lyz − zLy + Lzy + yLz]−

= i�
{
− Ly[L

2, z]−−[L2, z]−Ly+Lz [L
2, y]−+[L2, y]−Lz

}

= −�
2
{
− Ly(Lyx+ xLy − Lxy − yLx)

−(Lyx+ xLy − Lxy − yLx)Ly

+Lz(Lxz + zLx − Lzx− xLz)

+(Lxz + zLx − Lzx− xLz)Lz

}
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= −�
2
{
− 2L2

yx− Ly [x, Ly]− + 2LyyLx + [Ly , Lx]− y

−2xL2
y − [Ly, x]−Ly + 2LxyLy + y [Lx, Ly]−

+2LzzLx + Lz [Lx, z]− − 2L2
zx− Lz [x, Lz ]−

+2LxzLz + [z, Lx]− Lz − 2xL2
z − [Lz , x]−Lz

}

= 2�2
{
(L2

y + L2
z)x+ x(L2

y + L2
x)
}

−2�2
{
(Lyy + Lzz)Lx + Lx(Lyy + Lzz)

}

−�
2(+i�)

{
− Lyz − Lzy + zLy + yLz

−Lzy + Lzy + yLz − yLz

}

= 2�2
{
L2 x− L2

x x+ xL2 − xL2
x

}

−2�2
{
(L · r)Lx − LxxLx + Lx (L · r)− L2

xx
}

+i�3
{
[Ly , z]− − [y, Lz ]−

}
.

Now it is according to (5.19)

Lxx = xLx and [Ly, z]− = [y, Lz]− .

Because of r · L = L · r = 0 it follows then the assertion:
[
L2, [L2, x]−

]
− = 2�2

{
L2 x+ xL2

}
.

Analogously one proves the commutator relations for the two other com-
ponents.

Solution 5.1.8

1. We take m = j − x with x = 0, 1, 2, . . . , 2j. Then it remains to be proved:

(J−)x|j j〉 = �
x

√
(2j)!x!

(2j − x)!
|j j − x〉 .

We use full induction:
x = 1 :

J−|j j〉 (5.64)
= �

√
2j|j j − 1〉 .

Induction step from x to x+ 1:

(J−)x+1|j j〉 = �
x

√
(2j)!x!

(2j − x)!
J−|j j − x〉

(5.64)
= �

x

√
(2j)!x!

(2j − x)!
�

√
(2j − x) (x + 1) |j j − x− 1〉

= �
x+1

√
(2j)!(x+ 1)!

[2j − (x+ 1)]!
|j j − (x+ 1)〉
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2. We take m = −j + x with x = 0, 1, . . . , 2j, and then we have to verify:

(J+)
x|j − j〉 = �

x

√
(2j)!x!

(2j − x)!
|j − j + x〉 .

We again use full induction:
x = 1 :

J+|j − j〉 (5.64)
= �

√
2j|j − j + 1〉 .

Induction step from x to x+ 1:

(J+)
x+1|j − j〉 = �

x

√
(2j)!x!

(2j − x)!
J+|j − j + x〉

(5.64)
= �

x

√
(2j)!x!

(2j − x)!
�

√
(2j − x)(x + 1) |j − j + x+ 1〉

= �
x+1

√
(2j)!(x + 1)!

[2j − (x + 1)]!
|j − j + x+ 1〉

Solution 5.1.9

Jx =
1

i �
[Jy, Jz]− ; Jy =

1

i �
[Jz, Jx]− ,

〈j m|Jx|j m〉 =
1

i �
(〈j m|Jy Jz|j m〉 − 〈j m|Jz Jy|j m〉)

= −im (〈j m|Jy|j m〉 − 〈j m|Jy|j m〉) = 0 .

Here we have exploited that Jz is a Hermitian operator:

Jz|j m〉 = �m|j m〉 ; 〈j m|Jz = �m〈j m| .

Analogously one shows:
〈j m|Jy|j m〉 = 0 .

Mean square deviations:

J2
x =

1

4
(J+ + J−)2 =

1

4
(J2

+ + J2
− + J+ J− + J− J+)

=⇒ 〈j m|J2
x |j m〉 =

1

4
〈j m|(J+ J− + J− J+)|j m〉

(5.58), (5.59)
=

1

4
〈j m|2(J2−J2

z )|j m〉 = 1

2
�
2
[
j(j + 1)−m2

]
,

J2
y = −1

4
(J+ − J−)2 = −1

4
(J2

++J2
− − J+J−−J−J+)

=⇒ 〈j m|J2
y |j m〉 = 〈j m|J2

x |j m〉 = 1

2
�
2
[
j(j + 1)−m2

]
.
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Therewith it follows eventually:

ΔJx,y =
√
〈j m|J2

x,y|j m〉 − 〈j m|Jx,y|j m〉2 = �

√
1

2
[j(j + 1)−m2] .

Solution 5.1.10

m 3
2

1
2 − 1

2 − 3
2

( j-m) ( j+m+1) 0 3 4 3

( j+m) ( j-m+1) 3 4 3 0

Because of 2j + 1 = 4 the operators are represented by 4× 4-matrices:

J+ = �

⎛

⎜⎜⎝

0
√
3 0 0

0 0 2 0

0 0 0
√
3

0 0 0 0

⎞

⎟⎟⎠ ,

J− = �

⎛

⎜⎜⎝

0 0 0 0√
3 0 0 0
0 2 0 0

0 0
√
3 0

⎞

⎟⎟⎠ ,

Jx =
1

2
(J+ + J−) =

�

2

⎛

⎜⎜⎝

0
√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

⎞

⎟⎟⎠ ,

Jy =
1

2i
(J+ − J−) =

�

2i

⎛

⎜⎜⎝

0
√
3 0 0

−√
3 0 2 0

0 −2 0
√
3

0 0 −√
3 0

⎞

⎟⎟⎠ ,

Jz = �

⎛

⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞

⎟⎟⎠ .

Solution 5.1.11

1.

(ΔJx)
2 = 〈J2

x〉 − 〈Jx〉2 (〈. . . 〉 ≡ 〈jm| . . . |jm〉)
(ΔJy)

2 = 〈J2
y 〉 − 〈Jy〉2

Jx =
1

2
(J+ + J−)

Jy =
1

2i
(J+ − J−)
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〈jm|J±|jm〉 = �

√
j(j + 1)−m(m± 1) · 〈jm|jm± 1〉︸ ︷︷ ︸

=0

= 0

〈J±〉 = 0 =⇒ 〈Jx〉 = 〈Jy〉 = 0

Furthermore:

J2
x =

1

4

(
J2
+ + J2

− + J+J− + J−J+
)

J2
y = −1

4

(
J2
+ + J2

− − J+J− − J−J+
)

As above, it can be shown

〈J2
±〉 = 0

=⇒ 〈J2
x〉 = 〈J2

y 〉 =
1

4
〈J+J− + J−J+〉

According to (5.58), (5.59):

J+J− = J2 − J2
z + �Jz

J−J+ = J2 − J2
z − �Jz

=⇒ J+J− + J−J+ = 2
(
J2 − J2

z

)

=⇒ 〈J2
x〉 = 〈J2

y 〉 =
1

2
�
2
(
j(j + 1)−m2

)

=⇒ ΔJx = ΔJy = �

√
1

2
(j(j + 1)−m2)

‘Smallest indeterminacy’ for m = ±j, i.e., in the states:

|jj〉 ; |j − j〉
with

(ΔJx)min = (ΔJy)min = �

√
1

2
j

2. Yes, for
|jm〉 = |00〉

namely then according to 1. because of j = m = 0

ΔJx = ΔJy = 0 ,

In addition of course ΔJz = 0.
Alternatively:

(ΔJx)
2 = 〈ψ|(Jx − 〈Jx〉)2|ψ〉

(ΔJy)
2 = 〈ψ|(Jy − 〈Jy〉)2|ψ〉

(ΔJz)
2 = 〈ψ|(Jz − 〈Jz〉)2|ψ〉
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If the three components possess precise values, it must be:

ΔJx = 0 ⇐⇒ Jx|ψ〉 = αx|ψ〉
ΔJy = 0 ⇐⇒ Jy|ψ〉 = αy|ψ〉
ΔJz = 0 ⇐⇒ Jz |ψ〉 = αz|ψ〉

|ψ〉 is eigen-state of all the three components:

[Ji, Jj ]−|ψ〉 = (αiαj − αjαi)|ψ〉 = 0 = i�Jk|ψ〉

Jk|ψ〉 = 0 for k = x, y, z

J2|ψ〉 = (J2
x + J2

y + J2
z )|ψ〉 = 0

=⇒ |ψ〉 ∼ |j = 0m〉
j = 0 =⇒ m = 0 =⇒ |ψ〉 ∼ |00〉

Solution 5.1.12

1. Jx, Jy, Jz are the completely equivalent Cartesian components of the oper-
ator of the angular momentum J . This means that the sets of operators
(J2, Jx) and (J2, Jy) have of course the same eigen-values as (J2, Jz). The
corresponding derivations go exactly as those for (J2, Jz) in Sect. 5.1.4.
This means here:

J2|1mx〉 = 2�2|1mx〉 ,
Jx|1mx〉 = �mx|1mx〉

with mx = 1, 0,−1 ,

|1mx〉 =

1,0,−1∑

mz

γ(1,mz)|1mz〉 .

But also:

|1mz〉 =
1,0,−1∑

mx

α(1,mx)|1mx〉 .

2. Probabilities:

w(mx) =
∣∣ 〈1mx|1mz〉

∣∣2 = |γ(1,mz)|2 .

For the explicit evaluation we need the eigen-states |1mx〉 of the operator
Jx in the (J2, Jz)-representation!
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The matrix representation of Jx for j = 1 has been derived at the end of
Sect. 5.1.4:

general state |ψ〉 =

⎛

⎝
ψx

ψy

ψz

⎞

⎠ ; Jx =
�

2

⎛

⎝
0

√
2 0√

2 0
√
2

0
√
2 0

⎞

⎠

=⇒ Jx|ψ〉 = �√
2

⎛

⎝
ψy

ψx + ψz

ψy

⎞

⎠ .

Eigen-value equations:

a) mx = 1:

Jx|1mx = 1〉 = �|1mx = 1〉 = �

⎛

⎝
a
b
c

⎞

⎠

=⇒ �√
2

⎛

⎝
b

a+ c
b

⎞

⎠ !
= �

⎛

⎝
a
b
c

⎞

⎠

=⇒ b =
√
2 a ; a+ c =

√
2 b ; b =

√
2 c .

It follows therewith:

|1mx = 1〉 = b

⎛

⎝
1√
2

1
1√
2

⎞

⎠ .

Normalization =⇒ b2 = 1/2:

|1mx = 1〉 = 1

2

(
1√
2

)
.

b) mx = 0 :

Jx|1mx = 0〉 = 0

=⇒
⎛

⎝
b

a+ c
b

⎞

⎠ = 0 =⇒ b = 0 ; a = −c ,

|1mx = 0〉 = a

⎛

⎝
1
0
−1

⎞

⎠ .

Normalization =⇒ a2 = 1/2 :

|1mx = 0〉 = 1√
2

⎛

⎝
1
0
−1

⎞

⎠ .
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c) mx = −1 :

Jx|1mx = −1〉 = −�|1mx = −1〉

=⇒ �√
2

⎛

⎝
b

a+ c
b

⎞

⎠ = −�

⎛

⎝
a
b
c

⎞

⎠ =⇒ b = −
√
2 a; a+c = −

√
2 b ; b = −

√
2 c,

|1mx = −1〉 = −b

⎛

⎝
1√
2

−1
1√
2

⎞

⎠ .

Normalization =⇒ b2 = 1/2 :

=⇒ |1mx = −1〉 = 1

2

⎛

⎝
−1√
2

−1

⎞

⎠ .

Now the probabilities can be calculated:

α) mz = +1 :

w(1) =
∣∣〈1mx = 1|1mz = 1〉∣∣2 =

1

4
,

w(0) =
1

2
,

w(−1) =
1

4
.

β) mz = 0 :

w(1) =
1

2
; w(0) = 0 ; w(−1) =

1

2
.

γ) mz = −1 :

w(1) =
1

4
; w(0) =

1

2
; w(−1) =

1

4
.

3. After the measurement of Jx the pure state |1mz〉 has changed now to be
the pure state |1mx〉. An anew measurement of Jz then yields with the
probability

∣∣〈1mz|1mx〉
∣∣2

the measuring value �mz. But these are just the probabilities, which have
been calculated in part 2.!
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Solution 5.1.13

1. j = 1:
|ϕ〉 =

∑

m

|1m〉〈1m|ϕ〉
(
1l =

∑

m

|1m〉〈1m|
)

=⇒ −1�
!
= 〈ϕ|Jz |ϕ〉
=

∑

m,m′
〈ϕ|1m〉〈1m|Jz |1m′〉〈1m′|ϕ〉

=
∑

m,m′
�m′〈ϕ|1m〉 〈1m|1m′〉︸ ︷︷ ︸

= δmm′

〈1m′|ϕ〉

=
∑

m

�m |〈ϕ|1m〉|2

Normalization:

1
!
= 〈ϕ|ϕ〉 =

∑

m,m′
〈ϕ|1m〉 〈1m|1m′〉︸ ︷︷ ︸

= δmm′

〈1m′|ϕ〉

=
∑

m

|〈ϕ|1m〉|2

Combination:

0 = 〈ϕ|Jz |ϕ〉 + �〈ϕ|ϕ〉
=

∑

m

�(m+ 1) |〈ϕ|1m〉|2

Because of j = 1 it is (m+ 1) ≥ 0 ∀m
=⇒ all summands non-negative
=⇒ each summand on its own already zero
=⇒ 〈ϕ|1m〉 �= 0 at most for m = −1

=⇒ |ϕ〉 =
∑

m

|1m〉〈1m|ϕ〉 ∼ |1− 1〉

=⇒ |ϕ〉 is eigen-state of Jz

J+|ϕ〉 ∼ �

√
1(1 + 1)−m(m+ 1)|10〉

∼ �
√
2|10〉

J−|ϕ〉 = 0

Jx =
1

2
(J+ + J−) ; Jy =

1

2i
(J+ − J−)

=⇒ 〈ϕ|Jx|ϕ〉 ∼ 〈ϕ|J+|ϕ〉 ∼ 〈1− 1|10〉 = 0

〈ϕ|Jy|ϕ〉 ∼ 〈ϕ|J+|ϕ〉 ∼ 〈1− 1|10〉 = 0
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Alternatively:

〈ϕ|Jx|ϕ〉 =
1

i�
〈ϕ|[Jy, Jz]−|ϕ〉

=
1

i�
{〈ϕ|JyJz |ϕ〉 − 〈ϕ|JzJy|ϕ〉}

=
−�

i�
{〈ϕ|Jy|ϕ〉 − 〈ϕ|Jy|ϕ〉}

= 0

Analogously: 〈ϕ|Jy |ϕ〉 = 0

2. |ψ〉 can be eigen-state, e.g.

|ψ〉 = |7
2

3

2
〉

=⇒ 〈ψ|Jz |ψ〉 =
3

2
�〈ψ|ψ〉 = 3

2
�

〈ψ|Jx|ψ〉 =
1

2
〈ψ|J+ + J−|ψ〉

= c1

〈
7

2

3

2

∣∣∣∣
7

2

5

2

〉

︸ ︷︷ ︸
=0

+c2

〈
7

2

3

2

∣∣∣∣
7

2

1

2

〉

︸ ︷︷ ︸
=0

= 0

Analogously: 〈ψ|Jy |ψ〉 = 0

|ψ〉 must, however, not necessarily be an eigen-state.

Counterexample:

|ψ〉 =
√

4

5
|7
2

5

2
〉+

√
1

5
|7
2
− 5

2
〉

Test:

〈ψ|Jz |ψ〉 =
4

5
〈7
2

5

2
|Jz|7

2

5

2
〉+ 1

5
〈7
2
− 5

2
|Jz|7

2
− 5

2
〉

= �

(
4

5
· 5
2
− 1

5
· 5
2

)
= �

(
2− 1

2

)

=
3

2
�

〈ψ|Jx|ψ〉 = c1

〈
ψ

∣∣∣∣
7

2

7

2

〉

︸ ︷︷ ︸
=0

+c2

〈
ψ

∣∣∣∣
7

2

3

2

〉

︸ ︷︷ ︸
=0

+d1

〈
ψ

∣∣∣∣
7

2
− 3

2

〉

︸ ︷︷ ︸
=0

+d2

〈
ψ

∣∣∣∣
7

2
− 7

2

〉

︸ ︷︷ ︸
=0

= 0
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Analogously: 〈ψ|Jy |ψ〉 = 0

All mentioned properties are fulfilled!
Nevertheless:

Jz|ψ〉 = �
5

2

√
4

5

∣∣∣∣
7

2

5

2

〉
− �

5

2

√
1

5

∣∣∣∣
7

2
− 5

2

〉

�= α|ψ〉
=⇒ |ψ〉 is not an eigen-state!

Solution 5.1.14

1.

Lx Ly = −�
2

(
− sinϕ

∂

∂ϑ
− cotϑ cosϕ

∂

∂ϕ

)(
cosϕ

∂

∂ϑ
− cotϑ sinϕ

∂

∂ϕ

)

= −�
2

[
− sinϕ cosϕ

∂2

∂ϑ2
− sin2 ϕ

sin2 ϑ

∂

∂ϕ

+cotϑ sin2 ϕ
∂2

∂ϑ ∂ϕ
+ cotϑ cosϕ sinϕ

∂

∂ϑ

− cotϑ cos2 ϕ
∂2

∂ϕ∂ϑ
+ cot2 ϑ cos2 ϕ

∂

∂ϕ

+ cot2 ϑ sinϕ cosϕ
∂2

∂ϕ2

]
,

Ly Lx = −�
2

(
cosϕ

∂

∂ϑ
− cotϑ sinϕ

∂

∂ϕ

) (
− sinϕ

∂

∂ϑ
− cotϑ cosϕ

∂

∂ϕ

)

= −�
2

[
− cosϕ sinϕ

∂2

∂ϑ2
+

cos2 ϕ

sin2 ϑ

∂

∂ϕ

− cotϑ cos2 ϕ
∂2

∂ϑ ∂ϕ
+ cotϑ sinϕ cosϕ

∂

∂ϑ

+cotϑ sin2 ϕ
∂2

∂ϕ∂ϑ
− cot2 ϑ sin2 ϕ

∂

∂ϕ

+ cot2 ϑ sinϕ cosϕ
∂2

∂ϕ2

]
.

It follows:

[Lx, Ly]−

= −�
2

[
− sin2 ϕ

sin2 ϑ
+ cot2 ϑ cos2 ϕ− cos2 ϕ

sin2 ϑ
+ cot2 ϑ sin2 ϕ

]
∂

∂ϕ

= −�
2

[
− 1

sin2 ϑ
+ cot2 ϑ

]
∂

∂ϕ
= �

2 ∂

∂ϕ
= i �

(
�

i

∂

∂ϕ

)
= i �Lz

2. Ly does not contain r-parts, thus commutes with r2 = r2!
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3. For Eq. (5.82) in Sect. 5.1.5 we have already calculated:

L+ L− = −�
2

[
∂2

∂ϑ2
+ i

∂

∂ϕ
+ cotϑ

∂

∂ϑ
+ cot2 ϑ

∂2

∂ϕ2

]
.

We therefore still need:

L− L+ = �
2 e−iϕ

(
− ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
eiϕ

(
∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)

= �
2

(
− ∂2

∂ϑ2
+

i

sin2 ϑ

∂

∂ϕ
− i cotϑ

∂2

∂ϑ ∂ϕ

− cotϑ
∂

∂ϑ
+ i cotϑ

∂2

∂ϕ∂ϑ

−i cot2 ϑ
∂

∂ϕ
− cot2 ϑ

∂2

∂ϕ2

)

= −�
2

(
∂2

∂ϑ2
− i

∂

∂ϕ
+ cotϑ

∂

∂ϑ
+ cot2 ϑ

∂2

∂ϕ2

)
.

It follows from that:

[L+, L−]− = −2i �2
∂

∂ϕ
= 2�

(
�

i

∂

∂ϕ

)
= 2�Lz

Solution 5.1.15

1. The normalization integral reads (cl real!):

1 = c2l

2π∫

0

dϕ

π∫

0

sinϑ dϑ sin2l ϑ = c2l 2π

+1∫

−1

d cosϑ (1 − cos2 ϑ)l

=⇒ cl =
1√
2π

⎡

⎣
+1∫

−1

dz
(
1− z2

)l
⎤

⎦
−1/2

,

xl =

+1∫

−1

dz
(
1− z2

)l
=

+1∫

−1

dz
(
1− z2

)l− 1 −
+1∫

−1

dz z2
(
1− z2

)l− 1

= xl− 1 +
1

2l

+1∫

−1

dz z
d

dz

(
1− z2

)l

= xl− 1 +

[
1

2l
z
(
1− z2

)l
]+1

−1

− 1

2l

+1∫

−1

dz
(
1− z2

)l
.
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l ≥ 1:

xl

(
1 +

1

2l

)
= xl− 1

=⇒ xl =
2l

2l + 1
xl− 1 =

2l

2l + 1

2(l − 1)

2l − 1
xl− 2 ,

x0 = 2 .

This can be written as follows:

xl =
2l 2l 2(l− 1) 2(l − 1) 2(l− 2) · · · 2

(2l+ 1) 2l (2l− 1) (2l − 2) (2l− 3) · · · 1 =
2 2l 2l l! l!

(2l + 1)!
.

Therewith we get the sought normalization constants:

cl =

√
(2l+ 1)!

4π

1

2l l!
.

2.

L2 Yl− l(ϑ, ϕ) = − �
2

sin2 ϑ

(
sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
+

∂2

∂ϕ2

)
Yl− l(ϑ, ϕ)

=
−�

2cl

sin2 ϑ

[
sinϑ

∂

∂ϑ
(l cosϑ sinl ϑ)− l2 sinl ϑ

]
e−ilϕ

=
−�

2cl

sin2 ϑ
(−l sin2 ϑ sinl ϑ+l2 cos2 ϑ sinl ϑ− l2 sinl ϑ) e−ilϕ

=
−�

2

sin2 ϑ
(−l sin2 ϑ− l2 sin2 ϑ)Yl− l(ϑ, ϕ)

=⇒ L2Yl− l(ϑ, ϕ) = �
2l(l+ 1)Yl− l(ϑ, ϕ)

Solution 5.1.16

1. Spherical harmonics (5.108)–(5.110) are eigen-states of the orbital angular
momentum:

Y00(ϑ, ϕ) =
1√
4π

∼= |0 0〉

Y10(ϑ, ϕ) =

√
3

4π
cosϑ ∼= |1 0〉

Y1±1(ϑ, ϕ) = ∓
√

3

8π
sinϑ e±iϕ ∼= |1 ± 1〉 .
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This means:

Y11(ϑ, ϕ) + Y1−1(ϑ, ϕ) = −
√

3

8π
sinϑ

(
e+iϕ − e−iϕ

)

= −2i

√
3

8π
sinϑ sinϕ

Y11(ϑ, ϕ)− Y1−1(ϑ, ϕ) = −
√

3

8π
sinϑ

(
e+iϕ + e−iϕ

)

= −2

√
3

8π
sinϑ cosϕ

� sinϑ cosϕ = −
√

2π

3
(Y11(ϑ, ϕ)− Y1−1(ϑ, ϕ))

sinϑ sinϕ = i

√
2π

3
(Y11(ϑ, ϕ) + Y1−1(ϑ, ϕ))

√
3 cosϑ =

√
4πY10(ϑ, ϕ)

sinϑ cosϕ+ sinϑ sinϕ =

√
2π

3

(
(i − 1)Y11(ϑ, ϕ) + (i + 1)Y1−1(ϑ, ϕ)

)
.

Therewith:

|ψ〉 = α

√
2π

3

(
(i− 1) |1 1〉+

√
6 |1 0〉+ (i+ 1) |1 − 1〉

)
.

Normalization:

〈ψ|ψ〉 !
= 1 = α2 2π

3
(2 + 6 + 2) � α =

√
3

20π
.

Rotator state expanded in eigen-functions of the orbital angular momen-
tum:

|ψ〉 = 1

2

√
2

5

(
(i− 1) |1 1〉+

√
6 |1 0〉+ (i+ 1) |1 − 1〉

)
.

2.

L2 |l m〉 = �
2l(l + 1) |l m〉 .

The eigen-value 2�2 belongs to l = 1. |ψ〉 is obviously the eigen-state with
l = 1. The probability to find with a measurement of L2 the value 2�2 is
therewith equal to 1.

3.

W (2�2, 0) = |〈1 0|ψ〉|2 =

∣∣∣∣∣
1

2

√
2

5

√
6

∣∣∣∣∣

2

=
3

5
.
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Solution 5.1.17

1.

H |l m〉 = Elm|l m〉 , Elm =
1

2J
�
2l (l + 1) .

Because of the indeterminacy of m each eigen-value is (2l+1)-fold degen-
erate!
Eigen-functions:

〈ϑϕ|l m〉 = Ylm(ϑ, ϕ) spherical harmonics .

2.
ψ(ϑ, ϕ) = α

(
cos2 ϑ+ sin2 ϑ cosϕ

)
.

According to (5.108) and (5.111) it is

cos2 ϑ =

√
4π

3

[√
4

5
Y20(ϑ, ϕ) + Y00(ϑ, ϕ)

]

and from (5.113) it follows:

sin2 ϑ cos 2ϕ =

√
8π

15
[Y22(ϑ, ϕ) + Y2−2(ϑ, ϕ)] .

The state of the system |ψ〉 can therewith be expressed by eigen-functions
of the angular momentum:

|ψ〉 = α
√
4π

(√
2

15
|2 2〉+

√
2

15
|2− 2〉+ 1

3

√
4

5
|2 0〉+ 1

3
|0 0〉

)
.

We normalize |ψ〉 and exploit thereby the orthonormality of the |l m〉 (α
real!):

〈ψ|ψ〉 = 1 =⇒ α−2 =
8π

15
+

8π

15
+

16 π

45
+

4π

9
=

28 π

15
=⇒ α =

√
15

28π

=⇒ |ψ〉 =
√

2

7
|2 2〉 +

√
2

7
|2− 2〉 + 1

3

√
12

7
|2 0〉+ 1

3

√
15

7
|0 0〉 .

Probabilities for the measurement of L2:

w(6 �2) =

+2∑

m=−2

|〈2m|ψ〉|2 =
2

7
+

2

7
+

4

21
=

16

21
,

w(2 �2) =
+1∑

m=−1

|〈1m|ψ〉|2 = 0 ,

w(0) = |〈0 0|ψ〉|2 =
5

21
.
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Figure A.1:

3. Simultaneous measurement of L2 and Lz:

w(6 �2,−2 �) = |〈2 − 2|ψ〉|2 =
2

7
.

Solution 5.1.18

1. In a so-called polar diagram one plots

∣∣Ylm(ϑ, ϕ)
∣∣2 =

∣∣Θlm(ϑ)
∣∣2

as a function of ϑ (Fig. A.1). Because of the lacking ϕ-dependence these
representations exhibit rotational symmetry around the z-axis. Diagrams
for m and −m are therefore identical.

(5.109) =⇒ Y10(ϑ, ϕ) =
√

3
4π cosϑ ,

|Y10|2 = 3
4π cos2 ϑ .

2. We now choose the x-axis as the symmetry-axis. For the new density of
the position probability it holds according to the presumption:

|f(α)|2 =
3

4π
cos2 α .

The angle α (Fig. A.2) must be expressed by ϑ and ϕ. It is:

x = r cosα ,

x = r sinϑ cosϕ .

This means:
cosα = sinϑ cosϕ .

It holds according to (5.110):

Y11(ϑ, ϕ)− Y1−1(ϑ, ϕ) = −
√

3

8π
sinϑ

(
eiϕ+e−iϕ

)
= −

√
3

2π
sinϑ cosϕ

=⇒ sinϑ cosϕ =

√
2π

3
[Y1−1(ϑ, ϕ)− Y11(ϑ, ϕ)] .
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Figure A.2:

This means for the new density of the position probability:

|f(α)|2 =
1

2
(Y1−1(ϑ, ϕ)− Y11(ϑ, ϕ))

2 .

Solution 5.1.19
Because of L2

x + L2
y = L2 − L2

z we can also write:

H = B L2 + (A−B)L2
z .

Therefore the eigen-functions are the spherical harmonics:

H Ylm(ϑ, ϕ) = �
2
[
B l(l+ 1) + (A−B)m2

]
Ylm(ϑ, ϕ)

=⇒ eigen-values: Elm = �
2
[
B l(l + 1) + (A−B)m2

]
.

The eigen-functions are, however, not real except for m = 0. We construct by
means of (5.104) the following real combinations:

Ŷ +
lm(ϑ, ϕ) = α [Ylm(ϑ, ϕ) + Y ∗

lm(ϑ, ϕ)] = α [Ylm(ϑ, ϕ) + (−1)m Yl−m(ϑ, ϕ)] ,

Ŷ −
lm(ϑ, ϕ) = i β [Ylm(ϑ, ϕ)− Y ∗

lm(ϑ, ϕ)] = iβ [Ylm(ϑ, ϕ)− (−1)m Yl−m(ϑ, ϕ)] .

Obviously it holds:

L2 Ŷ ±
lm (ϑ, ϕ) = �

2l(l + 1) Ŷ
(±)
lm (ϑ, ϕ) ,

L2
z Ŷ

(±)
lm (ϑ, ϕ) = �

2m2 Ŷ
(±)
lm (ϑ, ϕ) ,

and therewith:

H Ŷ
(±)
lm (ϑ, ϕ) = Elm Ŷ

(±)
lm (ϑ, ϕ) .

Solution 5.1.20
Position representation of the orbital angular momentum (5.81)

L± = � e±iϕ

(
± ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
.

Eigen-functions for (Lz,L
2):

Ylm(ϑ, ϕ) = Θlm(ϑ) eimϕ .
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1. Hypothesis: l = 1
2

This means for l = m:

L+Yll(ϑ, ϕ) = 0

� � eiϕ
(

∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
Θll(ϑ) e

ilϕ = 0

�

(
∂

∂ϑ
− l cotϑ

)
Θll(ϑ) = 0

� Θll(ϑ) ∝ sinl ϑ .

This yields as ‘possible’ eigen-function

Ŷ 1
2

1
2
(ϑ, ϕ) =

〈
ϑϕ

∣∣∣∣
1

2

1

2

〉
∝

√
sinϑ exp

(
i
ϕ

2

)
.

2. If Ŷ 1
2

1
2
(ϑ, ϕ) is really an eigen-function, then we should have, because m

is maximal:

L+ Ŷ 1
2

1
2
(ϑ, ϕ) = 0 .

That is indeed fulfilled:

L+ Ŷ 1
2

1
2
(ϑ, ϕ) ∝ � eiϕ

(
∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)√
sinϑ exp

(
i
ϕ

2

)

∝
(

∂

∂ϑ
− 1

2
cotϑ

)√
sinϑ

=
1

2

cosϑ√
sinϑ

− 1

2

cosϑ

sinϑ

√
sinϑ = 0 .

Actually, this serves here only as a checking, because lastly we have derived

Ŷ 1
2

1
2
(ϑ, ϕ) from the relation L+ Ŷ 1

2
1
2
(ϑ, ϕ)

!
= 0.

3. It must also hold

L2
− Ŷ 1

2
1
2
(ϑ, ϕ) = 0 .

This is then an appropriate criterion:

L− Ŷ 1
2

1
2
(ϑ, ϕ) ∝ � e−iϕ

(
− ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)√
sinϑ exp

(
i
ϕ

2

)

= � e−iϕ2

(
− ∂

∂ϑ
− 1

2
cotϑ

)√
sinϑ

= � e−iϕ2

(
− cosϑ

2
√
sinϑ

− cosϑ

2
√
sinϑ

)

= −�
cosϑ√
sinϑ

e−iϕ2 �≡ 0
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L2
− Ŷ 1

2
1
2
(ϑ, ϕ) ∝ −�

2 e−iϕ

(
− ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
cosϑ√
sinϑ

e−iϕ2

∝ e−i 3ϕ2

(
− ∂

∂ϑ
+

1

2
cotϑ

)
cosϑ√
sinϑ

= e−i 3ϕ2

⎛

⎝
sinϑ

√
sinϑ− cos2 ϑ

2
√
sinϑ

sinϑ
+

cos2 ϑ

2 sinϑ
√
sinϑ

⎞

⎠

= e−i 3ϕ2
√
sinϑ

�≡ 0 .

From this reason Ŷ 1
2

1
2
(ϑ, ϕ) can not be an eigen-function of (L2, Lz).

Section 5.2.5

Solution 5.2.1

1. It is S+|+〉 = S−|−〉 = 0 and therewith (S±)2 ≡ 0. It follows then with
S± = Sx ± i Sy:

0 = S2
+ = S2

x − S2
y + i (Sx Sy + Sy Sx) ,

0 = S2
− = S2

x − S2
y − i (Sx Sy + Sy Sx) .

Subtraction of these two equations:

0 = 2i (Sx .Sy + Sy Sx) = 2i [Sx, Sy]+

2. Addition of the two equations for S2
+ and S2

− from 1.:

0 = 2
(
S2
x − S2

y

)
=⇒ S2

x = S2
y ,

S2|±〉 =
3

4
�
2|±〉 ; S2

z |±〉 = �
2

4
|±〉 .

The states |+〉 and |−〉 build in HS=1/2 a complete basis. For this reason
we have in HS=1/2 the operator identities:

S2 =
3

4
�
2 1l2 ; S2

z =
1

4
�
2 1l2

=⇒ S2 − S2
z =

2

4
�
2 1l2 = S2

x + S2
y

=⇒ S2
x = S2

y = S2
z =

1

4
�
2 1l2 .

3. It follows from 1.:

Sx Sy = −Sy Sx

=⇒ [Sx, Sy]− = 2Sx Sy = i �Sz =⇒ Sx Sy = i
�

2
Sz .
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4. With 3.:

Sx Sy Sz = i
�

2
S2
z

2)
= i

�
3

8
1l2 .

Solution 5.2.2

1. Commutation relations (5.14):

[Si, Sj ]− = i �
∑

k

εijk Sk . (*)

According to part 1. of Exercise 5.2.1:

[Sx, Sy]+ = 0 . (**)

Furthermore:

Sz Sx|±〉 = Sz
1

2
(S+ + S−)|±〉 = 1

2
Sz S∓|±〉

=
1

2
Sz|∓〉 = ∓�

4
|∓〉 ,

Sx Sz|±〉 = ±�

2
Sx|±〉 = ±�

4
S∓|±〉 = ±�

4
|∓〉

=⇒ Sz Sx|±〉 = −Sx Sz|±〉 ,

{|+〉, |−〉} complete basis of the HS=1/2

=⇒ operator identity in HS=1/2:

Sz Sx = −Sx Sz .

Analogously one shows:
Sz Sy = −Sy Sz .

Altogether it follows with (**) and part 2. of Exercise 5.2.1:

[Si, Sj ]+ =
�
2

2
δij 1l2 .

This is added to (*):

Si Sj =
�
2

4
δij 1l2 + i

�

2

∑

k

εijk Sk .

This means for the Pauli spin matrices:

σ =
2

�
S ,

σiσj = δij 1l2 + i
∑

k

εijk σk
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2. Because of the assumed commutability it is:

(σ · a) (σ · b) =
∑

i, j

aibj σiσj
1.
=

∑

i, j

ai bj

(
δij 1l2 + i

∑

k

εijk σk

)

=

(
∑

i

ai bi

)
1l2+i

∑

ijk

εijk ai bj σk = (a · b)1l2 + ia · (b× σ)

(see formula (1.197), Vol. 1 for the scalar triple product) ,

a · (b× σ) = (a× b) · σ
= σ · (a× b) , since σ commutes with a and b.

Therewith the assertion is proven!

Solution 5.2.3

1. We use the result from part 2. of Exercise 5.2.2:

(a · σ)(b · σ) = a · b1l2 + i (a× b) · σ .

Therewith one finds:

Â · B̂ = a0b01l2 + a0b · σ + b0a · σ + (a · σ)(b · σ)
= (a0b0 + a · b)︸ ︷︷ ︸

x

1l2 + (a0b+ b0a+ i(a× b))︸ ︷︷ ︸
y

·σ .

2. Special choice:

B̂ = Â−1
� Â · B̂ = 1l2 .

This requires according to part 1.:

a0b0 + a · b !
= 1

a0b+ b0a+ i(a× b)
!
= 0 .

The latter equation tells us that the vectors a, b and a × b are linearly
dependent. But now it holds also

(a× b) ⊥ a,b .

That means that the second conditional equation can be fulfilled only if

a× b = 0 and a0b+ b0a = 0 .

That yields

b = − b0
a0

a .



384 APPENDIX A. SOLUTIONS OF THE EXERCISES

This we insert into the first conditional equation:

1
!
= a0b0 + a ·

(
− b0
a0

a

)
=

b0
a0

(
a20 − a · a) .

The bracket is unequal to zero:

b0 =
a0

a20 − a · a b = − 1

a20 − a · a a .

The inverse matrix B̂ = Â−1 is therewith determined:

Â−1 = b01l2 + b · σ =
1

a20 − a · a (a01l2 − a · σ) .

Solution 5.2.4

Sx|α〉 =
�

2

(
0 1
1 0

) (
α+

α−

)
=

�

2

(
α−
α+

)
,

Sy|α〉 =
�

2

(
0 −i
i 0

) (
α+

α−

)
=

�

2

(−i α−
i α+

)
,

Sz|α〉 =
�

2

(
1 0
0 −1

) (
α+

α−

)
=

�

2

(
α+

−α−

)

=⇒ 〈Sx〉 = 〈α|Sx|α〉 = �

2

(
α∗
+ α− + α∗

− α+

)
= � Re

(
α∗
+ α−

)
,

〈Sy〉 = 〈α|Sy |α〉 = �

2
i
(−α∗

+ α− + α∗
− α+

)
= � Im

(
α∗
+ α−

)
,

〈Sz〉 = 〈α|Sz |α〉 = �

2

(|α+|2 − |α−|2
)
.

Solution 5.2.5

1.

Sx =
�

2

(
0 1
1 0

)
; Sy =

�

2

(
0 −i
i 0

)

Eigen-value equations:
( −λx

�

2
�

2 −λx

)(
ax
bx

)
!
= 0

0
!
=

∣∣∣∣
−λx

�

2
�

2 −λx

∣∣∣∣ = λ2
x − �

2

4
=⇒ λx = ±�

2
( −λy −i�2

i�2 −λy

)(
ay
by

)
!
= 0

0
!
=

∣∣∣∣
−λy −i�2
i�2 −λy

∣∣∣∣ = λ2
y −

�
2

4
=⇒ λy = ±�

2

Eigen-values as measured values(!) of course the same as for Sz!
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2.

|1 0〉 ≡
(

1
0

)
; |0 1〉 ≡

(
0
1

)

Eigen-states for Sx:

( −�

2
�

2
�

2 −�

2

)(
a
(+)
x

b
(+)
x

)
= 0

=⇒ �

2
(−a(+)

x + b(+)
x ) = 0 =⇒ a(+)

x = b(+)
x

Normalization (except for a phase factor):

a(+)
x = b(+)

x =
1√
2

=⇒ |x+〉 =
1√
2
(|1 0〉+ |0 1〉)

(
�

2
�

2
�

2
�

2

)(
a
(−)
x

b
(−)
x

)
= 0

=⇒ �

2
(a(−)

x + b(−)
x ) = 0 =⇒ a(−)

x = −b(−)
x

Normalization:

a(−)2
x + b(−)2

x = 1 =⇒ a(−)
x = −b(−)

x =
1√
2

=⇒ |x−〉 =
1√
2
(|1 0〉 − |0 1〉)

Eigen-states for Sy:

( −�

2 −i�2
i�2 −�

2

)(
a
(+)
y

b
(+)
y

)
= 0

=⇒ −�

2
a(+)
y − i

�

2
b(+)
y = 0 =⇒ a(+)

y = −ib(+)
y

Normalization:

|a(+)
y |2 + |b(+)

y |2 = 1

=⇒ a(+)
y =

1√
2
; b(+)

y = i
1√
2

=⇒ |y+〉 =
1√
2
(|1 0〉+ i|0 1〉)

(
�

2 −i�2
i�2

�

2

)(
a
(−)
y

b
(−)
y

)
= 0

=⇒ �

2
a(−)
y − i

�

2
b(−)
y = 0 =⇒ a(−)

y = ib(−)
y
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Normalization:

|a(−)
y |2 + |b(−)

y |2 = 1

=⇒ a(−)
y =

1√
2
; b(−)

y = −i
1√
2

=⇒ |y−〉 =
1√
2
(|1 0〉 − i|0 1〉)

Solution 5.2.6

1.

(σ · e)2 =
∑

ij

σiσj eiej =
∑

i

σ2
i e

2
i +

i�=j∑

ij

σiσj eiej

∑

i

σ2
i e

2
i

(5.166)
= 1l2

∑

i

e2i = 1l2

i�=j∑

ij

(σiσj) (eiej) =

j �=i∑

ji

(σjσi)(ejei)
(5.167)
=

i�=j∑

ij

(−σiσj)(eiej)=0.herewith :

(σ · e)2 = 1l2 .

2. The uncertainty is then zero only when |ψ〉 is an eigen-state of S · e. It is
therefore to require:

(S · e)|ψ〉 !
= ±�

2
|ψ〉 ⇔ (σ · e)|ψ〉 !

= ±|ψ〉 .

According to (5.175) we have:

σ+|+〉 = 0 = σ−|−〉 ; σ+|−〉 = 2|+〉 ; σ−|+〉 = 2|−〉 .

It follows therewith:

(σ · e)|+〉 = (σxex + σyey + σzez)|+〉
= ex

1

2
(σ+ + σ−)|+〉+ ey

1

2i
(σ+ − σ−)|+〉+ ezσz |+〉

= (ex + iey)|−〉+ ez|+〉
(σ · e)|−〉 = (ex − iey)|+〉 − ez|−〉

It remains as conditional equation:

1√
2

(
(ex + iey)|−〉+ ez|+〉

)
+

1 + i

2

(
(ex − iey)|+〉 − ez|−〉

)

!
= ±

(
1√
2
|+〉+ 1 + i

2
|−〉

)
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�

(
1√
2
(ex + iey)− 1 + i

2
ez ∓ 1 + i

2

)
|−〉

+

(
1√
2
ez +

1 + i

2
(ex − iey)∓ 1√

2

)
|+〉 = 0

|+〉 and |−〉 are linearly independent. The corresponding pre-factors must
therefore already vanish:

(
1√
2
ex − 1

2
ez ∓ 1

2

)
+ i

(
1√
2
ey − 1

2
ez ∓ 1

2

)
= 0

(
1√
2
ez +

1

2
ex +

1

2
ey ∓ 1√

2

)
+ i

(
1

2
ex − 1

2
ey

)
= 0 .

Separation of real and imaginary parts:

1√
2
ex − 1

2
ez ∓ 1

2
= 0

1√
2
ey − 1

2
ez ∓ 1

2
= 0

1√
2
ez +

1

2
ex +

1

2
ey ∓ 1√

2
= 0

1

2
ex − 1

2
ey = 0 .

The last equation yields immediately ex = ey. The first two equations are
therefore identical, while the second and the third simplify to:

ex − 1√
2
ez ∓ 1√

2
= 0

1√
2
ez + ex ∓ 1√

2
= 0 .

By addition and subtraction, respectively, from these two equations we
obtain immediately ex and ez:

ex = ey = ± 1√
2
; ez = 0 � e = ± 1√

2
(1, 1, 0) .

Solution 5.2.7

1. Hamilton operator:
H = η σx .

Time evolution operator:

U(t, 0) = exp

(
− i

�
Ht

)
= exp

(
− i

�
ησxt

)
= cos

(η
�
σxt

)
− i sin

(η
�
σxt

)
.
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Pauli spin matrices:

n ∈ N : σ2n
x =

(
σ2
x

)n (5.166)
= 1ln2 = 1l2

� σ2n+1
x = σx .

This means:

cos
(η
�
σxt

)
= cos

(η
�
t
)
1l2

sin
(η
�
σxt

)
= sin

(η
�
t
)

σx

� U(t, 0) = cos
(η
�
t
)
1l2 − i sin

(η
�
t
)

σx .

2.
|ψ(t)〉 = U(t, 0) |ψ(0)〉 =

(
cos

(η
�
t
)
1l2 − i sin

(η
�
t
)
σx

)
|+〉 .

It is

σx|+〉 = 1

2
(σ+ + σ−)|+〉 = |−〉

and therewith

|ψ(t)〉 = cos
(η
�
t
)
|+〉 − i sin

(η
�
t
)
|−〉 .

Probability:

W+(t) = |〈+|ψ(t)〉|2 = cos2
(η
�
t
)
=

1

2

(
1 + cos

(
2η

�
t

))
.

Periodic function with the periodic time τ = π�/η.

3. It is a similar problem like the one, which was treated in the second part
of Exercise 5.2.6. Requirement:

(σ · e) |ψ(t)〉 !
= +|ψ(t)〉 ; (e = (ex, ey, ez)) .

We take from Exercise 5.2.6:

(σ · e) |+〉 = (ex + iey) |−〉+ ez |+〉
(σ · e) |−〉 = (ex − iey) |+〉 − ez |−〉 .

For the state |ψ(t)〉 from part 2. it is then to require:

(σ · e) |ψ(t)〉 = cos
(η
�
t
)
(σ · e) |+〉 − i sin

(η
�
t
)
(σ · e) |−〉

= cos
(η
�
t
)
(ex + iey) |−〉+ cos

(η
�
t
)
ez|+〉

−i sin
(η
�
t
)
(ex − iey) |+〉+ i sin

(η
�
t
)
ez |−〉

!
= cos

(η
�
t
)
|+〉 − i sin

(η
�
t
)
|−〉 .
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This can be sorted a bit:
{
cos

(η
�
t
)
(ex + iey) + i sin

(η
�
t
)
ez + i sin

(η
�
t
)}

|−〉

+
{
cos

(η
�
t
)
ez − i sin

(η
�
t
)
(ex − iey)− cos

(η
�
t
)}

|+〉
= 0 .

|+〉 and |−〉 are linearly independent. It must therefore hold already:

cos
(η
�
t
)
(ex + iey) + i sin

(η
�
t
)
ez + i sin

(η
�
t
)

= 0

cos
(η
�
t
)
ez − i sin

(η
�
t
)
(ex − iey)− cos

(η
�
t
)

= 0 .

These equations must be fulfilled separately for real and imaginary parts:

cos
(η
�
t
)
ex = 0 (A.1)

cos
(η
�
t
)
ey + sin

(η
�
t
)
ez = − sin

(η
�
t
)

(A.2)

cos
(η
�
t
)
ez − sin

(η
�
t
)
ey = cos

(η
�
t
)

(A.3)

sin
(η
�
t
)
ex = 0 . (A.4)

From (A.1) and (A.4) it follows directly:

ex(t) ≡ 0 .

We multiply (A.2) by sin
(
η
�
t
)
and (A.3) by cos

(
η
�
t
)
:

sin
(η
�
t
)
cos

(η
�
t
)
ey + sin2

(η
�
t
)
ez = − sin2

(η
�
t
)

cos2
(η
�
t
)
ez − cos

(η
�
t
)
sin

(η
�
t
)
ey = cos2

(η
�
t
)

.

We build the sum of these equations:

ez(t) = cos2
(η
�
t
)
− sin2

(η
�
t
)
= cos

(
2
η

�
t
)
.

On the other hand, from the difference of these equations follows:

2 sin
(η
�
t
)
cos

(η
�
t
)
ey +

(
sin2

(η
�
t
)
− cos2

(η
�
t
))

ez

= − sin2
(η
�
t
)
− cos2

(η
�
t
)

⇔ sin
(
2
η

�
t
)
ey − cos

(
2
η

�
t
)
ez = −1

⇔ sin
(
2
η

�
t
)
ey − cos2

(
2
η

�
t
)
= −1

⇔ sin
(
2
η

�
t
)
ey = −1 + cos2

(
2
η

�
t
)
= − sin2

(
2
η

�
t
)

⇔ ey(t) = − sin
(
2
η

�
t
)
.
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The tip of the unit vector thus precesses as function of time with the
angular velocity 2η/� (periodic time π�/η, see part 2.) in the yz-plane:

e =
(
0,− sin

(
2
η

�
t
)
, cos

(
2
η

�
t
))

.

Solution 5.2.8
Sufficient:

Let |ϕ〉 be an eigen-state of Sz:

|ϕ〉 =

∣∣∣∣
3

2

1

2

〉

=⇒ 〈ϕ|Sz |ϕ〉 =
�

2
,

Sx =
1

2
(S+ + S−) ,

Sy =
1

2i
(S+ − S−)

=⇒ because of the orthonormality of the states |(3/2)m〉:

〈ϕ|Sx|ϕ〉 = 〈ϕ|Sy|ϕ〉 = 0 .

The eigen-state |(3/2) (1/2)〉 thus indeed leads to the given expectation values!
Necessary:
Counter-example:

|ϕ〉 = a

∣∣∣∣
3

2

3

2

〉
+ b

∣∣∣∣
3

2
− 3

2

〉
; a, b real , 〈ϕ|ϕ〉 = 1 .

At first it is:

〈ϕ|S±|ϕ〉 = 0

=⇒ 〈ϕ|Sx|ϕ〉 = 〈ϕ|Sy|ϕ〉 = 0 ,

〈ϕ|Sz |ϕ〉 =
3

2
� (a2 − b2)

!
=

�

2

=⇒ a2 − b2 =
1

3
,

Normalization: a2 + b2 = 1

=⇒ a =

√
2

3
, b =

√
1

3
.

The state

|ϕ〉 =
√

2

3

∣∣∣∣
3

2

3

2

〉
+

√
1

3

∣∣∣∣
3

2
− 3

2

〉
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has the expectation values

〈ϕ|Sz |ϕ〉 = �

2
; 〈ϕ|Sx|ϕ〉 = 〈ϕ|Sy |ϕ〉 = 0 ,

but is not an eigen-state of Sz :

Sz|ϕ〉 = 3

2
�

(√
2

3

∣∣∣∣
3

2

3

2

〉
−
√

1

3

∣∣∣∣
3

2
− 3

2

〉)
�= c|ϕ〉 .

Solution 5.2.9
Answer: yes

Reason:

〈ψ|Sz |ψ〉 =
∑

m,m′

〈
ψ
∣∣3
2
m

〉 〈
3

2
m |Sz| 3

2
m′

〉 〈
3

2
m′∣∣ψ

〉

=
∑

m,m′
�m′ δmm′

〈
ψ
∣∣3
2
m

〉 〈
3

2
m′∣∣ψ

〉

= �

∑

m

m

∣∣∣∣

〈
ψ
∣∣3
2
m

〉 ∣∣∣∣
2

!
=

3

2
� .

Normalization:

〈ψ|ψ〉 =
∑

m

∣∣∣∣

〈
ψ
∣∣3
2
m

〉 ∣∣∣∣
2

!
= 1 .

Combination of the two equations:

∑

m

(
m− 3

2

)

︸ ︷︷ ︸
≤ 0

∣∣∣∣∣∣∣∣

〈
ψ
∣∣3
2
m

︸ ︷︷ ︸
≥ 0

〉
∣∣∣∣∣∣∣∣

2

= 0 .

Satisfiable only if

〈
ψ
∣∣3
2
m

〉
= 0 ∀m �= 3

2
=⇒ |ψ〉 ∼

∣∣∣∣
3

2

3

2

〉
: eigen-state!

Solution 5.2.10
Schrödinger equation for an electron in the electromagnetic field (5.191):

i�
∂

∂t

(
ψ+(r, t)
ψ−(r, t)

)
=

[(
1

2m
(p+ eA(r, t))2 − eϕ(r, t)

)
1l2

+μB σ ·B(t)

](
ψ+(r, t)
ψ−(r, t)

)
.

Let the magnetic induction be homogeneous, but possibly time-dependent.
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Separation ansatz for orbital and spin dynamics:

(
ψ+(r, t)
ψ−(r, t)

)
≡
∣∣∣ψ 1

2
(r, t)

〉
= η(r, t)

∣∣∣χ 1
2
(t)

〉
;
∣∣∣χ 1

2
(t)

〉
=

(
χ+(t)
χ−(t)

)
.

Insertion into the Schrödinger equation:

(
i�

∂

∂t
η(r, t)

) ∣∣∣χ 1
2
(t)

〉
+i�η(r, t)

d

dt

∣∣∣χ 1
2
(t)

〉

=

(
1

2m
(p+ eA(r, t))2η(r, t)

) ∣∣∣χ 1
2
(t)

〉

−eϕ(r, t)η(r, t)
∣∣∣χ 1

2
(t)

〉

+μB η(r, t)σ ·B(t)
∣∣∣χ 1

2
(t)

〉
.

Division by η:

1

η(r, t)

[(
1

2m
(p+ eA(r, t))2 − eϕ(r, t)

)
η(r, t)−

(
i�

∂

∂t
η(r, t)

)] ∣∣∣χ 1
2
(t)

〉

=

(
i�

d

dt
− μB σ ·B(t)

) ∣∣∣χ 1
2
(t)

〉
.

The right-hand side of the equation is dependent only on t. The pre-factor of
the spinor on the left-hand side must therefore also be a pure time-function:

D(t) ≡ 1

η(r, t)

[(
1

2m
(p+ eA(r, t))2 − eϕ(r, t)

)
η(r, t)−

(
i�

∂

∂t
η(r, t)

)]
.

It the remains to be solved:

D(t)
∣∣∣χ 1

2
(t)

〉
=

(
i�

d

dt
− μB σ ·B(t)

) ∣∣∣χ 1
2
(t)

〉
.

That succeeds with the ansatz:

∣∣∣χ 1
2
(t)

〉
= |χ̂(t)〉 exp

⎛

⎝− i

�

t∫

0

D(t′) dt′

⎞

⎠ .

Insertion:

D(t) |χ̂(t)〉 e−
i
�

t∫
0

D(t′) dt′

= i�

(
− i

�
D(t)

)
|χ̂(t)〉 e−

i
�

t∫
0

D(t′) dt′

+

(
i�

d

dt
|χ̂(t)〉

)
e
− i

�

t∫
0

D(t′) dt′

−μB σ ·B(t) |χ̂(t)〉 e−
i
�

t∫
0

D(t′) dt′

.
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|χ̂(t)〉 thus has to fulfill the following differential equation which is independent
of D(t):

(
i�

d

dt
− μB σ ·B(t)

)
|χ̂(t)〉 = 0 . (A.5)

Otherwise it must be:

D(t) η(r, t) =

(
1

2m
(p+ eA(r, t))2 − eϕ(r, t)

)
η(r, t) − i�

∂

∂t
η(r, t) .

For the solution we choose a similar ansatz as that above for the spin-spinor:

η(r, t) = η̂(r, t) exp

⎛

⎝+
i

�

t∫

0

D(t′) dt′

⎞

⎠ .

That leads to:

D(t) η̂(r, t) e
i
�

t∫
0

D(t′) dt′

=

(
1

2m
(p+ eA(r, t))2 − eϕ(r, t)

)
η̂(r, t) e

i
�

t∫
0

D(t′) dt′

−i�

(
∂

∂t
η̂(r, t)

)
e

i
�

t∫
0

D(t′) dt′

−i�

(
i

�
D(t)

)
η̂(r, t) e

i
�

t∫
0

D(t′) dt′

Therewith what is left is a differential equation which is independent of D(t):

(
i�

∂

∂t
− 1

2m
(p+ eA(r, t))2 + eϕ(r, t)

)
η̂(r, t) = 0 . (A.6)

Spin and orbital part of the two-component spinor can therefore be determined
independently of each other via (A.5) and (A.6). Because of

∣∣∣ψ 1
2
(r, t)

〉
= η(r, t)

∣∣∣χ 1
2
(t)

〉
= η̂(r, t) |χ̂(t)〉

the problem is therewith solved.

Solution 5.2.11

We introduce for abbreviation the Larmor-frequency of the electron:

ωL =
μB

�
B .
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Heisenberg’s equation of motion ((3.191), Vol. 6):

i � Ṡ z
y
x

(t) =

⎡

⎢⎢⎢⎢⎢⎣
S z

y
x

,H

⎤

⎥⎥⎥⎥⎥⎦

−

(t) = 2
ωL

B

⎡

⎢⎢⎢⎢⎢⎣
S z

y
x

, Sx Bx + Sy By + Sz Bz

⎤

⎥⎥⎥⎥⎥⎦

−

= i � 2
ωL

B

⎧
⎪⎨

⎪⎩

Sy Bx − SxBy

−Sz Bx + SxBz

Sz By − Sy Bz

= i � 2
ωL

B

⎧
⎪⎨

⎪⎩

−(S×B)z

−(S×B)y

−(S×B)x

.

The equation of motion therefore reads:

Ṡ(t) = −2
ωL

B
(S×B) (t) = (μS ×B) (t) .

The operator of the time-differentiated spin thus corresponds to the torque,
which is exerted by the field B on the magnetic spin moment (see (3.53),
Vol. 3). According to Ehrenfest’s theorem ((3.211), Vol. 6) the equation of
motion of the expectation values of observables is formally same in all the three
pictures. Therefore we can directly conclude from the last equation, which uses
the Heisenberg picture:

d

dt
〈S〉t = −2

ωL

B
(〈S〉t ×B) .

We now take: B = B ez. The equations of motion then read one by one:

d

dt
〈Sx〉t = −2ωL〈Sy〉t ,

d

dt
〈Sy〉t = 2ωL〈Sx〉t ,

d

dt
〈Sz〉t = 0 .

By one more differentiation of the first two equations we find a familiar differ-
ential equation,

d2

dt2
〈Sx,y〉t + (2ωL)

2〈Sx,y〉t = 0,

which can easily be integrated:

〈Sx〉t = a sin 2ωL t+ b cos 2ωL t ,

〈Sy〉t = â sin 2ωL t+ b̂ cos 2ωL t .



APPENDIX A. SOLUTIONS OF THE EXERCISES 395

Figure A.3:

With the initial conditions,

〈Sx〉t=0 = b ,

d

dt
〈Sx〉t

∣∣∣∣
t=0

= 2ωL a = −2ωL〈Sy〉t=0 ,

〈Sy〉t=0 = b̂ ,

d

dt
〈Sy〉t

∣∣∣∣
t=0

= 2ωL â = 2ωL〈Sx〉t=0 ,

we have the complete solutions:

〈Sx〉t = 〈Sy〉t=0 sin 2ωL t+ 〈Sx〉t=0 cos 2ωL t ,

〈Sy〉t = −〈Sx〉t=0 sin 2ωL t+ 〈Sy〉t=0 cos 2ωL t ,

〈Sz〉t = 〈Sz〉t=0 .

The expectation value 〈S〉t of the spin operator thus precesses with twice the
Larmor frequency around the magnetic field B (Fig. A.3). The angular aperture
of the precession cone is found by the initial conditions 〈Sx〉t=0 and 〈Sy〉t=0.

Solution 5.2.12
In the Sz-representation Sx and Sy read:

Sx =
�

2

(
0 1
1 0

)
; Sy =

�

2

(
0 −i
i 0

)
,

and therewith A:

A = α
�

2

(
0 1− i

1 + i 0

)
.

Eigen-values from the secular determinant:

det (A− λ 1l2)
!
= 0 ,

det

( −λ (1− i)α �

2

(1 + i)α �

2 −λ

)
= λ2 − α2 �

2

4
2

=⇒ λ± = ±α�√
2
.
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Eigen-states from:

A|λ±〉 = ±α�√
2
|λ±〉 ; |λ±〉 =

(
a±
b±

)

⇐⇒
(∓√

2 1− i

1 + i ∓√
2

) (
a±
b±

)
!
= 0

=⇒ ∓
√
2 a± + (1− i) b± = 0 ,

(1 + i) a± ∓√
2 b± = 0

=⇒ b± = ±1 + i√
2

a± .

Normalization: |b±|2 + |a±|2 !
= 1

=⇒ 1 = |a±|2
(
2

2
+ 1

)
.

Choose the phase so that a± real:

a± =
1√
2
; b± = ±1

2
(1 + i) .

Therewith the eigen-states in the Sz-representation read:

|λ+〉 =
( 1√

2
1
2 (1 + i)

)
; |λ−〉 =

( 1√
2

− 1
2 (1 + i)

)
.

Probabilities:

∣∣〈 − |λ+〉
∣∣2 =

∣∣∣∣
1

2
(1 + i)

∣∣∣∣
2

=
1

2
;

∣∣〈 − |λ−〉
∣∣2 =

1

2
.

Solution 5.2.13

Hamilton operator in the Sz-representation:

H = −μs
�

2
(σx Bx + σy By + σz Bz) = −μs

�

2

(
B0 B1 e

iωt

B1 e
−iωt −B0

)
.

Schrödinger equation for the general state:

|ψ(t)〉 =

(
a+(t)
a−(t)

)
,

i �

(
ȧ+(t)
ȧ−(t)

)
= −μs

�

2

(
B0 a+(t) +B1 e

iωt a−(t)
B1 e

−iωt a+(t)−B0 a−(t)

)
.
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We differentiate the equation for a−(t) once more with respect to time:

ä−(t) =
i μs

2
(−i ω B1 e

−iωt a+(t) +B1 e
−iωt ȧ+(t)−B0 ȧ−(t))

=
i μs

2

[
−i ω

(
−i

2

μs
ȧ−(t) +B0 a−(t)

)

+B1 e
−iωt i μs

2

(
B0 a+(t) +B1 e

iωt a−(t)
)

−B0
i μs

2

(
B1 e

−iωt a+(t)−B0 a−(t)
)]

= −i ω ȧ−(t) + a−(t)
[
1

2
ω μs B0 − 1

4
μ2
s

(
B2

1 +B2
0

)]
.

Solution ansatz :

a−(t) ∼ eiαt

=⇒ −α2 = αω +

[
−
(
1

2
μs B0 − 1

2
ω

)2

+
1

4
ω2 − 1

4
μ2
s B

2
1

]

⇐⇒ 1

4

[
(μs B0 − ω)2 + μ2

s B
2
1

]
=

(
α+

1

2
ω

)2

.

We abbreviate:

Δ =
1

2

√
(μs B0 − ω)2 + μ2

s B
2
1 .

It follows therewith:

α± = −1

2
ω ±Δ .

The general solution for a−(t) therefore reads:

a−(t) = e−(i/2)ωt
[
AeiΔt +B e−iΔt

]
.

Initial conditions:

a−(t = 0) = 0 ; a+(t = 0) = 1

=⇒ A = −B ,

ȧ−(t = 0) = iΔ [A−B] = 2iΔA
!
=

i μs

2
B1

=⇒ A =
μs

4Δ
B1 .

Solution:

a−(t) =
i μs

2Δ
B1 e

− i
2ωt sinΔt .

Transition probability:

w−(t) = |a−(t)|2 =
μ2
s B

2
1

(μs B0 − ω)2 + μ2
s B

2
1

sin2
1

2

√
(μs B0 − ω)2 + μ2

s B
2
1 t .
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This probability is in general very small, since in the experiment B0 � B1 must
be chosen. But when the frequency ω of the alternating field approaches μs B0,
then the pre-factor will be of the order of magnitude 1:

w−(t) −→
ω→μs B0

sin2
(
1

2
μs B1 t

)
.

At the points of time

tn =
(2n+ 1)π

μs B1
; n = 0, 1, 2, . . .

the transition probability even becomes 1. In the field the energies of the states
|+〉 and |−〉 differ by the energy ΔE ≈ �μs B0. Since this energy must be
taken from the applied field, the resonance frequency ω0 = μs B0 is precisely
observable by the energy absorption. This procedure (paramagnetic resonance)
allows for the determination of the magnetic moment μs.

Solution 5.2.14

1. Homogeneous magnetic field:

B =
B√
2
(0, 1, 1) .

Vector potential

B
!
= curlA

0
!
= divA (Coulomb gauge!) .

This means:

0 =
∂

∂y
Az − ∂

∂z
Ay

1√
2
B =

∂

∂z
Ax − ∂

∂x
Az

1√
2
B =

∂

∂x
Ay − ∂

∂y
Ax .

Possible choice:

A(r) =
1

2
√
2
B (z − y, x,−x) .

It holds also:

B× r =
1√
2
B (z − y, x,−x) � A(r) =

1

2
(B× r) .

Canonical momentum:

p = mṙ+ qA(r) .
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Hamilton function:

H =
1

2m
(p− qA(r))2 + qEx .

Now quantization, whereby pi and xi become operators. It follows as
Hamilton operator:

H =
1

2m

(
p2 + q2A2(r)− qp ·A(r) − qA(r) · p)+ qEx .

Position representation and Coulomb gauge:

p ·A(r) =
�

i
(∇ ·A(r) +A(r) ·∇) =

�

i
A(r) ·∇ = A(r) · p .

In the Coulomb gauge A and p commute.

H =

(
1

2m
p2 + qEx

)
+

1

2m
q2A2(r) − q

m
A(r) · p

1

2m
q2A2(r) =

q2

16m

(
(z − y)2 + 2x2

)
B2

q

m
A(r) · p =

q

2m
(B× r) · p =

q

2m
(r× p) ·B =

q

2m
L ·B .

L is the orbital angular momentum. We are left with the

H =

(
1

2m
p2 + qEx

)
− q

2m
L ·B+

q2

16m

(
(z − y)2 + 2x2

)
B2 .

Operator of the magnetic moment

μ = −∇BH =
q

2m
L− q2

8m

(
(z − y)2 + 2x2

)
B .

The first term represents a permanent magnetic moment (if L �= 0),
whereas the second summand obviously vanishes after switching off the
magnetic field. It thus represents an induced moment, oppositely directed
to the exciting field (induction effect, Lenz’s law).

2. It follows because of Bx = 0:

μx =
q

2m
Lx

μy =
q

2m
Ly − q2

8
√
2m

(
(z − y)2 + 2x2

)
B .

We calculate therewith:

•
[μx, px]− =

q

2m
[Lx, px]− .
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We use the vector formula (5.43)

[ei · L, ej ·A]− = i�(ei × ej) ·A .

A is thereby an arbitrary vector operator. We choose A = p:

[μx, px]− =
q

2m
[Lx, px]− =

q

2m
i�(ex × ex) · p = 0 .

•

[μy, px]− =
q

2m
[Ly, px]− − q2

8
√
2m

[
2x2 B, px

]
− .

We use again the above vector formula:

[Ly, px]− = i�(ey × ex) · p = −i�pz
[
2x2 B, px

]
− = 2B

(
x [x, px]− + [x, px]− x

)
= 4i�Bx

� [μy, px]− = −i�
q

2m

(
pz +

1√
2
qBx

)
.

•
[μx, py]− =

q

2m
[Lx, py]− =

q

2m
i�(ex × ey) · p = i�

q

2m
pz

�
[
[μx, py]− , z

]
− = i�

q

2m
[pz, z]− = �

2 q

2m

Solution 5.2.15

1. Neutrons are spin- 12 -particles. It is therefore according to (5.164):

〈σx〉 = 〈σz〉 = 1

2
; 〈σy〉 = 0 .

Statistical operator ρ:

a) Formula from Exercise 3.3.9 in Vol. 6:

ρ =
1

2
(1l + 〈σ〉 · σ) .

Thereby it is:

〈σ〉 · σ =
1

2
(σx + σz) =

1

2

(
1 1
1 −1

)
.

That yields:

ρ =
1

4

(
3 1
1 1

)
.
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b) Alternative solution by direct calculation:

i.

〈σx〉 = 1

2
= Tr(ρσx) = Tr

(
ρ12 ρ11
ρ22 ρ21

)
= ρ12 + ρ21 .

ii.

〈σz〉 = 1

2
= Tr(ρσz) = Tr

(
ρ11 −ρ12
ρ21 −ρ22

)
= ρ11 − ρ22 .

iii.

〈σy〉 = 0 = Tr(ρσy) = Tr

(
iρ12 −iρ11
iρ22 −iρ21

)
= i(ρ12 − ρ21) .

iv.

Trρ = 1 = ρ11 + ρ22 .

(iii) � ρ12 = ρ21

(i) � ρ12 = ρ21 =
1

4

(ii) + (iv) � ρ11 =
3

4

(iv) � ρ22 =
1

4
.

Therewith we get again:

ρ =
1

4

(
3 1
1 1

)
.

2. Arbitrary space-direction:

e = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) .

Component of the spin in the direction of e:

(σ · e) =
(

cosϑ e−iϕ sinϑ
eiϕ sinϑ − cosϑ

)
.

Polarization:

〈σ · e〉 = Tr(ρ(σ · e))
=

1

4
Tr

(
3 1&1

)( cosϑ e−iϕ sinϑ
eiϕ sinϑ − cosϑ

)

=
1

4

(
3 cosϑ+ eiϕ sinϑ+ e−iϕ sinϑ− cosϑ

)

=
1

2
(cosϑ+ sinϑ cosϕ) .
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Especially it was given:

(
ϑ =

π

3
, ϕ =

π

6

)
� cosϑ =

1

2
; sinϑ =

1

2

√
3 ; cosϕ =

1

2

√
3 .

This means for the polarization in the given direction:

〈σ · e〉 = 1

2

(
1

2
+

3

4

)
=

5

8
.

3. Mean square deviation:

(Δσe)
2 ≡ 〈

(σ · e)2〉− 〈σ · e〉2 〈σ · e〉2 =
25

64
.

We need:

(σ · e)2 =

(
cosϑ e−iϕ sin ϑ

eiϕ sinϑ − cosϑ

)
·
(

cos ϑ e−iϕ sinϑ
eiϕ sinϑ − cos ϑ

)

=

(
cos2 ϑ+ sin2 ϑ e−iϕ cos ϑ sinϑ− e−iϕ sinϑ cos ϑ

eiϕ sinϑ cos ϑ−eiϕ cos ϑ sinϑ sin2 ϑ+ cos2 ϑ

)

=

(
1 0
0 1

)
= 1l2 .

Therewith it is:

〈
(σ · e)2〉 = Tr

(
ρ(σ · e)2) = Tr (ρ) = 1 .

Uncertainty of the spin measurement:

Δσe =

√
1− 25

64
=

1

8

√
39 .

Section 5.3.5

Solution 5.3.1
One recognizes immediately:

α̂i α̂j =

(
σi σj 0
0 σi σj

)
.

With the commutation relations (5.167) oft the Pauli’s spin matrices σi, where
i = x, y, z, it follows then:

[α̂i, α̂j ]+ =

(
[σi, σj ]+ 0

0 [σi, σj ]+

)

= 2δij

(
1l2 0
0 1l2

)
= 2δij 1l4 .
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Furthermore, one calculates:

α̂i β̂ =

(
0 σi

σi 0

) (
1l2 0
0 −1l2

)
=

(
0 −σi

σi 0

)
,

β̂ α̂i =

(
1l2 0
0 −1l2

) (
0 σi

σi 0

)
=

(
0 σi

−σi 0

)

=⇒
[
α̂i, β̂

]

+
= 0 ,

β̂2 =

(
1l2 0
0 −1l2

) (
1l2 0
0 −1l2

)
=

(
1l2 0
0 1l2

)
= 1l4 .

The conditions (5.197) are therewith obviously fulfilled.

Solution 5.3.2
The path of solution is the same as in the preceding exercise:

[Si, Sj ]− =
�
2

4

(
[σi, σj ]− 0

0 [σi, σj ]−

)
(5.171)
=

�
2

4

(
2i

∑
k εijk σk 0

0 2i
∑

k εijk σk

)

= i
�
2

2

∑

k

εijk

(
σk 0

0 σk

)
= i�

∑

k

εijk Sk .

That corresponds precisely to (5.14)!

Solution 5.3.3

H
(0)
D = c α̂ · p+ β̂ me c

2 .

1. Ŝ commutes with the momentum p:

Ŝi α̂j =
�

2

(
σi 0
0 σi

) (
0 σj

σj 0

)
=

�

2

(
0 σiσj

σiσj 0

)

=⇒
[
Ŝi, α̂j

]

−
=

�

2

(
0 [σi, σj ]−

[σiσj ]− 0

)

(5.171)
=

�

2

⎛

⎝
0 2i

∑
k

εijk σk

2i
∑
k

εijk σk 0

⎞

⎠

= i �
∑

k

εijk

(
0 σk

σk 0

)
= i �

∑

k

εijk α̂k .

This means:
[
Ŝi, α̂ · p

]

−
= i �

∑

jk

εijk pj α̂k = i �(p× α̂)i ,

[
Ŝ, α̂ · p

]

−
= i � (p× α̂) .
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In addition it holds:

Ŝi · β̂ =
�

2

(
σi 0
0 σi

) (
1l2 0
0 −1l2

)
=

�

2

(
σi 0
0 −σi

)

= β̂ · Ŝi =⇒
[
Ŝ, β̂

]

−
= 0 .

It remains: [
Ŝ, H

(0)
B

]

−
= i � c (p× α̂) .

2. According to (5.20):

[Li, pj ]− = i �
∑

k

εijk pk

=⇒ [Li, α̂ · p]− = i �
∑

jk

εijk α̂j pk = i � (α̂× p)i .

Because of [
Li, β̂

]

−
= 0

it is then left: [
L, H

(0)
B

]

−
= i � c (α̂× p) .

Solution 5.3.4
HD = c α̂ · (p+ eA) + β̂ me c

2 − e ϕ .

Heisenberg’s equation of motion:

i �
d

dt
r = [r, HD]− = c [r,p] · α̂ = i � α̂ c

=⇒ ṙ(t) = c α̂ ,

i�
d

dt
(p+ eA) = [(p+ eA),HD]− + i�

∂

∂t
(p+ eA)

= c e [p, α̂ ·A]− − e [p, ϕ]−

+e c [A, α̂ · p]− + i� e
∂A

∂t

= e c
�

i
[−α̂ ·∇A+∇(α̂ ·A)]

−e
�

i
∇ϕ+ i� e

∂A

∂t
(sol. 1.7.13, Vol. 3)

= e c
�

i
(α̂× (∇×A))− e

�

i
∇ϕ+ i � e

∂A

∂t

=⇒ d

dt
(p+ eA) = −e c (α̂×B)+e

(
∇ϕ+

∂A

∂t

)
.

With

E = −∇ϕ− ∂A

∂t
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it follows eventually:

d

dt
(p+ eA) = −e (ṙ×B+E) .

On the right-hand side we find the Lorentz force.

Solution 5.3.5

1.

[HSO, Li]− =

3∑

j =1

λ [Lj Sj , Li]− =

3∑

j =1

λ [Lj , Li]− Sj

=

3∑

j =1

λ
∑

k

εjik Lk Sj i� = i �λ
∑

jk

εkji Lk Sj

= i �λ (L× S)i ,

=⇒ [HSO,L]− = i �λ (L× S) .

2.

[HSO, Si]− =

3∑

j =1

λ [Lj Sj , Si]− = λ

3∑

j =1

Lj [Sj , Si]−

= λ

3∑

j =1

Lj i �
∑

k

εjik Sk = i �λ
∑

jk

εkji Sk Lj

= i �λ (S× L)i

=⇒ [HSO,S]− = i �λ (S× L) .

3.
[
HSO,L

2
]
− =

3∑

i=1

λ [Li Si,L
2]− =

3∑

i=1

λ [Li,L
2]− Si = 0 .

4.
[
HSO,S

2
]
− = λ

3∑

i=1

Li [Si,S
2]− = 0 .

5. It follows from 1. and 2.:

[HSO, Ji]− = 0 for i = x, y, z

=⇒ [
HSO,J

2
]
− =

∑

i

[
HSO, J

2
i

]
− = 0 .
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Solution 5.3.6
We calculate the ith component:

(∇ϕ× p)i =
∑

jk

εijk
∂ϕ

∂xj
· �
i

∂

∂xk

=
�

i

∑

jk

εijk

(
∂

∂xk

∂ϕ

∂xj
− ∂2ϕ

∂xk∂xj

)
.

Continuous differentiability of the scalar product:

∑

jk

εijk
∂2ϕ

∂xk∂xj

k↔j
=

∑

jk

εikj
∂2ϕ

∂xj∂xk
=

∑

jk

εikj
∂2ϕ

∂xk∂xj

= −
∑

jk

εijk
∂2ϕ

∂xk∂xj

= 0 .

It thus remains:

(∇ϕ× p)i =
�

i

∑

jk

εijk
∂

∂xk

∂ϕ

∂xj

=
�

i

∑

jk

εikj
∂

∂xj

∂ϕ

∂xk

= −
∑

jk

εijk

(
�

i

∂

∂xj

)
∂ϕ

∂xk

= − (p×∇ϕ)i .

Therewith the assertion is proved!

Section 5.4.4

Solution 5.4.1

1. For the sought spin states we have according to (5.280):

|S1 S2;Sms〉 =
∑

ms1 ,ms2

〈ms1 ms2 |S ms〉|S1 S2;ms1 ms2〉 .

The states
|S1 S2;ms1 ms2〉 = |S1 ms1〉|S2 ms2〉

are the product states of the spinors known from Sect. 5.2.4.

Triangle inequality (5.278):
∣∣∣∣
1

2
− 1

2

∣∣∣∣ ≤ S ≤ 1

2
+

1

2

=⇒ S = 1, 0 possible! .
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There are the following four eigen-states:

|S1 S2;Sms〉 ≡ |S ms〉 = |1 1〉, |1 0〉, |1− 1〉, |0 0〉 .
These states can easily be derived from the results in Sect. 5.4.3:

(5.284) =⇒ |1 1〉 = ∣∣S1 S2;
1
2

1
2

〉
= |+〉1|+〉2

We use for the spin states the symbols |+〉, |−〉 from Sect. 5.2.4. Let
the lower index denote the particles 1 and 2,

(5.286) =⇒ Clebsch-Gordan coefficients:

〈ms1 ms2 |1 0〉 =
1√
2
δms1−1/2 δms2 1/2 +

1√
2
δms1 1/2 δms2−1/2

=⇒ |1 0〉 =
1√
2
(|−〉1|+〉2 + |+〉1|−〉2) ,

(5.287) =⇒ |1− 1〉 = |−〉1|−〉2,
(5.289) =⇒ Clebsch-Gordan coefficients:

〈ms1 ms2 |0 0〉 =
1√
2
δms1−1/2 δms21/2

− 1√
2
δms11/2

δms2−1/2

=⇒ |0 0〉 =
1√
2
(|−〉1|+〉2 − |+〉1|−〉2) .

2.

S2 = (S1 + S2)
2 =⇒ S1 · S2 =

1

2
(S2 − S2

1 − S2
2) .

The eigen-states |S1 S2;S ms〉 are common eigen-states of the operators

S2, Sz,S2
1,S

2
2

and therewith also of S1 · S2:

S1 · S2|1ms〉 = �
2

2

(
2−3

4
−3

4

)
|1ms〉=1

4
�
2|1ms〉

eigen-value :
1

4
�
2 (three-fold degenerate),

S1 · S2|0 0〉 = �
2

2

(
0− 3

4
− 3

4

)
|0 0〉 = −3

4
�
2|0 0〉

eigen-value : −3

4
�
2.

3. P is Hermitian because the spin operators S1 and S2 are Hermitian and
commute with each other. Furthermore:

P |1ms〉 =

(
3

4
+

1

4

)
|1ms〉 = |1ms〉 ,

P |0 0〉 =

(
3

4
− 3

4

)
|0 0〉 = 0

=⇒ P 2|Sms〉 = P |Sms〉 .
P projects onto the subspace of the so-called triplet states |1ms〉.
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Solution 5.4.2
We use the partial results of the preceding exercise:

S1 · S2 =
1

2

(
S2 − S2

1 − S2
2

)
=

1

2

(
S2 − 3

2
�
21l

)
,

S1z + S2z = Sz .

Therewith the Hamilton operator reads:

H = −1

2
J

(
S2 − 3

2
�
2 1l

)
+ μSz .

The common eigen-states

|1 1〉, |1 0〉, |1− 1〉, |0 0〉
of S2, Sz , S

2
1, S

2
2, which we have calculated in the preceding exercise, are thus

also the eigen-states of H :

H |1ms〉 =

{
−1

2
J

(
2�2 − 3

2
�
2

)
+ μms

}
|1ms〉

=⇒ E11 = −1

4
J �

2 + μ ,

E10 = −1

4
J �

2 ,

E1−1 = −1

4
J �

2 − μ ,

H |0 0〉 = −1

2
J

(
0− 3

2
�
2

)
|0 0〉

=⇒ E00 = +
3

4
�
2 J .

Solution 5.4.3

1. Triangle inequality (5.278):
∣∣∣∣l −

1

2

∣∣∣∣ ≤ j ≤ l +
1

2
,

l = 0 =⇒ j =
1

2
,

l ≥ 1 =⇒ j = l +
1

2
, l − 1

2
.

2. We use for the proof full induction and start with |l+ 1/2mj〉. For mj =
l + 1/2 the assertion reads:

∣∣∣∣l +
1

2
l +

1

2

〉
= |l l〉|+〉

(
|+〉 ≡

∣∣∣∣
1

2

1

2

〉)
.
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This agrees with (5.284). We now check the case mj = l − (1/2):

∣∣∣∣l +
1

2
l − 1

2

〉
=

√
2l

2l+ 1
|l l − 1〉|+〉+

√
1

2l+ 1
|l l〉|−〉 .

This is identical to (5.285). We now assume that the formula for mj is
correct, and conclude for mj − 1:

J− = J− |l + 1/2mj〉 (5.64)
= �

√
(l+1/2+mj) (l+1/2−mj+1) |l + 1/2mj − 1〉 ,

J−

∣∣∣∣l mj − 1

2

〉
|+〉 = �

∣∣∣∣l mj − 1

2

〉
|−〉

+ �

√(
l +mj − 1

2

) (
l −mj +

3

2

) ∣∣∣∣l mj − 3

2

〉
|+〉 ,

J−

∣∣∣∣l mj +
1

2

〉
|−〉 = �

√(
l +mj +

1

2

) (
l −mj +

1

2

)
|lmj − 1〉 |−〉 .

It follows:

∣∣∣∣l +
1

2
mj − 1

〉

=

∣∣∣∣l mj − 1

2

〉
|−〉

{√
1(

2l + 1) (l−mj +
3
2

)

+
l −mj + 1/2√

(2l + 1) (l −mj + 3/2)

}
+

∣∣∣∣l mj − 3

2

〉
|+〉

√
l +mj − 1/2

2l + 1

=

√
l −mj + 3/2

2l+ 1
|l mj − 1/2〉 |−〉+

√
l +mj − 1/2

2l + 1

∣∣∣∣lmj − 3

2

〉
|+〉.

This is the assertion for mj − 1. The relation for |l+1/2mj〉 is therewith
proven. We now investigate the state |l − 1/2mj〉: For mj = l − 1/2 the
assertion reads:

∣∣∣∣l −
1

2
l− 1

2

〉
= +

√
1

2l + 1
|l l − 1〉|+〉 −

√
2l

2l + 1
|l l〉|−〉 .

This is the exact result (5.288). We conclude again from mj to mj − 1:

J−

∣∣∣∣l −
1

2
mj

〉
= �

√(
l − 1

2
+mj

) (
l +

1

2
−mj

) ∣∣∣∣l −
1

2
mj − 1

〉
,
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J−

∣∣∣∣l mj − 1

2

〉
|+〉 = �

∣∣∣∣l mj − 1

2

〉
|−〉

+ �

√(
l +mj − 1

2

) (
l −mj +

3

2

) ∣∣∣∣l mj−3

2

〉
|+〉 ,

J−

∣∣∣∣l mj +
1

2

〉
|−〉 = �

√(
l +mj +

1

2

) (
l −mj+

1

2

) ∣∣∣∣l mj − 1

2

〉
|−〉.

This can again be gathered, since we assume the correctness of the formula
for |l − 1/2mj〉:

∣∣∣∣l −
1

2
mj − 1

〉
=

√
1

(2l + 1) (l+mj − 1/2)

∣∣∣∣l mj − 1

2

〉
|−〉

+

√
l −mj + 3/2

2l+ 1

∣∣∣∣l mj − 3

2

〉
|+〉

−
√

(l +mj + 1/2)
2

(2l + 1) (l+mj − 1/2)

∣∣∣∣l mj − 1

2

〉
|−〉

=

√
l −mj + 3/2

2l+ 1

∣∣∣∣l mj − 3

2

〉
|+〉 −

−
√

l +mj − 1/2

2l+ 1

∣∣∣∣l mj − 1

2

〉
|−〉 .

This is the assertion for mj − 1. The proof is therewith complete!

Solution 5.4.4
Triangle inequality:

0 ≤ j ≤ 2 =⇒ j = 0, 1, 2 possible.

1. j = 2

〈m1 m2|2 2〉 = δm11 δm21 (see (5.284)) ,

〈m1 m2|2 1〉 = 1√
2
δm10 δm21 +

1√
2
δm11 δm20 (s. 5.286) ,

〈m1 m2|2 0〉 = 1√
6
δm1−1 δm21+

2√
6
δm10δm20+

1√
6
δm11δm2−1 (see 5.287).

We have taken these relations directly from the text. However,we still
have to derive the missing Clebsch-Gordan coefficients. At first we have:

|2 0〉 = 1√
6
(| − 1 1〉+ 2|0 0〉+ |1− 1〉) .
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To this we apply J− = J1− + J2−:

J−|2 0〉 = �
√
6 |2− 1〉 ,

J−| − 1 1〉 = �
√
2 | − 1 0〉 ,

J−|1− 1〉 = �
√
2 |0− 1〉

J−|00〉 = �
√
2 (|0− 1〉+ | − 1 0〉) .

From that it follows:

|2− 1〉 = 1√
2
(| − 1 0〉+ |0− 1〉) .

J−, once more applied, eventually yields:

|2− 2〉 = | − 1− 1〉 .
The still missing Clebsch-Gordan coefficients thus read:

〈m1 m2|2− 1〉 =
1√
2
(δm1−1 δm20 + δm10 δm2−1) ,

〈m1 m2|2− 2〉 = δm1−1 δm2−1 .

2. j = 1
We take from (5.288):

|1 1〉 = 1√
2
(|0 1〉 − |1 0〉) .

To that we apply J− = J1− + J2−:

J−|1 1〉 = �
√
2 |1 0〉 ,

J−|0 1〉 = �
√
2 (| − 1 1〉+ |0 0〉) ,

J−|1 0〉 = �
√
2 (|0 0〉+ |1− 1〉) .

This yields:

|1 0〉 = 1√
2
(| − 1 1〉 − |1− 1〉) .

J−, once more applied, leads to:

|1− 1〉 = 1√
2
(| − 1 0〉 − |0− 1〉) .

We can therewith list all the Clebsch-Gordan coefficients for j = 1:

〈m1 m2|1 1〉 =
1√
2
(δm10 δm21 − δm11 δm20) ,

〈m1 m2|1 0〉 =
1√
2
(δm1−1 δm21 − δm11 δm2−1) ,

〈m1 m2|1− 1〉 =
1√
2
(δm1−1 δm20 − δm10 δm2−1) .
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3. j = 0

Because of mj = m1 +m2
!
= 0 the following ansatz holds:

|0 0〉 = α| − 1 1〉+ β|0 0〉+ γ|1− 1〉 .
We exploit orthogonality and normalization:

〈0 0|0 0〉 !
= 1 = α2 + β2 + γ2 ,

〈2 0|0 0〉 !
= 0 =

1√
6
(α+ 2β + γ) ,

〈1 0|0 0〉 !
= 0 =

1√
2
(α− γ)

=⇒ α = γ = −β =
1√
3

=⇒ |0 0〉 =
1√
3
(| − 1 1〉 − |0 0〉+ |1− 1〉) .

Clebsch-Gordan coefficient:

〈m1 m2|0 0〉 = 1√
3
(δm1−1 δm21 − δm10 δm20 + δm11 δm2−1) .

Solution 5.4.5

1. Triangle inequality (5.278):

|j1 − j2| ≤ j ≤ j1 + j2 .

Because of j1 = 1/2 and j2 = 3/2 we thus have:

j = 1, 2 with mj=1 = −1, 0,+1 ; mj=2 = −2,−1, 0,+1,+2

2.
j = jmax = 2 � −2 ≤ mj ≤ +2 .

We investigate here only mj=2 = 0, 1, 2. According to (5.276) and (5.280)
it must be:

mj = m1 +m2

m1 = +
1

2
,−1

2

m2 = +
3

2
,+

1

2
,−1

2
,−3

2

|2mj=2〉 =

m2=mj=2−m1∑

m1

|m1m2〉 〈m1m2|2mj=2〉︸ ︷︷ ︸
Clebsch-Gordan coefficient

.

Let all the states be normalized!
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(a)
j = 2 , mj = 2 .

This is possible only if m1 = +1/2 and m2 = +3/2. This means:

|jmj〉 = |22〉 = |m1m2〉 =
∣∣∣∣
1

2

3

2

〉
.

This yields the Clebsch-Gordan coefficient :

〈m1m2| 22〉 = δm11/2δm23/2

(b)
j = 2 , mj = 1 .

One finds with (5.64):

J− |22〉 = �

√
2(2 + 1)− 2(2− 1) |21〉 = 2� |21〉

(J1− + J2−)
∣∣∣∣
1

2

3

2

〉
= �

√
1

2

(
1

2
+ 1

)
− 1

2

(
1

2
− 1

) ∣∣∣∣−
1

2

3

2

〉

+�

√
3

2

(
3

2
+ 1

)
− 3

2

(
3

2
− 1

) ∣∣∣∣
1

2

1

2

〉

= �

∣∣∣∣−
1

2

3

2

〉
+ �

√
3

∣∣∣∣
1

2

1

2

〉

� |j = 2 mj = 1〉 =
1

2

(∣∣∣∣−
1

2

3

2

〉
+
√
3

∣∣∣∣
1

2

1

2

〉)
.

Clebsch-Gordan coefficient :

〈m1 m2|21〉 = 1

2
δm1− 1

2
δm2

3
2
+

1

2

√
3 δm1

1
2
δm2

1
2

(c)
j = 2 , mj = 0 .

Again with (5.64) one finds:

J− |2 1〉 = �

√
2(2 + 1) − 1(1− 1)|20〉 = �

√
6 |2 0〉

(J1− + J2−)
1

2

(∣∣∣∣−
1

2

3

2

〉
+

√
3

∣∣∣∣
1

2

1

2

〉)

=
1

2

(
0 +

√
3�

√
1

2

(
1

2
+ 1

)
− 1

2

(
1

2
− 1

) ∣∣∣∣−
1

2

1

2

〉)

+
1

2

(
�

√
3

2

(
3

2
+ 1

)
− 3

2

(
3

2
− 1

) ∣∣∣∣−
1

2

1

2

〉

+
√
3�

√
3

2

(
3

2
+ 1

)
− 1

2

(
1

2
− 1

) ∣∣∣∣
1

2
− 1

2

〉)
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= �

√
3

2

∣∣∣∣−
1

2

1

2

〉
+ �

√
3

2

∣∣∣∣−
1

2

1

2

〉
+ �

√
3

2
4

∣∣∣∣
1

2
− 1

2

〉

� |j = 2 mj = 0〉 =
1√
2

∣∣∣∣−
1

2

1

2

〉
+

√
2

∣∣∣∣
1

2
− 1

2

〉
.

Clebsch-Gordan coefficient :

〈m1 m2|2 0〉 = 1√
2
δm1− 1

2
δm2

1
2
+
√
2 δm1

1
2
δm2− 1

2
.

Section 6.1.3

Solution 6.1.1

1.

pr =
1

2

3∑

i=1

(
pi

xi

r
+

xi

r
pi

)
=

�

2i

3∑

i=1

(
∂

∂xi

xi

r
+

xi

r

∂

∂xi

)

=
�

2i

3∑

i=1

(
1

r
− xi

r2
∂r

∂xi
+ 2

xi

r

∂

∂xi

)
=

�

2i

3∑

i=1

(
1

r
− x2

i

r3
+ 2

xi

r

∂

∂xi

)

=
�

2i

(
3

r
− r2

r3
+ 2

r

r
· ∇

)
.

Gradient in spherical coordinates (5.78):

∇ ≡ er
∂

∂r
+ eϑ

1

r

∂

∂ϑ
+ eϕ

1

r sinϑ

∂

∂ϕ
=⇒ r

r
·∇ =

∂

∂r
.

It remains:

pr =
�

i

(
1

r
+

∂

∂r

)
=

�

i

1

r

∂

∂r
r .

2.

[pr, r]− ψ(r) =
�

i

[
1

r

∂

∂r
r, r

]

−
ψ(r) =

�

i

(
1

r

∂

∂r
r2ψ(r) − ∂

∂r
r ψ(r)

)

=
�

i

(
2ψ(r) + r

∂

∂r
ψ(r)− ψ(r)− r

∂

∂r
ψ(r)

)
=

�

i
ψ(r) ,

ψ(r) arbitrary =⇒ [pr, r]− =
�

i
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3. pr Hermitian?

⇐⇒
∫

d3r ϕ∗(r)
(
�

i

1

r

∂

∂r
r ψ(r)

)
!
= −�

i

∫
d3r

(
1

r

∂

∂r
r ϕ(r)

)∗
ψ(r)

⇐⇒
∫

d3r

[
ϕ∗(r)

∂

∂r
ψ(r) + ψ(r)

∂

∂r
ϕ∗(r) +

2

r
ϕ∗(r)ψ(r)

]
!
= 0

⇐⇒
∫

dΩ

∞∫

0

dr
∂

∂r

[
r2ϕ∗(r)ψ(r)

] !
= 0

⇐⇒
∫

dΩ
[
r2ϕ∗(r)ψ(r)

]∞
0

!
= 0 .

pr is therewith Hermitian, if the wave function fulfills the following two
conditions:

a) lim
r→ 0

r ψ(r) = 0 ,

b) lim
r→∞ r ψ(r) = 0 .

Solution 6.1.2

1.

L2 =

3∑

i=1

L2
i =

∑

i

∑

m,n

εimn xm pn
∑

q,r

εiqr xqpr .

With ∑

i

εimn εiqr = δmq δnr − δmr δnq

it follows:

L2 =
∑

m,n

xm pn (xm pn − xn pm)

=
∑

m,n

[
xm

(
�

i
δmn pn + xm p2n

)
− xm pn (i � δnm + pm xn)

]

=
�

i
(r · p) + r2 p2 − i �(r · p)− (r · p) (p · r) .

We still need:

p · r =
∑

i

pi xi =
∑

i

(
�

i
+ xi pi

)
= 3

�

i
+ r · p .

It is left therewith for the square of the orbital angular momentum:

L2 = 2
�

i
(r · p) + r2p2 − (r · p)2 − 3

�

i
(r · p)

= i �(r · p) + r2p2 − (r · p)2
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2.

pr =
1

2

[
1

r
(r · p) + (p · r) 1

r

]
.

It holds as special case of Exercise 2.3.5 (Vol. 6):
[
pi,

1

r

]

−
=

�

i

∂

∂xi

1

r
= −�

i

xi

r3

=⇒ p
1

r
=

1

r
p− �

i

r

r3
,

(p · r) 1
r
=

1

r
(p · r)− �

i

1

r

1)
= 2

�

i

1

r
+

1

r
(r · p) .

This we insert into the definition equation for pr:

pr =
1

r
(r · p) + �

i

1

r
.

3. We build at first:

p2r =
1

r
(r · p) 1

r
(r · p) + �

i

1

r
(r · p) 1

r
+

�

i

1

r2
(r · p)− �

2 1

r2
.

As in 2. one shows:

(r · p) 1
r

=
1

r
(r · p)− �

i

1

r

=⇒ p2r =
1

r

[
1

r
(r · p)− �

i

1

r

]
(r · p) + �

i

1

r2
(r · p) + �

2 1

r2

+
�

i

1

r2
(r · p)− �

2 1

r2

=
1

r2
[
(r · p)2 − i � (r · p)] .

It then follows with the result from part 1.:

L2 = −r2p2r + r2p2 =⇒ p2 = p2r +
1

r2
L2

Solution 6.1.3
Eigen-value problem:

pr ϕ(r) =
�

i

1

r

∂

∂r
[r ϕ(r)]

!
= αϕ(r)

⇐⇒ ∂

∂r
(r ϕ(r)) =

i

�
α (r ϕ(r))

=⇒ r ϕ(r) ∼ exp

(
i

�
α r

)
,

ϕ(r) ∼ 1

r
exp

(
i

�
α r

)
.
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The solution function ϕ(r) does not fulfill the condition

lim
r→ 0

r ϕ(r) = 0

(see part 3. of Exercise 6.1.1). In the space of the wave functions, in which
pr is Hermitian, the eigen-value problem of pr has no solution. Therefore the
operator pr can not be interpreted as an observable.
Solution 6.1.4

1.
H |En〉 = En|En〉 .

The states |En〉 build a complete, orthonormalized system of eigen-states
with eigen-values:

E0 ≤ E1 ≤ E2 ≤ . . . .

Let |ψ〉 be an arbitrary normalized state:

|ψ〉 =
∑

n

αn|En〉 ;
∑

n

|αn|2 = 1

=⇒ 〈ψ|H |ψ〉 =
∑

n,m

α∗
n αm〈En|H |Em〉

=
∑

n,m

α∗
n αm Em〈En|Em〉

=
∑

n

En|αn|2 ≥ E0

∑

n

|αn|2 = E0 .

The equality sign is correct only if in the expansion of |ψ〉 all αn = 0
except for α0. But then |ψ〉 = |E0〉. The statement remains valid also in
the case of a degenerate ground state!

2. We read the radial equation (6.17) as eigen-value equation of the operator

Hl = R+
�
2l(l + 1)

2mr2
,

R = − �
2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+ V (r) .

Let ψl(r) and ψl+1(r) now be the wave functions to the lowest eigen-values
E∗

l and E∗
l+1:

E∗
l =

∫
d3r ψ∗

l (r)

(
R +

�
2l(l+ 1)

2mr2

)
ψl(r) ,

E∗
l+1 =

∫
d3r ψ∗

l+1(r)

(
R+

�
2(l + 1) (l + 2)

2mr2

)
ψl+1(r) .

According to part 1. it holds for any arbitrary wave function ψ(r):
∫

d3r ψ∗(r)
(
R+

�
2l(l+ 1)

2mr2

)
ψ∗(r) ≥ E∗

l .
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We now can write:

E∗
l+1 = A+B ,

A =

∫
d3r ψ∗

l+1(r)

(
R+

�
2l (l + 1)

2mr2

)
ψl+1(r) ≥ E∗

l ,

B =

∫
d3r ψ∗

l+1(r)
�
2

mr2
(l + 1)ψl+1(r)

=

∫
d3r

�
2

mr2
(l + 1)|ψl+1(r)|2 > 0

=⇒ E∗
l+1 > E∗

l

Section 6.2.6

Solution 6.2.1
(6.70) =⇒

L
′
p+1 − Lp+1 = (2p+ 1− z)

(
L

′
p − Lp

)
− Lp − p2

(
L

′
p− 1 − Lp− 1

)

(6.71)
= (p+ 1− z)L

′
p − (2p+ 2− z)Lp .

(6.71) =⇒
L′
p+1 = (p+ 1)

(
L′
p − Lp

)
. (*)

Combination of these two equations yields:

Lp+1 = z L′
p + (p+ 1− z)Lp .

Further differentiation gives:

L′
p+1 = z L′′

p + L′
p + (p+ 1− z)L′

p − Lp .

It follows with (∗)
(p+ 1) (L′

p − Lp) = z L′′
p + (p+ 2− z)L′

p − Lp

and from that:
0 = z L′′

p + (1− z)L′
p + pLp

Solution 6.2.2
Starting point now is the radial equation (6.31), which now takes the form:

(
− �

2

2mf

d2

dr2
− Z e2

4π ε0r
+

ĉ

r2
+

�
2l (l + 1)

2mf r2
− E

)
u(r) = 0 .

When we define
l̂
(
l̂ + 1

)
≡ l (l + 1) + c ,
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then it follows, with the definitions (6.32)–(6.34) for ρ, ER and η, a differential
equation, which is formally identical with (6.35):

(
d2

dρ2
+

2

ρ
− l̂(l̂ + 1)

ρ2
− η2

)
u(ρ) = 0 .

The path of solution is therefore exactly the same as that in Sect. 6.2.1. We
obtain a truncation-condition in analogy to (6.40):

η
!
=

1

μ0 + l̂ + 1
=

1

n− l + l̂
.

This leads to the eigen-energies:

Enl = − Z2 ER

(n− l + l̂)2
; n = 1, 2, . . . .

We estimate (c � 1):

l̂(l̂ + 1) = l(l+ 1) + c

=⇒
(
l̂ +

1

2

)2

=

(
l +

1

2

)2

+ c

=⇒ l̂ +
1

2
≈

(
l +

1

2

) [
1 +

1

2

c

(l + 1/2)
2

]

=⇒ l̂ ≈ l+
c

(2l + 1)
.

The accidental degeneracy with respect to l is thus removed:

Enl ≈ − Z2 ER(
n+

c

2l + 1

)2 ; n = 1, 2, 3, . . . .

Solution 6.2.3

1. H0 : Hamilton operator without field. According to (5.187) it holds with
field:

H = H0 +Hm ; Hm =
μB

�
(L+ 2S) ·B =

1

�
μBB(Lz + 2Sz) .

|n lml ms〉 is also eigen-state of Lz and Sz. The state thus does not change!

H |n lml ms〉 = [En + μBB(ml + 2ms)] |n lml ms〉 .
New eigen-energies:

Ênmlms = En + μB B(ml + 2ms) .
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2. Before: degree of degeneracy gn = 2n2 (6.47). By the field B the degener-
acy with respect to ml and ms is removed. It is left only that with respect
to l, where, however, only the values l ≥ |ml| are allowed:

gnmlms =

n−1∑

l=|ml|
1 = n− |ml| .

Solution 6.2.4
Hamilton operator in position representation:

H = − �
2

2me
Δ− e2

4π ε0r
= − �

2

2me

(
Δ+

2

aB r

)
.

Laplace operator:

Δ =
∂2

∂r2
+

2

r

∂

∂r
− L2

�2r2

=⇒ Δψ =

(
∂2

∂r2
+

2

r

∂

∂r
− 1 · 2

r2

)
ψ ,

d

dr
r e−r/2aB =

(
1− r

2aB

)
e−r/2aB ,

d2

dr2
r e

− r
2aB =

(
− 1

2aB
− 1

2aB
+

r

4a2B

)
e
− r

2aB

=⇒ Δψ =

(
− 1

aBr
+

1

4a2B
+

2

r2
− 1

aBr
− 2

r2

)
ψ =

(
− 2

aBr
+

1

4a2B

)
ψ

=⇒ H ψ = − �
2

2mf

1

4a2B
ψ

(6.33)
= −ER

4
ψ =⇒ ψ is eigen-state!

Energy-eigen value:

E2 = −ER

4
.

Quantum numbers:

n = 2, l = 1, ml = 1 : ψ = ψ211(r) .

Solution 6.2.5
ψnlml

(r) = Rnl(r)Ylml
(ϑ, ϕ)

Radial contribution Rnl(r): real!

Ylml
(ϑ, ϕ) =

√
2l + 1

4π

(l −ml)!

(l +ml)!
Pml

l (cosϑ)eimlϕ

Pml

l (cosϑ): real!
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1. Current density of the electron:

j = (−e)
�

2mi
(ψ∗∇ψ − ψ∇ψ∗)

Spherical coordinates:

∇ = (
∂

∂r
,
1

r

∂

∂ϑ
,

1

r sinϑ

∂

∂ϕ
) .

Component-by-component:

jr = − e�

2mi
|Ylml

(ϑ, ϕ)|2 (R∗
nl

∂

∂r
Rnl −Rnl

∂

∂r
R∗
nl)

︸ ︷︷ ︸
=0, since Rnl ≡R∗

nl

= 0

jϑ = − e�

2mi
R2
nl(r)

2l + 1

4π

(l −ml)!

(l +ml)!

1

r

× (Pml ∗
l (cos ϑ)

∂

∂ϑ
Pml

l (cos ϑ)− Pml

l (cosϑ)
∂

∂ϑ
Pml ∗
l (cos ϑ))

︸ ︷︷ ︸
=0, since P

ml
l ≡P

ml ∗
l

= 0 .

That is illustratively clear, because for jr �= 0, e.g., charge would flow
apart or would concentrate itself in the nucleus.

jϕ = − e�

2mi
R2

nl(r)
2l + 1

4π

(l −ml)!

(l +ml)!
(Pml

l (cosϑ))2
1

r sinϑ

× (e−imlϕ
∂

∂ϕ
eimlϕ − eimlϕ

∂

∂ϕ
e−imlϕ)

︸ ︷︷ ︸
=2iml

= −e�

m
ml

1

r sinϑ
R2

nl(r)|Ylml
(ϑ, ϕ)|2

=⇒ current density

j(r) = −e�

m
ml

1

r sinϑ
R2

nl(r)|Ylml
(ϑ, ϕ)|2eϕ .

2. Magnetic moment
Electrodynamics: Current, which flows around the area F , creates a mag-
netic moment

dμz = F dIϕ .

With F = πr2 sin2 ϑ (Fig. A.4):

=⇒ dμz = −e�

m
ml

1

r sinϑ
|ψnlml

(r)|2πr2 sin2 ϑ df

= − e�

2m
ml|ψnlml

(r)|2 (2πr sinϑ)df︸ ︷︷ ︸
volume of the thread of current

.
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Figure A.4:

Summation over ‘all’ threads of current;
|ψnlml

|2: ϕ independent, normalized

=⇒ μ = μzez

μz = −μBml

μB: Bohr magneton.

Solution 6.2.6

Hψ100(r) = −ER ψ100(r)

Hψ211(r) = −ER

4
ψ211(r)

Hψ21−1(r) = −ER

4
ψ21−1(r)

L2ψ100(r) = 0 ; Lzψ100(r) = 0

L2ψ211(r) = 2�2ψ211(r) ; Lzψ211(r) = �ψ211(r)

L2ψ21−1(r) = 2�2ψ21−1(r) ; Lzψ21−1(r) = −�ψ21−1(r) .

Expectation values:

〈ψ|H |ψ〉 =
1

25
(9〈100|H |100〉+ 4〈211|H |211〉+ 12〈21− 1|H |21− 1〉)

= −ER

25

(
9 · 1 + 4 · 1

4
+ 12 · 1

4

)
= −13

25
ER

〈ψ|L2|ψ〉 =
1

25
(9 · 0 + 4 · 2�2 + 12 · 2�2) = 32

25
�
2

〈ψ|Lz|ψ〉 =
1

25
(9 · 0 + 4�− 12�) = − 8

25
� .

Solution 6.2.7
Starting point is the radial equation (6.35). For simplicity we drop, at first,

the indexes n, l in the function u(ρ). We multiply (6.35) by
[
ρk+1 u′(ρ)− 1

2
(k + 1) ρk u(ρ)

]
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and write:

ρk ≡
∞∫

0

dρ ρk u2(ρ)
(6.32)−→

(
Z

aB

)k+1

〈rk〉 .

Then it follows at first:

(1) + (2) + (3) = (k + 1) ρk− 1 − 1

2
(k + 1)l(l+ 1) ρk− 2 − 1

2
(k + 1) η2 ρk ,

(1) =

∞∫

0

dρ u′′(ρ)u′(ρ) ρk+1 ,

(2) = −1

2
(k + 1)

∞∫

0

dρ u′′(ρ)u(ρ) ρk ,

(3) =

∞∫

0

dρ u′(ρ)u(ρ)
[
2ρk − l(l + 1) ρk− 1 − η2 ρk+1

]
.

For the following partial integrations we exploit (6.28):

ρ → ∞ : u(ρ) → 0 ; u′(ρ) → 0 ,

ρ → 0 : u(ρ) ∼ ρl+1 ; u′(ρ) ∼ ρl,

(1) =

∞∫

0

dρ ρk+1 1

2

[
(u′(ρ))2

]′

= ρk+1 1

2
(u′(ρ))2

︸ ︷︷ ︸
=0, if 2l + k + 1 > 0

∣∣∣∣∣

∞

0

− 1

2
(k + 1)

∞∫

0

dρ ρk (u′(ρ))2 ,

(2) = −1

2
(k + 1)

∞∫

0

dρ
(
u(ρ) ρk

)
u′′(ρ)

= − 1

2
(k + 1)u(ρ)u′(ρ) ρk

︸ ︷︷ ︸
=0, if 2l+ k+1> 0

∣∣∣∣∣

∞

0

+
1

2
(k + 1)

∞∫

0

dρ u′(ρ)
(
k u (ρ) ρk− 1 + u′(ρ) ρk

)
.

This yields:

(1) + (2) =
1

2
k (k + 1)

∞∫

0

dρ ρk− 1 u′(ρ)u(ρ) .
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That can be combined with (3):

(1) + (2) + (3)

=

∞∫

0

dρ
1

2
(u2(ρ))′

[
2ρk +

{
1

2
k(k + 1)− l(l+ 1)

}
ρk− 1 − η2 ρk+1

]

=
1

2
u2(ρ)[. . .]

︸ ︷︷ ︸
=0, if 2l + k + 1 > 0

∣∣∣∣∣

∞

0

− 1

2

∞∫

0

dρ u2(ρ)
[
2k ρk− 1

+ (k − 1)

{
1

2
k(k + 1)− l(l+ 1)

}
ρk− 2 − η2(k + 1) ρk

]

=
1

2
(k + 1) η2 ρk − k ρk− 1 − 1

2
(k − 1)

{
1

2
k(k + 1)− l(l + 1)

}
ρk− 2 .

All in all we have found:

(k + 1)η2ρk − (2k + 1)ρk− 1

+

[
−1

4
k(k2 − 1) +

1

2
(k − 1) l (l + 1) +

1

2
(k + 1) l (l + 1)

]
ρk− 2 = 0 .

It follows eventually with η = 1/n:

k + 1

n2
ρk − (2k + 1) ρk− 1 +

k

4

[
(2l + 1)2 − k2

]
ρk− 2 = 0 .

We now multiply this equation with (aB/Z)
k+1

and introduce again the so far
suppressed indexes n, l of the expectation values:

k + 1

n2
〈rk〉nl − (2k + 1)

aB
Z

〈rk− 1〉nl + k

4

[
(2l+ 1)2 − k2

] (aB
Z

)2

〈rk− 2〉nl = 0 .

Solution 6.2.8

Ground state wave function

ψ100(r) = R10(r) · Y00(ϑ, ϕ)

=
2

a
3/2
O

exp(− r

aO
)

1√
4π

.

1. Radial position probability:

wnl(r)dr = r2dr

∫
dΩ |ψnlml

(r)|2

= r2dr |Rnl(r)|2 .
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Most probable value = maximum of w10(r)

w10(r) =
4

a3B
exp(− 2r

aB
)r2

=⇒ dw10

dr
=

4

a3B

(
2r − 2r2

aB

)
exp

(
− 2r

aB

)
!
= 0

=⇒ (r)max
10 = aO .

2. Expectation values in the ground state

〈rk〉10 =

∫
d3r rk|ψ100(r)|2 =

∞∫

0

dr r2+k|R10(r)|2

=

∞∫

0

dr rkw10(r) =
4

a3B

∞∫

0

dr r2+ke
− 2r

aB .

For abbreviation ρ = 2 r
aB

:

〈rk〉10 =
akB
2k+1

∞∫

0

dρ ρk+2e−ρ =
akB
2k+1

Γ(k + 3)︸ ︷︷ ︸
=(k+2)!

=⇒ 〈rk〉10 =
(k + 2)!

2k+1
akB , k = −2,−1, 0, 1, . . .

Especially:
k = 1 : 〈r〉10 = 3

2aB
k = 2 : 〈r2〉10 = 4!

8 a
2
B = 3a2B

=⇒ Δr10 = aB

√
3− 9

4
=

√
3

2
aB .

3.

W =

∞∫

aB

dr w10(r) =
4

a3B

∞∫

aB

dr r2e
− 2r

aB =
1

2

∞∫

2

dρ ρ2e−ρ

=
1

2
{−ρ2e−ρ|∞2 + (−2ρe−ρ)

∣∣∞
2

+ 2

∞∫

2

dρ e−ρ
}

=
1

2
· 10 e−2 ≈ 0.6767 .

4. Analogous to 1.

w̄(p)dp = p2dp

∫
dΩp |ψ̄100(p)|2 .
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Now:

ψ̄100(p) =
1

(2π�)3/2

∫
d3r e−

i
�
p·r ψ100(r)

=
1√
4π

2

(2π�aB)3/2

∞∫

0

dr r2e
− r

aB

2π∫

0

dϕ

+1∫

−1

d cosϑ e−
i
�
p r cosϑ

︸ ︷︷ ︸
= 1

− i
�

pr

(
e−

i
�

pr − e
i
�

pr
)

=
2√
4π

2π

(2π�aB)3/2
i�

p
(

∞∫

0

dr r e
−( 1

aB
+ ip

�
)r −

∞∫

0

dr r e
−( 1

aB
− ip

�
)r
)

=
1

π
√
2�

i

p a
3/2
B

( 1
1
aB

+ ip
�

∞∫

0

dr e
−( 1

aB
+ ip

�
)r

− 1
1
aB

− ip
�

∞∫

0

dr e
−( 1

aB
− ip

�
)r
)

(actually a complex integration!)

=
i

π
√
2�p a

3/2
B

(
1

( 1
aB

+ ip
�
)2

− 1

( 1
aB

− ip
�
)2
)

=
4

� aB

π
√
2� a

3/2
B

1

( 1
a2
B
+ p2

�2 )2

=⇒ ψ̄100(p) =
(2aB

�
)3/2

π(1 +
a2
Bp2

�2 )2
.

No angle-dependence:

w̄(p) = 4πp2|ψ̄100(p)|2 =
32

π
(
�

aB
)5

p2

(p2 + �2

a2
B
)4

.

Position of the maximum:

dw̄

dp

!
= 0 =

32

π
(
�

aB
)5
(p2 + �

2

a2
B
)42p− 4p2 · 2p(p2 + �

2

a2
B
)3

(p2 + �2

a2
B
)8

⇐⇒ (p2 +
�
2

a2B
) = 4p2

=⇒ pmax
10 =

1√
3

�

aB
≈ 0.5774

�

aB

is the most probable value of the magnitude of the momentum!
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Solution 6.2.9

1.

∫
d3r ψ∗

nlml
(r) p̂ ψnlml

(r) = q

∞∫

0

dr r3 R∗
nl(r)Rnl(r)

2π∫

0

dϕ Ilml
,

Ilml
≡

+1∫

−1

d cosϑ cosϑ|Ylml
(ϑ, ϕ)|2 (5.103)

=
(2l+ 1) (l −ml)!

4π (l +ml)!
Qlml

,

Qlml
=

+1∫

−1

d cosϑ cosϑ |Pml

l (cosϑ)|2 .

According to (5.95) and (5.96):

Pml

l (− cosϑ) = (−1)l+ml Pml

l (cosϑ)

=⇒ |Pml

l (cosϑ)|2 even function of cosϑ

=⇒ Qlml
= 0 .

2. At first, it surely must be
m′

l = ml ,

because p̂ does not depend on ϕ:

∫
d3r ψ∗

nl′ml
(r) p̂ ψnlml

(r) ∼ Q̂l′l

Q̂l′l =

+1∫

−1

d cosϑ cosϑPml

l′ (cosϑ)Pml

l (cosϑ) .

Because of (5.95),

P−ml

l (z) = (−1)ml
(l −ml)!

(l +ml)!
Pml

l (z),

we can assume ml ≥ 0. The matrix element vanishes for l = l′. We
therefore take w.l.o.g.:

l′ ≤ l − 1 .

But then it must also be

0 ≤ ml ≤ l− 1; .

So we can use the recursion formula:

z Pml

l (z) = αlml
Pml

l+1(z) + βlml
Pml

l− 1(z) .
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Because of the orthogonality of the Legendre polynomials (5.101) it follows
therewith

Q̂l′l �= 0 only for l′ = l + 1 and l′ = l − 1.

The matrix element of the operator of the dipole moment is therefore
unequal zero only for

m′
l = ml ,

l′ = l ± 1 .

It describes electric dipole transitions!

3.

〈ψ|p̂|ψ〉
!

�= 0, |ψ〉 eigen-state to n = 2.

Because of 1. |ψ〉 must then be a linear combination of several |2l ml〉:

|ψ〉 = 1√
2
(|200〉+ |210〉) .

This ansatz is an eigen-state only for the special case of the Coulomb
potential with its accidental degeneracy with respect to l. For other central
potentials this is not true!

〈ψ|p̂|ψ〉 =
1

2
(〈200|p̂|210〉+ 〈210|p̂|200〉) ,

|200〉 =̂
1

2
√
2π a3B

(
1− r

2aB

)
e−r/2aB ((6.61) and (5.108)) ,

|210〉 =̂
1

4
√
2π a5B

cosϑ r e−r/2aB ((6.62) and (5.109)) ,

〈200|p̂|210〉 = q

16π a4B
2π

∞∫

0

r2 dr

+1∫

−1

d cosϑ

(
1− r

2aB

)
r2 cos2 ϑ e−r/aB

=
q

12 a4B

∞∫

0

dr

(
r4 − r5

2aB

)
e−r/aB

=
q

12
aB

∞∫

0

dρ

(
ρ4 − 1

2
ρ5
)

e−ρ

=
q

12
aB

(
Γ(5)− 1

2
Γ(6)

)
=

1

12
q aB

(
4!− 1

2
5!

)
= −3q aB

=⇒ 〈ψ|p̂|ψ〉 = −3q aB .
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Solution 6.2.10

We perform the proof for the x-component:

px = μẋ = μ (ẋ1 − ẋ2)

=⇒ [x, px]− = [x1 − x2, μ(ẋ1 − ẋ2)]− = μ ([x1, ẋ1]− + [x2, ẋ2]−)

= μ

(
1

m1
[x1,m1ẋ1]− +

1

m2
[x2,m2ẋ2]−

)
.

In the bracket there appear the fundamental commutators of the x-components
of the position vectors r1 and r2 with the normal momenta p1,2 = m1,2 ṙ1,2:

[x, px]− = μ

(
1

m1
i �+

1

m2
i �

)
= i � .

Analogously, the proof for the other components.

In the case of the center-of-mass coordinates we have:

[X,Px]− =

[
1

M
(m1x1 +m2x2), M

1

M
(m1ẋ1 +m2ẋ2)

]

−

=
1

M
(m1 [x1,m1ẋ1]− +m2 [x2,m2ẋ2]−)

=
1

M
(m1 +m2) i � = i � .

Solution 6.2.11

1. Hamilton operator:

H = T + V =
p2

2m
− e2

4πε0r
.

It is to be calculated:

[H, r · p]− = [H, r]− · p+ r · [H, p]−

[H, r]− =

[
p2

2m
, r

]

−
=

1

2m

∑

i

(
pi [pi, r]− + [pi, r]− pi

)

=
1

2m

∑

i

(
pi [pi, xi]− ei + [pi, xi]− eipi

)

=
1

2m

∑

i

(
�

i
piei +

�

i
eipi

)

=
�

im
p

[H, p]− = [V (r), p]− = −�

i
∇V (r) .
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It holds therewith, still quite generally:

i

�
[H, r · p]− =

1

m
p2 − (r ·∇)V (r) .

Because of

− (r ·∇)V (r) = −r
∂

∂r
V (r) = −r

e2

4πε0r2
= V (r)

it finally follows for the hydrogen atom:

i

�
[H, r · p]− = 2T + V .

2. |ψ〉 is eigen-state of H :

H |ψ〉 = E|ψ〉 .
Together with the fact that H is Hermitian, this is exploited for the cal-
culation of the following expectation value:

〈ψ| [H, r · p]− |ψ〉 = 〈ψ|H r · p|ψ〉 − 〈ψ|r · pH |ψ〉
= E (〈ψ|r · p|ψ〉 − 〈ψ|r · p|ψ〉)
= 0 .

With 1. it follows then the ‘virial theorem’ :

2〈T 〉+ 〈V 〉 = 0 .

This can further be analyzed when one uses the result (6.43):

〈H〉 = 〈T 〉+ 〈V 〉 = −ER

n2
.

Subtraction of the last two equations yields:

〈T 〉 = ER

n2
; 〈V 〉 = −2

ER

n2
.

3. Spherical harmonic oscillator:

H =
p2

2m
+

1

2
mω2r2 .

As in 1. we have at first:

i

�
[H, r · p]− =

1

m
p2 − r

∂

∂r
V (r) =

1

m
p2 − 2V (r) = 2T − 2V .

Because of H |ψ〉 = E|ψ〉 we can use again:

〈ψ| [H, r · p]− |ψ〉 = 0 .

This means

〈T 〉 = 〈V 〉 .
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Section 6.3.5

Solution 6.3.1

1. Starting point is the Bessel differential equation (6.114):
[
d2

dz2
+

2

z

d

dz
− l(l+ 1)

z2
+ 1

]
R(z) = 0 , z = k r ,

Wave function: ψ(r) = R(r)Ylml
(ϑϕ),

Boundary conditions:

a) ψ(r) ≡ 0 for r > a,

b) V (r) ≡ 0 for r ≤ a

=⇒ k2 =
2m

�2
E ,

c) ψ(r) regular at the origin.

General solution (6.121):

Rl(z) = al jl(z) + bl nl(z) ,

bl = 0 because of c)

=⇒ ψlml
(r) = al jl (k r)Ylml

(ϑ, ϕ) .

2. Boundary condition a):
jl (k a) = 0 .

The zeros of the Bessel function are known. From these one takes for a
given l the ‘allowed’ values for k a, and therewith for the energy E!

l = 0

j0(z) =
sin z

z
.

No zero at z = 0:

lim
z→ 0

j0(z) = lim
z→ 0

cos z

1
= 1 (l’Hospital’s rule) ,

j0 (k0a)
!
= 0 =⇒ k0,μ = μπ

1

a
,

μ = 1, 2, 3, . . .

=⇒ E0,μ =
�
2π2

2ma2
μ2 .

3. Asymptotic solutions:

z �
√
l(l+ 1) � l ,

jl(z) ∼ 1

z
sin

(
z − l π

2

)
,

jl(k a)
!
= 0 ⇐⇒ kl,μ a = μπ +

l π

2

=⇒ El,μ =
�
2π2

2ma2

(
μ+

l

2

)2

.
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Solution 6.3.2

General condition equation (6.135):

k
(d/dz) jl(z)

jl(z)

∣∣∣∣∣
z= k a

!
= i κ

(d/dz)h
(+)
l (z)

h
(+)
l (z)

∣∣∣∣∣
z= iκa

,

j1(z) =
sin z

z2
− cos z

z
=

1

z2
(sin z − z cos z) ,

h
(+)
1 (z) = −eiz

z

(
1 +

i

z

)
,

d

dz
j1(z) =

1

z2

[
2 cos z + sin z

(
z − 2

z

)]

=⇒ k
(d/dz) j1(z)

j1(z)

∣∣∣∣∣
z= k a

=
1

a

2 k a cos k a+ sin k a (k2a2 − 2)

sin k a− k a cos k a
,

d

dz
h
(+)
1 (z) = −eiz

z

(
i− 2

z
− 2i

z2

)

=⇒ i κ
(d/dz)h

(+)
1 (z)

h
(+)
1 (z)

∣∣∣∣∣
z= i k a

= −1

a

(κ a+ 1)2 + 1

κ a+ 1
.

Conditional equation for l = 1:

−2 +
k2a2 sin k a

sin k a− k a cos k a

!
= −2− κ2a2

κ a+ 1

⇐⇒ k2

κ2
(κ a+ 1) sin k a = k a cos k a− sin k a

⇐⇒ k2

κ2
(κ a+ 1)

!
= k a cot k a− 1 .

This equation fixes with

k2 =
2m

�2
(E + V0) ; κ2 = −2m

�2
E

the ‘allowed’ energy values for l = 1!

Solution 6.3.3

1. As in (6.19) we find the radial equation:

[
d2

dr2
+

2m

�2

(
E − 1

2
mω2r2 − D

r2

)]
u(r) = 0 ,

D = c+
�
2

2m
l(l + 1) .
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Limiting cases:

a) r → 0: (
d2

dr2
− 2mD

�2r2

)
u(r) ≈ 0

=⇒ u(r) ∼ rx with x from:

x(x − 1) =
2mc

�2
+ l(l + 1) .

Since u(r) must be zero at the origin of coordinates, x > 0 has to be
required!

b) r → ∞: (
d2

dr2
− 4γ2 r2

)
u(r) ≈ 0 ; γ =

mω

2�
.

We take:

u(r) ∼ e−γr2

=⇒ u′′(r) ∼ d

dr

(
−2γ r e−γr2

)
=
(−2γ + 4γ2r2

)
e−γr2 −→

r→∞
4γ2r2 e−γr2 .

The ansatz is thus an approximate solution of the asymptotic radial
equation.

The two limiting cases make the following general ansatz appear to be
reasonable:

u(r) = rx e−γr2 g(r) .

Above, x and γ are uniquely given!

2. For the radial equation we need the first and the second derivative of u(r):

u′(r) =
(
x rx− 1 g(r) + rx g′(r) − 2γ rx+1 g(r)

)
e−γr2 ,

u′′(r) =
[
g(r)

{
x(x − 1) rx− 2 − 2γ x rx − 2γ(x+ 1) rx + 4γ2 rx+2

}

+ g′(r)
{
2x rx− 1 − 4γ rx+1

}
+ g′′(r) rx

]
e−γr2 .

This is inserted into the radial equation:

g′′(r) + 2g′(r)
(x
r
− 2γ r

)
+ g(r)

{
x(x− 1)

r2
− 2γ (2x+ 1) + 4γ2r2

+
2m

�2

(
E − D

r2

)
− m2ω2

�2
r2
}

= 0 .

This expression further simplifies because of

4γ2 =
m2ω2

�2
;

2m

�2
D = x (x − 1) .

It is left therewith:

g′′(r) + 2g′(r)
(x
r
− 2γ r

)
+ g(r)

[
2mE

�2
− 2γ (2x+ 1)

]
= 0 .
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3. Ansatz:
g(r) =

∑

μ

αμ r
μ .

Insertion into the differential equation for g:

∑

μ

αμ

[
(μ(μ− 1) + 2xμ) rμ−2 +

(
2m

�2
E − 2γ (2x+ 1)− 4γ μ

)
rμ
]
=0.

We change the indexing in the first term:

∑

μ

{
αμ+2 ((μ+ 2) (μ+ 1) + 2x (μ+ 2))

+αμ

(
2m

�2
E − 2γ (2x+ 1)− 4γ μ

)}
rμ = 0 .

This can be correct only if each summand by itself already vanishes:

αμ+2 =
2γ (2x+ 1) + 4γ μ− (2m/�2)E

(μ+ 2) (μ+ 1) + 2x (μ+ 2)
αμ .

We estimate for larger indexes μ:

αμ+2

αμ
−→

μ→∞
4γ

μ
.

For comparison:

e4γr
2

=

∞∑

ν =0

(4γ)ν

ν!
r2ν =

∞∑

ν =0

βν r
2ν .

αμ+2 and αμ in the above expression are the coefficients of rμ+2 and rμ.
This corresponds in the expansion of the exponential equation to a rise of
the summation index by 1:

βν +1

βν
=

4γ

ν + 1
−→
ν 
 1

4γ

ν
.

In the case of a not terminated series, g(r) for large r, when the high
powers dominate, would behave like exp (4γ r2). The function u(r) would
then no longer be normalizable as required in (6.22). We have to therefore
assume that the series terminates at a finite μ0:

αμ0 �= 0 ; αμ0 +1 = αμ0 +2 = . . . = 0 .

4. The truncation-condition yields the discrete energy spectrum:

Eμ0 =̂
�
2

2m
[2γ(2μ0 + 2x+ 1)] .
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It follows with the meaning of γ and x (x > 0):

Eμ0l = �ω

⎛

⎝μ0 + 1 +

√
2mc

�2
+

(
l +

1

2

)2
⎞

⎠ , μ0 = 0, 1, 2, 3, . . . .

For c → 0 we get the known eigen-functions of the three-dimensional har-
monic oscillator with the ground-state energy (3/2) �ω ((4.186), Vol. 6).

5. Ground state: μ0 = l = 0
In this case:

g0(r) ≡ α0 = const =⇒ u0(r) = α0 r
x e−γr2 .

Ground-state wave function:

ψ0(r) =
1

r
u0(r)Y00 (ϑ, ϕ)

=⇒ |ψ0(r)|2 =
|α0|2
4π

r2(x0−1) e−2γr2 .

Maximal density of the position probability:

d

dr
|ψ0(r)|2 !

= 0 =
|α0|2
4π

[
2(x− 1) r2x− 3

0 − 4γ r2x− 1
0

]
e−2γ r20

=⇒ r20 =
1

2

x0 − 1

γ
,

x0 = x (l = 0) =
1

2

(
1 +

√
1 +

8mc

�2

)

=⇒ r20 =
�

2mω

(√
1 +

8mc

�2
− 1

)
−→

c small

2c

�ω
.

Minimum of the potential:

d

dr
V (r) = −2

c

r3min

+mω2 rmin
!
= 0

=⇒ r2min =
1

ω

√
2c

m
.

The maximum of the density of position probability does not coincide with
the minimum of the potential!

Solution 6.3.4
We can apply in (6.135), because of k0a � l, for jl(z) the asymptotic form

(6.125):

d

dz
jl(z) ≈ − 1

z2
sin

(
z − l π

2

)
+

1

z
cos

(
z − l π

2

)

=⇒ d

dz
ln jl(z) ≈ −1

z
+ cot

(
z − l π

2

)
.
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The fitting condition then reads:

−1

a
+ k0 cot

(
k0 a− l π

2

)
= i κ

d

dz
ln h

(+)
l (z)

∣∣∣∣∣
z= i κ a

,

k20 =
2m

�2
(E + V0) ; κ2 = −2m

�2
E .

The right-hand side does not depend on V0. That must then hold for V0 → ∞
also for the left-hand side. Because of k0 → ∞, the cotangent must then take
care for the vanishing of the second summand in the above conditional equation:

k0 a− l π

2
≈
(
n+

1

2

)
π ; n ∈ N .

n � 1, in order that k0 a � l remains fulfilled.

=⇒ Enl =
�
2π2

2ma2

(
n+

l

2
+

1

2

)2

− V0 .

Solution 6.3.5
Cylindrical coordinates (Sect. 1.7.3, Vol. 1):

x = ρ cosϕ ,

y = ρ sinϕ ,

z = z .

Gradient ((1.388), Vol. 1):

∇ρ =
∂

∂ρ
; ∇ϕ =

1

ρ

∂

∂ϕ
; ∇z =

∂

∂z
.

Divergence:

diva =
1

ρ

∂

∂ρ
(ρ aρ) +

1

ρ

∂

∂ϕ
aϕ +

∂

∂z
az .

Laplace operator:

Δ ≡ 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2
.

1. Hamilton operator

H =
1

2m
(p− q̂A(r))

2

=
1

2m
p2 − q̂

2m
(p ·A(r) +A(r) · p) + q̂2

2m
A2(r) ,

divA(r) =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂

∂ϕ
Aϕ +

∂

∂z
Az = 0

=⇒ p ·A(r) = A(r) · p =
�

i
Aϕ(r)

1

ρ

∂

ϕ
=

�

2i
B

∂

∂ϕ
.
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Hamilton operator in position representation:

H = − �
2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

)
+ i �

q̂ B

2m

∂

∂ϕ
+

q̂2 B2

8m
ρ2 .

With k2 = (2m/�2)E the time-independent Schrödinger equation in cylin-
drical coordinates then reads:

[{
∂2

∂ρ2
+

1

ρ

∂

∂ρ
−
(
q̂ B

2�

)2

ρ2 + k2

}

+

{
1

ρ2
∂2

∂ϕ2
− i

q̂ B

�

∂

∂ϕ

}
+

∂2

∂z2

]
ψ(ρ, ϕ, z) = 0 .

2. The structure of the equation suggests a separation ansatz:

ψ(ρ, ϕ, z) = R(ρ) f(ϕ) g(z) .

Insertion into the Schrödinger equation and division by ψ:

1

R(ρ)

{
∂2

∂ρ2
+

1

ρ

∂

∂ρ
−
(
q̂ B

2�

)2

ρ2 + k2

}
R(ρ)

+
1

f(ϕ)

{
1

ρ2
∂2

∂ϕ2
− i

�
q̂ B

∂

∂ϕ

}
f(ϕ) +

1

g(z)

∂2

∂z2
g(z) = 0 .

Useful ansatz:

g(z) ∼ exp (i kz z) ; f(ϕ) ∼ exp (im∗ϕ) .

We write for abbreviation

k∗2 = k2 − k2z +
m∗ q̂ B

�
; F =

(
q̂ B

2�

)2

.

It then remains:
{

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− F ρ2 + k∗2 − m∗2

ρ2

}
R(ρ) = 0 .

The following substitution is still recommendable:

u(ρ) =
√
ρR(ρ)

=⇒ √
ρ

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
R(ρ) =

(
∂2

∂ρ2
+

1

4ρ2

)
u(ρ) .

This yields the following radial equation:

{
d2

dρ2
+ k∗2 − F ρ2 − m∗2 − 1/4

ρ2

}
u(ρ) = 0 .
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3. This differential equation is, according to its structure, identical to the
solution of Exercise 6.3.3 (1). We can therefore take the results derived
there, when we agree upon the following assignments:

2m

�2
E ⇐⇒ k∗2 ,

m2ω2

�2
⇐⇒ F ,

2m

�2
D =

2mc

�2
+ l(l+ 1) ⇐⇒ m∗2 − 1

4
.

The eigen-energies from part 4. of Exercise 6.3.3,

Eμ0l = �ω

⎛

⎝μ0 + 1 +

√
2mc

�2
+

(
l+

1

2

)2
⎞

⎠ ,

now turn into:

�
2

2m

(
k2 − k2z +m∗ q̂ B

�

)
=

�
2

m

q̂ B

2�

(
μ0 + 1 +

√
m∗2

)

=⇒ Eμ0,m∗ =
�
2k2

2m
=

�
2k2z
2m

+ �
q̂ B

2m
(μ0 + 1) ≡ Eμ0 ,

μ0 = 0, 1, 2, . . .

Solution 6.3.6

1. Cylindrical coordinates, see Exercise 6.3.5.
Schrödinger equation:

(
− �

2

2m
Δ+ V (ρ)− E

)
ψ(ρ, ϕ, z) = 0

=⇒
{

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− 2m

�2
(V (ρ)− E)

}
ψ(ρ, ϕ, z)

+
1

ρ2
∂2

∂ϕ2
ψ(ρ, ϕ, z) +

∂2

∂z2
ψ(ρ, ϕ, z) = 0 .

2. The following separation ansatz suggests itself:

ψ(ρ, ϕ, z) = R(ρ) f(ϕ) g(z) .

Insert into 1. and subsequently divide by ψ:

1

R(ρ)

{
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− 2m

�2
(V (ρ)− E)

}
R(ρ)

+
1

f(ϕ)

1

ρ2
∂2

∂ϕ2
f(ϕ) +

1

g(z)

∂2

∂z2
g(z) = 0 .



APPENDIX A. SOLUTIONS OF THE EXERCISES 439

The last summand only depends on z, the other two, however, do not.
The last term as well as the sum of the two first terms therefore have to
be constant by themselves. It follows from that:

Axial equation

∂2

∂z2
g(z) = −k2z g(z) =⇒ g(z) = eikzz .

This we insert into the above Schrödinger equation:

1

R(ρ)

{
ρ2

∂2

∂ρ2
+ ρ

∂

∂ρ
−
[
2m

�2
(V (ρ)−E) + k2

z

]
ρ2
}
R(ρ) +

1

f(ϕ)

∂2

∂ϕ2
f(ϕ) = 0.

The same argumentation as above now leads immediately to

the angle equation

∂2

∂ϕ2
f(ϕ) = −m∗2 f(ϕ) =⇒ f(ϕ) = eim

∗ϕ .

The uniqueness of the wave function still requires:

m∗ ∈ Z .

It remains therewith eventually as

the radial equation

{
d2

dρ2
+

1

ρ

d

dρ
−
[
2m

�2
(V (ρ)− E) + k2z +

m∗2

ρ2

]}
R(ρ) = 0 .

3. Ansatz:

R(ρ) = ρn u(ρ)

=⇒ R′(ρ) = n ρn− 1 u(ρ) + ρn u′(ρ) ,
R′′(ρ) = n(n− 1) ρn− 2 u(ρ) + 2n ρn− 1 u′(ρ) + ρn u′′(ρ) .

When we define

F (ρ) =

[
2m

�2
(V (ρ)− E) + k2z +

m∗2

ρ2

]
,

then it follows:

ρn
{
n(n− 1)

ρ2
+

2n

ρ

d

dρ
+

d2

dρ2
+

n

ρ2
+

1

ρ

d

dρ
− F (ρ)

}
u(ρ) = 0 .



440 APPENDIX A. SOLUTIONS OF THE EXERCISES

This is equivalent to:

{
d2

dρ2
+

2n+ 1

ρ

d

dρ
+

n2

ρ2
− F (ρ)

}
u(ρ) = 0 .

The choice n = −1/2 let the linear term disappear:

u(ρ) =
√
ρR(ρ) ,

{
d2

dρ2
−
[
2m

�2
(V (ρ)− E) + k2z +

m∗2 − 1/4

ρ2

]}
u(ρ) = 0 .

4a) ρ → 0 : In this limit it holds approximately:

(
d2

dρ2
− m∗2 − 1/4

ρ2

)
u(ρ) = 0 .

General solution:

u(ρ) = Aρν+1 +B ρ−ν ,

u(0) = 0 =⇒ B = 0 ,

(ν + 1) ν
!
= m∗2 − 1

4
⇐⇒

(
ν +

1

2

)2

= m∗2

=⇒ u(ρ) ∼ ρ|m
∗|+1/2 for ρ → 0.

4b) ρ → ∞ :

[
d2

dρ2
+

(
2m

�2
E − k2z

)]
u(ρ) = 0

=⇒ u(ρ) ∼ e−γρ ; γ =

√
k2z −

2m

�2
E ,

E < 0, bound state!

Solution 6.3.7
The problem here a special case of the more general problem discussed in

the preceding exercise. We can therefore adopt:

ψ(r) = R(ρ) eim
∗ϕ eikz z .

For u(ρ) =
√
ρR(ρ) the following differential equation is to be solved:

[
d2

dρ2
−
(
γ2 − ε

ρ
+

m∗2 − 1/4

ρ2

)]
u(ρ) = 0 ,

γ2 = k2z −
2mf

�2
E ; ε =

2mf

�2

Z e2

4π ε0
.
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Part 4. from Exercise 6.3.6 leads to the following solution ansatz:

u(ρ) = ρ|m
∗|+1/2 e−γρ P (ρ) ,

P (ρ) =

?∑

μ=0

aμ ρ
μ ,

=⇒ u′(ρ) = e−γρ

[(
|m∗|+ 1

2

)
ρ|m

∗| − 1/2 P (ρ)

−γρ|m
∗|+1/2 P (ρ) + ρ|m

∗|+1/2 P ′(ρ)
]

=⇒ u′′(ρ) = ρ|m
∗|+1/2 e−γρ

[
P ′′(ρ) +

(
2|m∗|+ 1

ρ
− 2γ

)
P ′(ρ)

+

(
m∗2 − 1/4

ρ2
− 2γ

|m∗|+ 1/2

ρ
+ γ2

)
P (ρ)

]
.

Therewith the radial equation becomes a differential equation for P (ρ):
{

d2

dρ2
+

(
2|m∗|+ 1

ρ
− 2γ

)
d

dρ
+

1

ρ

[
ε− 2γ

(
|m∗|+ 1

2

)]}
P (ρ) = 0 .

It follows with the series-ansatz for P (ρ):

∑?
μ=0

[
αμ+1 (μ+ 1) (μ+ 2|m∗|+ 1) + αμ

(
ε− 2γ

(|m∗|+ 1
2

)− 2γμ
)]

ρμ−1 = 0.

Each summand itself must already be zero. That leads to the recursion formula:

αμ+1 =
2γ (|m∗|+ 1/2 + μ)− ε

(μ+ 1) (μ+ 2|m∗|+ 1)
αμ .

For μ � 1, |m∗| it holds approximately:

αμ+1

αμ
≈ 2γ

μ
.

With the same reasoning as in Sect. 6.2.1 we conclude that in the case that the
series

P (ρ) ∼ e2γρ

does not terminate, the divergence of u(ρ) for ρ → ∞ would be the consequence.
This problem can only be solved by the assumption that the series stops at a
finite μ0, for which it must be:

μ0 =
ε

2γ
−
(
|m∗|+ 1

2

)
.

After insertion of the definitions of γ and ε we obtain the energy spectrum:

En = − Z2ER

(n+ 1/2)
2 +

�
2 k2z
2mf

.
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ER is the Rydberg energy defined in (6.33), and n is the quantum number

n = μ0 + |m∗| = 0, 1, 2, . . . .

We have then found for the eigen-functions:

ψnm∗(r) = e−γρ

⎛

⎝
n− |m∗|∑

μ=0

αμ ρ
μ+ |m∗|

⎞

⎠ eim
∗ϕ eikz z .

The coefficients αμ result from the above recursion formula and the normaliza-
tion condition for ψnm∗(r).

Solution 6.3.8
Ansatz:

ψ(r) = R(r)

(
f↑(ϑ, ϕ)

(
1
0

)
+ f↓ (ϑ, ϕ)

(
0
1

))
.

R(r) is assumed to be known.

1. ψ(r) eigen-function of Jz = Lz + Sz:
Jz is diagonal in the spin space:

Jz ≡
(
Lz +

�

2 0
0 Lz − �

2

)
; Lz =

�

i

∂

∂ϕ
.

Requirement: Jz ψ
!
= �mj ψ:

⎛

⎝

(
�

i
∂
∂ϕ + �

2

)
f↑ (ϑ, ϕ)(

�

i
∂
∂ϕ − �

2

)
f↓ (ϑ, ϕ)

⎞

⎠ !
= �mj

(
f↑ (ϑ, ϕ)
f↓ (ϑ, ϕ)

)

f↑ (ϑ, ϕ) ∼ exp

[
i

(
mj − 1

2

)
ϕ

]
,

f↓ (ϑ, ϕ) ∼ exp

[
i

(
mj +

1

2

)
ϕ

]
.

Because of the uniqueness of the wave function, mj must be half-integral.
The triangle inequality (5.278) allows only for

j = l ± 1

2
.

mj is therefore automatically half-integral.

2. ψ(r) eigen-function of L2 : This means together with the result 1.:

f↑ (ϑ, ϕ) = a↑ Yl,mj−1/2 (ϑ, ϕ) ,

f↓ (ϑ, ϕ) = a↓ Yl,mj+1/2 (ϑ, ϕ) .

It is possible that the coefficients a↑↓ still depend on the quantum numbers
l, j,mj .
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3. ψ(r) eigen-function of J2:

J2 = (L+ S)2 = L2 + S2 + 2L · S .

In the spin space:

J2 ≡
(
L2 + S2 + �Lz �L−

�L+ L2 + S2 − �Lz

)
.

It holds according to (5.64):

L±|l,m〉 = �

√
l(l+ 1)−m(m± 1) |l,m± 1〉

=⇒ L− Yl,mj+1/2 (ϑ, ϕ) = �

√(
l +

1

2

)2

−m2
j Yl,mj−1/2 (ϑ, ϕ) ,

L+ Yl,mj−1/2 (ϑ, ϕ) = �

√(
l +

1

2

)2

−m2
j Yl,mj+1/2 (ϑ, ϕ) .

Eigen-value equation for J2:

J2

(
f↑
f↓

)
=

(
(L2 + S2 + �Lz) f↑ + �L− f↓
�L+ f↑ + (L2 + S2 − �Lz) f↓

)
= �

2j(j + 1)

(
f↑
f↓

)
.

That yields for the coefficients the following conditional equations:

a↑

(
l(l + 1) +

3

4
+

(
mj − 1

2

)
− j(j + 1)

)
+ a↓

√(
l +

1

2

)2

−m2
j = 0

a↑

√(
l +

1

2

)2

−m2
j + a↓

(
l(l+ 1) +

3

4
+

(
mj +

1

2

)
− j(j+1)

)
= 0.

Both equations lead to identical results:

a↑ = −
√(

l + 1
2

)2 −m2
j

(l + 1
2 )

2 +mj − j(j + 1)
a↓

= − (l + 1
2 )

2 −mj − j(j + 1)
√(

l + 1
2

)2 −m2
j

a↓ .

Together with the normalization condition this determines the coefficients
a↑ and a↓.
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Section 7.1.3

Solution 7.1.1

1. See Exercise 4.4.11 (Vol. 6):
For q > 0 the eigen-functions ϕn(q) are identical to those of the harmonic
oscillator. For q ≤ 0 it must necessarily be ϕn(q) ≡ 0. From continuity
reasons only the oscillator-eigen functions with odd indexes come into
consideration for q > 0. The exact ground-state energy thus is that for
n = 1:

E0 =
3

2
�ω .

2. The ansatz is exact for q ≤ 0 and makes for continuity at q = 0. Further-
more, the exponential function guarantees normalizability (α > 0).

Energy functional:

〈H〉ϕ =
〈ϕ|H |ϕ〉
〈ϕ|ϕ〉 .

Position representation:

〈ϕ|H |ϕ〉 =

+∞∫

−∞
dq 〈ϕ| q〉〈q|H |ϕ〉

=

∞∫

0

dq ϕ∗(q)
(
− �

2

2m

d2

dq2
+

1

2
mω2q2

)
ϕ(q) ,

d2

dq2
q e−αq =

d

dq
(1− α q) e−αq =

(−2α+ α2q
)
e−αq ,

〈H〉ϕ =

∞∫
0

dq e−2αq
[
(�2/2m)

(
2α q − α2q2

)
+ (1/2)mω2q4

]

∞∫
0

dq q2 e−2αq

=
(�2/2m)

(
2α

(
1!/(2α)2

)− α2
(
2!/(2α)3

))
+ 1

2mω2
(
4!/(2α)5

)

(2!/(2α)3)

=⇒ 〈H〉ϕ =
�
2

2m
α2 +

3

2
mω2 1

α2
.

Extremal condition:

0
!
=

∂

∂α
〈H〉ϕ =

�
2

m
α− 3mω2 1

α3

=⇒ (α∗)4 = 3
m2ω2

�2
.
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Approximate ground-state energy:

〈H 〉ϕ∗ =
�
2

2m

√
3
mω

�
+

3

2
mω2 �√

3mω

=
√
3 �ω ≈ 1.732�ω > E0 = 1.5 �ω .

As approximation surely usable!

3. Energy functional:

〈H〉ϕ =
〈ϕ|H |ϕ〉
〈ϕ|ϕ〉 ,

〈ϕ|H |ϕ〉 = |c|2
∞∫

0

dq q e−αq2
(
− �

2

2m

d2

dq2
+

1

2
mω2q2

)
q e−αq2 ,

d2

dq2
q e−αq2 =

d

dq

(
1− 2α q2

)
e−αq2 =

(−6αq + 4α2q3
)
e−αq2

=⇒ 〈ϕ|H |ϕ〉 = |c|2
∞∫

0

dq e−2αq2
[
�
2

2m
(6α q2 − 4α2q4) +

1

2
mω2q4

]

= |c|2
[
�
2

2m

(
3α

(2α)3/2
Γ

(
3

2

)
− 2α2

(2α)5/2
Γ

(
5

2

))

+
1

2
mω2 1/2

(2α)5/2
Γ

(
5

2

)]

= |c|2 (1/4)
√
π

(2α)3/2

[
�
2

2m
(6α− 3α) +

3

8
mω2 1

α

]
,

〈ϕ|ϕ〉 = |c|2
∞∫

0

dq q2 e−2αq2 = |c|2 (1/4)
√
π

(2α)3/2
.

It follows therewith for the energy functional:

〈H〉ϕ =
3�2

2m
α+

3mω2

8α
.

Extremal condition:

0
!
=

∂

∂α
〈H〉ϕ =

3�2

2m
− 3mω2

8α2
=⇒ α∗ =

mω

2�
.

This yields with

〈H〉ϕ∗ =
3

2
�ω

the exact ground-state energy. That is a result of the fact that the vari-
ational ansatz has the same structure as the exact oscillator function!
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Solution 7.1.2

〈ϕ|H |ϕ〉 =

+∞∫

−∞
dq ϕ∗(q)

(
− �

2

2m

d2

dq2
+

1

2
mω2q2

)
ϕ(q) ,

d2

dq2
ϕ(q) =

d

dq

−2q

(α2 + q2)2
=

−2

(α2 + q2)2
+

8q2

(α2 + q2)3
.

It is therewith to calculate:

〈ϕ|H |ϕ〉 =
�
2

m

+∞∫

−∞

dq

(α2 + q2)3
− 4�2

m

+∞∫

−∞

dq
q2

(α2 + q2)4
+

1

2
mω2

+∞∫

−∞

dq
q2

(α2 + q2)2

= 2
�
2

m

3π

16α5
− 8�2

m

π

32α5
+mω2 π

4α
,

〈ϕ|H |ϕ〉 =
�
2π

8mα5
+

πmω2

4α
.

It is further to determine:

〈ϕ|ϕ〉 =
+∞∫

−∞
dq

1

(α2 + q2)2
=

π

2α3
.

The energy functional then reads:

〈H〉ϕ =
�
2

4mα2
+

1

2
mω2α2 .

Extremal condition:

0
!
=

∂

∂α
〈H〉ϕ = − �

2

2mα3
+mω2α =⇒ (α∗)4 =

�
2

2m2ω2
.

That yields:

〈H〉ϕ∗ =

√
2

2
�ω > E0 =

1

2
�ω .

Solution 7.1.3

1.

F (q) = f − 2γ q = − d

dq
V (q) � V (q) = −fq + γq2 .

Hamilton operator:

H =
p2

2m
+

1

2
mω2q2 − fq + γq2 =

p2

2m
+

1

2
mω̂2q2 − fq

with
1

2
mω2 + γ

!
=

1

2
mω̂2

� ω̂2 = ω2 +
2γ

m
.
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Energy functional:

〈H〉α =

+∞∫
−∞

dqe−1/2αq2
(
− �

2

2m
d2

dq2 + 1
2mω̂2q2 − fq

)
e−1/2αq2

+∞∫
−∞

dqe−αq2

.

The evaluation succeeds with:

d2

dq2
e−1/2αq2 =

d

dq

(
−αq e−1/2αq2

)
= (−α+ α2q2)e−1/2αq2

+∞∫

−∞
dq e−αq2 =

√
π

α

+∞∫

−∞
dq qe−αq2

︸ ︷︷ ︸
odd

= 0

+∞∫

−∞
dq q2e−αq2 = − d

dα

√
π

α
=

1

2π

(π
α

) 3
2

.

Energy functional:

〈H〉α =

√
α

π

(
�
2α

2m

√
π

α
+

(
−�

2α2

2m
+

1

2
mω̂2

)
1

2π

(π
α

) 3
2 − f · 0

)

=
�
2α

2m
+

(
−�

2α2

2m
+

1

2
mω̂2

)
1

2π

π

α

=
�
2α

4m
+

mω̂2

4α
.

Variational condition:

d

dα
〈H〉α

∣∣∣∣
α=α∗

!
= 0 =

�
2

4m
− mω̂2

4α�2
� α∗ =

mω̂

�
.

That yields the energy boundary:

E0 ≤ 〈H〉α∗ =
�ω̂

2

2. Hamilton operator:

H =
p2

2m
+

1

2
mω̂2q2 − fq

=
p2

2m
+

1

2
mω̂2

(
q2 − 2f

mω̂2
q

)

=
p2

2m
+

1

2
mω̂2

(
q − f

mω̂2

)2

− f2

2mω̂2
.
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Substitution:

q̂ = q − f

mω̂2
� p̂ =

�

i

d

dq̂
=

�

i

d

dq
= p .

This means

H =

(
p̂2

2m
+

1

2
mω̂2q̂2

)
− f2

2mω̂2
.

In the bracket there appears the Hamilton operator of the harmonic
(m, ω̂)-oscillator, whose eigen-values are known. The second term is a
constant. It holds therefore for the ground-state energy:

E0 =
1

2
�ω̂ − f2

2mω̂2
< 〈H〉α∗ .

Solution 7.1.4

1. Variational principle:

E0 ≤ 〈ψα |H |ψα〉 .

Hamilton operator:

H =
p2

2m
− e2

4πε0r
.

• Kinetic energy:

〈ψα

∣∣∣∣
p2

2m

∣∣∣∣ψα〉 =
1

2m
〈pψα|pψα〉

=
(α
π

) 3
2 �

2

2m

∫
d3r

∣∣∣∇e−
α
2 r2

∣∣∣
2

=
(α
π

) 3
2 �

2

2m

∫
d3r

∣∣∣−αre−
α
2 r2

∣∣∣
2

= 4πα2
(α
π

) 3
2 �

2

2m

∫ ∞

0

dr r4e−αr2

= 4πα2
(α
π

) 3
2 �

2

2m

d2

dα2

∫ ∞

0

dr e−αr2

︸ ︷︷ ︸
1
2

√
π
α

= 4πα2
(α
π

) 3
2 �

2

2m

3

8

√
π

1

α
5
2

=
3�2

4m
α .
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• Potential energy:

〈ψα

∣∣∣∣
−e2

4πε0r

∣∣∣∣ψα〉 =
−e2

4πε0

(α
π

) 3
2

∫
d3r

1

r
e−αr2

=
−e2

ε0

(α
π

) 3
2

∫ ∞

0

dr re−αr2

=
e2

ε0

(α
π

) 3
2 1

2α

∫ ∞

0

dr
d

dr
e−αr2

= − e2

2πε0

√
α

π
.

• Energy functional

E(α) ≡ 〈ψα |H |ψα〉 = 3�2

4m
α− e2

2πε0

√
α

π
.

• Extremal condition:

dE(α)

dα

!
= 0 =

3�2

4m
− e2

4πε0

√
1

π

1√
α∗

� α∗ =
1

π

(
me2

3π�2ε0

)2

=
1

π

(
4

3aB

)2

aB =
4πε0�

2

me2
Bohr radius .

• Upper limit of the ground-state energy:

E(α∗) =
3�2

4m

1

π

(
4

3aB

)2

− e2

2πε0

1√
π

1√
π

(
4

3aB

)

= −4

3

�
2

πma2B

= − 8

3π
ER ≈ −0.849ER

ER =
�
2

2ma2B
Rydberg energy .

The ground-state energy amounts to E0 = −ER. E(α∗) is therewith
an upper bound of the ground-state energy, and differs by about 15%
from the exact value.

2. • Energy functional

E(β) =
〈ψβ |H |ψβ〉
〈ψβ | ψβ〉 =

∫
d3r e−βrHe−βr

∫
d3r e−2βr

.
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• Normalization:
∫

d3r e−2βr = 4π

∫ ∞

0

dr r2e−2βr

=
1

(2β)3
4π

∫ ∞

0

dy y2e−y

︸ ︷︷ ︸
Γ(3)=2!

=
π

β3

� 〈ψβ | ψβ〉 = |γ|2 π

β3
.

• Kinetic energy

〈ψβ

∣∣∣∣
p2

2m

∣∣∣∣ψβ〉 = |γ|2 �
2

2m

∫
d3r

∣∣∇e−βr
∣∣2

= |γ|2β2 �
2

2m
4π

∫ ∞

0

dr r2e−2βr

= |γ|2β2 �
2

2m
4π

1

4β3

= |γ|2 �
2

2m
π
1

β
.

• Potential energy

〈ψβ

∣∣∣∣
−e2

4πε0r

∣∣∣∣ψβ〉 = |γ|2 −e2

4πε0

∫
d3r

1

r
e−βr

= |γ|2−e2

ε0

∫ ∞

0

dr r e−2βr

= |γ|2−e2

ε0

1

4β2

∫ ∞

0

dy y e−y

︸ ︷︷ ︸
Γ(2)=1!=1

= |γ|2−e2

ε0

1

4β2
.

• Energy functional

E(β) =
β3

π

(
�
2

2m
π
1

β
− e2

ε0

1

4β2

)
=

�
2

2m
β2 − e2

4πε0
β .

• Extremal condition

dE(β)

dβ

!
= 0 =

�
2

m
β∗ − e2

4πε0

� β∗ =
me2

4πε0�2
=

1

aB
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� E(β∗) =
�
2

2ma2B
− e2

4πε0aB
= ER − �

2

ma2B
= ER − 2ER

� E(β∗) = −ER = E0 .

The energy functional thus corresponds to the exact ground-state
energy. Consequently, the exact ground state wave function belongs
in this case to the set of test functions which are admitted to the
variation.

Solution 7.1.5

1.
rp : position operator of the proton,
rn : position operator of the neutron.

Schrödinger equation:

{
− �

2

2mn
Δn − �

2

2mp
Δp + V (|rn − rp|)

}
ψ(rn, rp) = E ψ(rn, rp) .

Relative coordinate:
r = rn − rp .

Center-of-mass coordinate:

R =
1

M
(mn rn +mp rp) ; M = mn +mp .

Exactly the same line of thought as in Sect. 6.2.5 leads then to the new
Schrödinger equation:

{
− �

2

2M
ΔR − �

2

2μ
Δr + V (r)

}
ψ(r,R) = E ψ(r,R) ,

μ =
mnmp

mn +mp
: reduced mass.

Separation ansatz:
ψ(r,R) = χ(R)ϕ(r) .

Inserting and multiplying from the left by ψ−1:

− 1

χ(R)

�
2

2M
ΔR χ(R) =

1

ϕ(r)

�
2

2μ
Δr ϕ(r) − V (r) + E .

The left-hand side is only dependent on R, the right-hand side only on r,
therefore the usual conclusion:

− �
2

2M
ΔR χ(R) = λχ(r) ,

(
− �

2

2μ
Δr + V (r)

)
ϕ(r) = (E − λ)ϕ(r) .



452 APPENDIX A. SOLUTIONS OF THE EXERCISES

2. Free movement of the center-of-mass:

χ(R) = eiK·R

=⇒ λ =
�
2K2

2M
.

It remains the equivalent one-body problem:
(
− �

2

2μ
Δr + V (r)

)
ϕ(r) = ε ϕ(r) ,

ε = E − �
2K2

2M
.

That is obviously a central-force problem. The general statements of
Sect. 6.1 can directly be adopted, for instance (6.16):

ϕ(r) = R(r)Ylml
(ϑ, ϕ) .

3. The ansatz corresponds to the ground-state wave function of the hydrogen
atom (6.60), and offers itself, because for 1/a → 0 the Yukawa potential
turns into the Coulomb potential. Because of Y00(ϑ, ϕ) = 1/

√
4π the

ansatz is spherically symmetric.

We find with (6.17) and L2ϕ(r) = 0:

〈ϕ|H |ϕ〉 =

∫
d3r ϕ∗(r)H ϕ(r)

= 4π|c|2
∞∫

0

dr r2 e−α(r/a)

[
− �

2

2μ

(
d2

dr2
+

2

r

d

dr

)]
e−α(r/a)

−4π|c|2 V0 a

∞∫

0

dr r e−(1+ 2α)(r/a)

= 4π|c|2
⎧
⎨

⎩− �
2

2μ

α2

a2

∞∫

0

dr r2 e−2α(r/a)

+
�
2

2μ

2α

a

∞∫

0

dr r e−2α(r/a) − V0 a

∞∫

0

dr r e−(1+ 2α)(r/a)

⎫
⎬

⎭ ,

∞∫

0

dxxne−γx = n! γ−n− 1 ,

〈ϕ|H |ϕ〉 = 4π|c|2
{
− �

2

2μ

α2

a2
2!

( a

2α

)3

+
�
2

2μ

2α

a

( a

2α

)2

− V0 a

(
a

1 + 2α

)2
}

= 4π|c|2
{
�
2

2μ

a

4α
− V0 a

3

(1 + 2α)2

}
.



APPENDIX A. SOLUTIONS OF THE EXERCISES 453

It still lacks the normalization integral:

〈ϕ|ϕ〉 = 4π|c|2
∞∫

0

dr r2 e−2α(r/a) = 4π|c|2 2!
( a

2α

)3

.

Energy functional:

〈H〉ϕ =
〈ϕ|H |ϕ〉
〈ϕ|ϕ〉 =

�
2

2μ

α2

a2
− V0

4α3

(1 + 2α)2
.

4. Extremal condition:

∂

∂α
〈H〉ϕ =

�
2

μ

α

a2
− 12V0

α2

(1 + 2α)2
+ V0

16α3

(1 + 2α)3

=
�
2

μa2
α− 4V0

α2(3 + 2α)

(1 + 2α)3
!
= 0 .

This is equivalent to:

0 = 1− 2q
α(3 + 2α)

(1 + 2α)3
; q =

2μV0 a
2

�2
.

This equation determines the optimal α.

5. Binding energy: EB ≤ 〈H〉ϕ:

〈H〉ϕ =
V0

q
α2 − 4V0

α3

(1 + 2α)2

≈
[
20.28 · (0.85)2 − 200

(0.85)3

(1 + 1.7)2

]
MeV ≈ −2.19MeV .

Experiment:
EB ≈ −2.23MeV .

6. It appears reasonable to define as radius just half of the average distance
of the two nucleons:

R =
1

2

〈ϕ|r|ϕ〉
〈ϕ|ϕ〉 .

〈ϕ|ϕ〉 has been calculated in 3.:

R =
1

2

1

2! (a/2α)
3

∞∫

0

dr r3 e−2α r
a =

1

4 (a/2α)
3 3!

( a

2α

)4

=⇒ R =
3a

4α
= 0.75

1.4

0.85
· 10−13 cm ,

R ≈ 1.235 · 10−13 cm .
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Solution 7.1.6

1. The exact wave function must vanish for q < 0. This, as well as the
continuity at q = 0, is guaranteed by the ansatz. For each finite energy
E the particle enters for q → ∞ a classically forbidden region. The wave
function must therefore decrease exponentially for large q. In this sense
the ansatz appears to be reasonable!

d2

dq2
q e−αq = (−2α+ α2q) e−αq (see part 2. in solution 7.1.1) ,

〈H〉ϕ =

∞∫
0

dq e−2αq
[
(�2/2m) (2αq − α2q2) + γ q3

]

∞∫
0

dq e−2αq q2
,

∞∫

0

dxxn e−yx =
n!

yn+1
,

〈H〉ϕ =
(�2/2m)

(
2α

(
1/(2α)2

)− α2
(
2!/(2α)3

))
+γ

(
3!/(2α)4

)

(2!/(2α)3)
,

〈H〉ϕ =
�
2

2m
α2 +

3γ

2α
.

2. Extremal condition:

∂

∂α
〈H〉ϕ =

�
2

m
α− 3γ

2α2

!
= 0

=⇒ α∗ =

(
3γm

2�2

)1/3

.

Ground-state energy:

〈H〉ϕ∗ =
�
2

2m

(
3γ m

2�2

)2/3

+
3

2
γ

(
2�2

3γ m

)1/3

=
3

4

(
2γ2

�
2

3m

)1/3

+
3

2

(
2γ2

�
2

3m

)1/3

=
9

4

(
2γ2

�
2

3m

)1/3

≥ E0 .

Solution 7.1.7
|ψ(q)〉 eigen-state of H :

E(α) = 〈H〉ψ(αq) =
〈ψ(αq)|H |ψ(αq)〉
〈ψ(αq)|ψ(αq)〉
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Normalization:

〈ψ(αq)|ψ(αq)〉 =

∫
q. ψ

∗(αq)ψ( αq︸︷︷︸
x

)

=
1

α

∫
x. ψ

∗(x)ψ(x)
︸ ︷︷ ︸

=1

=
1

α

Numerator:

〈ψ(αq)|H |ψ(αq)〉 =

∫
dq ψ∗(αq)

(
− �

2

2m

d2

dq2

)
ψ(αq)

+

∫
dq V (q)|ψ(αq)|2

=
1

α
α2

∫
dxψ∗(x)

(
− �

2

2m

d2

dx2

)
ψ(x)

+
1

α

∫
dxV (

x

α
)|ψ(x)|2

= α〈T 〉+ 1

α

1

αn

∫
dxV (x)|ψ(x)|2 : homogeneity

= α〈T 〉+ 1

αn+1
〈V 〉 .

Energy functional:

E(α) = α2〈T 〉+ 1

αn
〈V 〉 .

Extremal principle: Since |ψ(q)〉 is eigen state of H , E(α) is extremal for α = 1!

−→ 0 =
d

dα
E(α)

∣∣
α=1

= (2α〈T 〉 − n

αn+1
〈V 〉)α=1

= 2〈T 〉 − n · 〈V 〉
−→ 2〈T 〉 = n · 〈V 〉

Examples:

1. Harmonic oscillator

V (q) =
1

2
mω2q2 −→ 〈T 〉 = 〈V 〉

2. Particle in the Coulomb field (hydrogen atom)

V (q) ∼ 1

q
−→ 2〈T 〉 = −〈V 〉 .
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Section 7.2.6

Solution 7.2.1

1. We calculate at first the electrostatic potential of a homogeneously charged
sphere. That is a standard problem of Electrostatics, which can be solved
by means of the Gauss theorem ((1.58), Vol. 3).

charge: Q = +e ,

charge density:
Q

(4π/3)R3
Θ(R− r) ,

Maxwell equation: divD = ε0 div E = ρ ,

symmetry: E = E(r) · er .

r ≤ R

∫

v

d3r div E =

∫

S(v)

df · E =
1

ε0

∫

v

d3r ρ ,

v = volume of a sphere of the radius r

=⇒ 4π r2 E(r) =
4π

ε0
Q

3

4πR3

r∫

0

dr′ r′2 =
1

ε0
Q

( r

R

)3

,

=⇒ E(r) =
1

4πε0
Q

r

R3

r > R

4π r2 E(r) =
1

ε0
Q

=⇒ E(r) =
1

4π ε0
Q

1

r2
.

The sphere thus creates the following electrostatic potential (ϕ(r →
∞)= 0):

ϕ(r) =

{
− 1

8π ε0
Q r2

R3 + a for r ≤ R,

+ 1
4π ε0

Q 1
r for r > R.

Continuity at r = R:

a =
3

2

1

4π ε0

Q

R
.

Potential energy of the electron in the nuclear field:

V (r) = −e ϕ(r) =

{
− e2

4π ε0R

(
3
2 − 1

2
r2

R2

)
for r ≤ R,

− e2

4π ε0
1
r for r > R.
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Hamilton operator:

H = H0 +H1 ,

H0 =
p2

2mf
− e2

4π ε0r
,

H1 =

{
− e2

4π ε0R

(
3
2 − R

r − r2

2R2

)
for r ≤ R,

0 for r > R.

2. Assertion:

In =

x0∫

0

dx e−x xn = n!

(
1− e−x0

n∑

μ=0

xμ
0

μ!

)
.

Proof by full induction:

I0 =

x0∫

0

dx e−x = −e−x
∣∣x0

0
=
(
1− e−x0

)
,

I1 =

x0∫

0

dxx e−x = −x e−x
∣∣x0

0
+

x0∫

0

dx e−x =
(
1− e−x0 − x0 e

−x0
)
.

Conclusion from n to n+ 1:

In+1 =

x0∫

0

dxxn+1 e−x = −xn+1 e−x
∣∣x0

0
+ (n+ 1)

x0∫

0

dxxn e−x0

= −xn+1
0 e−x0 + (n+ 1) In

= − (n+ 1)!

(n+ 1)!
xn+1
0 e−x0 + (n+ 1)!

(
1− e−x0

n∑

μ=0

xμ
0

μ!

)

= (n+ 1)!

(
1− e−x0

n+1∑

μ=0

xμ
0

μ!

)

3. Unperturbed wave function:

ψ100(r) = R10(r)Y00(ϑ, ϕ)
(6.60)
=

1√
πa3B

exp

(
− r

aB

)
.

Energy correction:

E
(1)
100 =

∫
d3r ψ∗

100(r)H1 ψ100(r)

= − e2

π ε0Ra3B

R∫

0

dr e−(2r/aB)

(
3

2
r2 − r R− r4

2R2

)
.
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Substitution:

x =
2r

aB
; x0 =

2R

aB
,

E
(1)
100 =

−e2

π ε0Ra3B

x0∫

0

dx
aB
2

e−x

(
3a2B
8

x2 − RaB
2

x− a4B
32R2

x4

)

=
e2

4π ε0

(
a2B

16R3
I4 − 3

4R
I2 +

1

aB
I1

)
,

a2
B

16R3
I4 =

3a2
B

2R3

{
1− e−x0

[
1 +

2R

aB
+
1

2

(
2R

aB

)2

+
1

6

(
2R

aB

)3

+
1

24

(
2R

aB

)4
]}

,

− 3

4R
I2 = − 3

2R

{
1− e−x0

[
1 +

2R

aB
+

1

2

(
2R

aB

)2
]}

.

1

aB
I1 =

1

aB

[
1− e−x0

(
1 +

2R

aB

)]
.

Energy correction:

E
(1)
100 =

e2

4πε0 aB

[(
3a3B
2R3

− 3aB
2R

+ 1

)
− e−(2R/aB)

(
3a3B
2R3

+
3a2B
R2

+
3aB
2R

)]
.

The Bohr radius aB and the radius of the nucleus R are of different orders
of magnitude

aB
R

≈ 103 .

One can therefore expand the exponential function, and take into consid-
eration in the bracket only terms up to the order (R/aB)

2
:

E
(1)
100 ≈ e2

4π ε0 aB

2

5

(
R

aB

)2
(6.33)
=

4

5
ER

(
R

aB

)2

= −4

5
E

(0)
100

(
R

aB

)2

.

On the whole, the corrected ground-state energy then reads:

E100 ≈ E
(0)
100 + E

(1)
100 = E

(0)
100

[
1− 4

5

(
R

aB

)2
]

.

The influence of the spatial extension of the nucleus is thus of the order
of magnitude 10−6 and therewith surely negligible!

Solution 7.2.2
The occupation number representation turns out to be convenient. Accord-

ing to ((4.129), Vol. 6) it holds for the unperturbed Hamilton operator:

H0 = − �
2

2m

d2

dq2
+

1

2
mω2q2 ≡ �ω

(
n̂+

1

2

)
n̂ = a+ a .
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|n〉 are the unperturbed eigen-states ((4.145), Vol. 6) =⇒
H0|n〉 = E(0)

n |n〉 ; n ∈ N0 ,

E(0)
n = �ω

(
n+

1

2

)
.

((4.139), (4.140), Vol. 6) =⇒
a+|n〉 = √

n+ 1|n+ 1〉 ; a|n〉 = √
n|n− 1〉 .

((4.127), Vol. 6) =⇒
q =

√
�

2mω
(a+ a+) .

Energy correction of first order:

E(1)
n = 〈n|H1|n〉 = α

m2ω2

�
〈n|q4|n〉 ,

q2 =
�

2mω
(a2 + a+2 + a a+ + a+a) ,

q4 =
�
2

4m2ω2

(
a4 + a2 a+2 + a3a+ + a2a+a

+a+2a2 + a+4 + a+2a a+ + a+3a+ a a+a2 + a a+3 + a a+a a+

+a a+2a+ a+a3 + a+a a+2 + a+a2a+ + a+a a+a
)
.

Because of 〈n|m〉 = δnm not all the terms contribute to E
(1)
n :

〈n|q4|n〉
=

�
2

4m2ω2

(〈
n
∣∣a2a+2

∣∣n
〉
+
〈
n
∣∣a+2a2

∣∣n
〉
+
〈
n
∣∣a a+a a+

∣∣n
〉

+
〈
n
∣∣a a+2a

∣∣n
〉
+
〈
n
∣∣a+a2a+

∣∣n
〉
+
〈
n
∣∣n̂2

∣∣n
〉 )

=
�
2

4m2ω2

[
(n+ 1) (n+ 2) + n(n− 1) + (n+ 1)2 + n(n+ 1)

+(n+ 1)n+ n2
]

=
�
2

4m2ω2
(6n2 + 6n+ 3)

=⇒ E(1)
n =

3

4
�α (2n2 + 2n+ 1) .

Solution 7.2.3
We use, as in the last exercise, the occupation number representation:

H0 = �ω

(
n̂+

1

2

)
.
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1. As for the solution of the last exercise:

q2 =
�

2mω

(
a2 + a+2 + a a+ + a+a

) (4.120)
=

�

2mω

(
a2 + a+2 + 2n̂+ 1

)
.

It follows therewith immediately:

E(1)
n =

1

4
α �ω (2n+ 1) .

2. State correction of first order:

|n〉(1) =

�=n∑

m

|m〉(0)
(0)〈m|H1|n〉(0)
E

(0)
n −E

(0)
m

,

E(0)
n − E(0)

m = �ω (n−m) ,

(0) 〈m |H1|n〉 (0) =
1

4
α �ω (0)

〈
m

∣∣(a2 + a+2
)∣∣n

〉
(0)

=
1

4
α �ω

{
δm n− 2

√
n(n− 1) + δm n+2

√
(n+1) (n+2)

}

=⇒ |n〉(1) = α

8

{√
n (n− 1)|n− 2〉(0) −

√
(n+ 1) (n+ 2)|n+ 2〉(0)

}
.

3.

E(2)
n =

m �=n∑

m

∣∣(0)〈m|H1|n〉(0)
∣∣2

E
(0)
n − E

(0)
m

.

According to part 2.:

E(0)
n − E(0)

m = �ω(n−m) ,
∣∣∣(0)〈m|H1|n〉(0)

∣∣∣
2

=
1

16
α2

�
2ω2 [n(n− 1) δm n− 2 + (n+ 1)(n+ 2) δm n+2]

=⇒ E(2)
n =

α2

16
�ω

[
1

2
(n2 − n)− 1

2
(n2 + 3n+ 2)

]
,

E(2)
n = −α2

16
�ω (2n+ 1) .

4. Exact:

En = � ω̂

(
n+

1

2

)

with
ω̂ = ω

√
1 + α .

Series expansion of the root:

En = �ω

(
n+

1

2

) (
1 +

1

2
α− 1

8
α2 + . . .

)
.

Perturbation series is in any case exact up to the third term!
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Solution 7.2.4

1.

|n〉 ≈ |n〉(0) +
�=n∑

m

|m〉(0)
(0)〈m|H1|n〉(0)
E

(0)
n − E

(0)
m

,

E
(0)
n − E

(0)
m = �ω(n−m) ,

((4.127), V ol. 6) =⇒ q =

√
�

2mω
(a+ a+) ,

(0)〈m|q|n〉(0) =
√

�

2mω

(√
n δm n− 1 +

√
n+ 1 δm n+1

)

=⇒ |n〉 ≈ |n〉(0) − F

√
1

2�mω3

(√
n|n− 1〉−√

n+1|n+1〉) .

2.

E(1)
n = −F (0)〈n|q|n〉(0) = 0 ,

E(2)
n =

m �=n∑

m

∣∣(0)〈m|H1|n〉(0)
∣∣2

E
(0)
n − E

(0)
m

,

∣∣∣(0)〈m|H1|n〉(0)
∣∣∣
2

= F 2 �

2mω
(n δm n− 1 + (n+ 1) δm n+1)

=⇒ E(2)
n =

F 2

2mω2
[n− (n+ 1)] = − F 2

2mω2
.

3. Exact solution (see Exercise 4.4.14 (Vol. 6)) or Exercise 7.1.3:

H =
p2

2m
+

1

2
mω2

(
q2 − 2F

mω2
q

)
.

Substitution:

q = q − F

mω2
,

d

dq
=

d

dq
=⇒ p = p ,

H =
p2

2m
+

1

2
mω2 q2 − F 2

2mω2
.

=⇒ exact eigen-energies:

E(ex)
n = �ω

(
n+

1

2

)
− F 2

2mω2
= E(0)

n + E(2)
n .

The second order perturbation theory is already exact!
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4. According to (7.37):

E(3)
n =

〈
E(0)

n |H1|E(2)
n

〉
.

We insert |E(2)
n 〉 according to (7.42) and exploit E

(1)
n = 0:

E(3)
n =

�=n∑

m

�=n∑

q

〈
E

(0)
n |H1|E(0)

m

〉 〈
E

(0)
m |H1|E(0)

q

〉 〈
E

(0)
q |H1|E(0)

n

〉

(
E

(0)
n − E

(0)
m

) (
E

(0)
n − E

(0)
q

) ,

numerator = −F 3

(
�

2mω

)3/2

Inmq Lqn ,

Inmq =
(√

mδn m− 1 +
√
m+ 1 δn m+1

) (√
q δm q− 1 +

√
q + 1 δm q+1

)
,

Lqn =
(√

n δq n− 1 +
√
n+ 1 δq n+1

)
,

Inmq =
(√

m q δn m− 1 δm q − 1 +
√

m(q + 1) δn m− 1 δm q +1

+
√

q(m+ 1) δn m+1 δm q − 1 +
√

(m+ 1) (q + 1) δn m+1 δm q +1

)

= δq n+2 (
√
mqδmq−1) + δqn

(√
m(q + 1) δmq +1 +

√
q(m+ 1) δmq−1

)

+δq n− 2

(√
(m+ 1) (q + 1) δm q +1

)
.

Lqn is now unequal zero for q = n− 1 and q = n+ 1.

=⇒ Inmq Lqn = 0 =⇒ E(3)
n = 0 .

Solution 7.2.5
According to (4.127) and (4.128) (Vol. 6) it holds:

q̂ =

√
�

2mω

(
a+ a+

)
; p̂ = −i

√
1

2
�mω

(
a− a+

)

� q̂ · p̂+ p̂ · q̂ = −i
�

2

(
(a+ a+)(a− a+) + (a− a+)(a+ a+)

)

= −i�
(
a2 − a+2

)
.

• Matrix elements:

(0)〈m|H1|n〉(0) = −i�λ (0)〈m|
(
a2 − a+2

)
|n〉(0)

= −i�λ
(√

n(n− 1) δm,n−2 −
√

(n+ 1)(n+ 2) δm,n+2

)
.

• Energy correction of first order:

E(1)
n = (0)〈n|H1|n〉(0) = 0 .
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• State correction of first order:

|n〉(1) =

�=0∑

m

|m〉(0)
(0)〈m|H1|n〉(0)
E

(0)
n − E

(0)
m

= −i
λ

2ω

(√
n(n− 1)|n− 2〉(0) +

√
(n+ 1)(n+ 2)|n+ 2〉(0)

)
.

• Energy correction of second order:

E(2)
n = (0)〈n|H1|n〉(1)

= −i�λ (0)〈n| (a2 − a+2
) |n〉(1)

= −λ2 �

2ω

(√
n(n− 1) (0)〈n| (a2 − a+2

) |n− 2〉(0)

+
√
(n+ 1)(n+ 2) (0)〈n| (a2 − a+2

) |n+ 2〉(0)
)

= −λ2 �

2ω

(
−
√
n(n− 1)

√
(n− 1)n

+
√
(n+ 1)(n+ 2)

√
(n+ 2)(n+ 1)

)

= −λ2 �

2ω
(−n(n− 1) + (n+ 2)(n+ 1))

� E(2)
n = −λ2 �

ω
(2n+ 1) .

Solution 7.2.6
Solution of the eigen-value problem of the ‘unperturbed’ oscillator:

H0|ninj〉 = E(0)
ninj

|ninj〉
|ninj〉 = |ni〉(x)|nj〉(y) ; ni,j = 0, 1, 2, . . .

E(0)
ninj

= (ni + nj + 1)�ω .

1. Ground state:
ni = nj = 0 ; not degenerate!

Matrix elements of the perturbation:

〈ninj |H1|n′
in

′
j〉 = γ (x)〈ni|q2x|n′

i〉(x)(y)〈nj |q2y |n′
j〉(y)

q =

√
�

2mω
(a+ a+) (4.127), Vol. 6

q2 =
�

2mω
(a2 + a a+ + a+a︸ ︷︷ ︸

2n̂+1

+a+2)

〈ni|q2x|n′
i〉(x) =

�

2mω

(√
n′
i(n

′
i − 1)δnin′

i−2

+(2n′
i + 1)δnin′

i
+
√
(n′

i + 1)(n′
i + 2)δnin′

i+2

)
.
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Energy correction of first order:

E
(1)
0 = 〈0 0|H1|0 0〉 = γ

�
2

4m2ω2
.

Energy correction of second order:

E
(2)
0 =

�=(0,0)∑

ni,nj

|〈0 0|H1|ninj〉|2
E

(0)
0 − Eninj

(x)〈0|q2x|ni〉(x) = �

2mω

(√
2 δni2 + δni0

)

E
(2)
0 =

|〈0 0|H1|0 2〉|2
�ω − 3�ω

+
|〈0 0|H1|2 0〉|2
�ω − 3�ω

+
|〈0 0|H1|2 2〉|2
�ω − 5�ω

=
γ2

�ω

(
�

2mω

)4(
(
√
2 · 1)2
−2

+
(
√
2 · 1)2
−2

+
(
√
2 · √2)2

−4

)

=⇒ E
(2)
0 = −3

γ2

�ω

(
�

2mω

)4

.

2. First excitation energy:

ni + nj = 1 E
(0)
1 = 2�ω

twofold degenerate: |0 1〉, |1 0〉.
Perturbation matrix:

Ĥ1 =

( 〈1 0|H1|1 0〉 〈1 0|H1|0 1〉
〈0 1|H1|1 0〉 〈0 1|H1|0 1〉

)

〈1 0|H1|0 1〉 = 〈0 1|H1|1 0〉 = 0

〈1 0|H1|1 0〉 = γ

(
�

2mω

)2

(2 · 1 + 1) · 1

= 3γ

(
�

2mω

)2

= 〈0 1|H1|0 1〉

=⇒ Ĥ1 = 3γ

(
�

2mω

)2(
1 0
0 1

)
.

The matrix is already diagonal:

=⇒ E
(1)
11 = E

(1)
12 = 3γ

(
�

2mω

)2

Degeneracy is not removed!

E1 ≈ 2�ω + 3γ

(
�

2mω

)2

.
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Next excitation energy:

ni + nj = 2 E
(0)
2 = 3�ω

threefold degenerate: |0 2〉, |1 1〉, |2 0〉.
Perturbation matrix in the eigen-space to E

(0)
2 :

Ĥ1 =

⎛

⎝
〈2 0|H1|2 0〉 〈2 0|H1|1 1〉 〈2 0|H1|0 2〉
〈1 1|H1|2 0〉 〈1 1|H1|1 1〉 〈1 1|H1|0 2〉
〈0 2|H1|2 0〉 〈0 2|H1|1 1〉 〈0 2|H1|0 2〉

⎞

⎠

〈2 0|H1|2 0〉 = γ

(
�

2mω

)2

(2 · 2 + 1) · 1 = 5γ

(
�

2mω

)2

〈2 0|H1|1 1〉 = 0

〈2 0|H1|0 2〉 = γ

(
�

2mω

)2

(
√
2 ·

√
2) = 2γ

(
�

2mω

)2

〈1 1|H1|2 0〉 = 0

〈1 1|H1|1 1〉 = γ

(
�

2mω

)2

(3 · 3) = 9γ

(
�

2mω

)2

〈1 1|H1|0 2〉 = 0

〈0 2|H1|2 0〉 = γ

(
�

2mω

)2

(
√
2 · √2) = 2γ

(
�

2mω

)2

〈0 2|H1|1 1〉 = 0

〈0 2|H1|0 2〉 = γ

(
�

2mω

)2

· 1 · (2 · 2 + 1) = 5γ

(
�

2mω

)2

.

Ĥ1 is of course Hermitian:

Ĥ1 = γ

(
�

2mω

)2
⎛

⎝
5 0 2
0 9 0
2 0 5

⎞

⎠ .

It must be:
det(Ĥ1 − E

(1)
2 1l)

!
= 0 .

With

α ≡ γ

(
�

2mω

)2

=⇒ 0
!
= (5α− E

(1)
2 )2(9α− E

(1)
2 )− 4α2(9α− E

(1)
2 )

=⇒ E
(1)
21 = 3α ; E

(1)
22 = 7α ; E

(1)
23 = 9α .

The degeneracy is completely removed!



466 APPENDIX A. SOLUTIONS OF THE EXERCISES

Solution 7.2.7
Relativistic Darwin term (5.253):

H1 = VB =
e �2

8m2
e c

2
Δϕ .

The point-like hydrogen atom creates the Coulomb field:

ϕ(r) =
e

4π ε0r
.

According to (1.69) in Vol. 3:

Δ
1

r
= −4π δ(r) .

The perturbation reads therewith:

H1 = − e2�2

8m2
ec

2ε0
δ(r) .

Ground-state wave function of the electron in the hydrogen atom:

ψ100(r)
(6.60)
=

1√
π a3B

exp

(
− r

aB

)
.

Energy correction of first order:

E
(1)
100 =

∫
d3r ψ∗

100(r)H1 ψ100(r) = − e2�2

8m2
ec

2ε0

1

π a3B

∫
d3r e−(2r/aB) δ(r)

= − e2

4π ε0mec2 aB

(
�
2

2mf a2B

)
,

(6.33) =⇒ 1Ry =
�
2

2mea2B
,

(6.32) =⇒ aB =
4π ε0�

2

mee2

=⇒ E
(1)
100 = −

(
e2

4π ε0� c

)2

[Ry] .

In the bracket we find the Sommerfeld fine structure constant :

α =
e2

4π ε0� c
≈ 1

137
=⇒ E

(1)
100 ≈ −5.33 · 10−5 [Ry] .

It represents a relatively small correction!
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Solution 7.2.8

1. Free movement with the constraint:

H0 =
p2

2m
= − �

2

2m
Δ .

The constraint is formulated most easily with spherical coordinates:

(6.3) =⇒ Δ =
1

r2
∂

∂r

(
r2

∂

∂r

)
− L2

r2�2
.

Constraint: r
!
= R = const

=⇒ H0 =
L2

2mR2
=

L2

2J
; J = mR2 : moment of inertia.

Eigen-functions are therefore the spherical harmonics:

H0 Ylml
(ϑ, ϕ) =

1

2J
L2 Ylml

(ϑ, ϕ) =
1

2J
�
2l(l+ 1)Ylm(ϑ, ϕ) .

Eigen-values:

E
(0)
l =

�
2

2J
l(l+ 1) .

The eigen-values are obviously (2l+1)-fold degenerate due to the magnetic
quantum number ml.

2.

H = H0 +H1 ,

H1 = mg z = mgR cosϑ .

The particle remains bound to the surface of the sphere!
Because of (5.19), the z-component of the orbital angular momentum Lz

commutes with H1,

[H1, Lz]− = mg [z, Lz]− = 0 ,

and of course also with H0:

[H0, Lz]− = 0 .

3. Lz commutes with the total Hamilton operator. It will therefore be possi-
ble to classify also the full energy-eigen states by the quantum number ml.
But when we perform perturbation theory for an eigen-state (eigen-value)
with a fixed ml, then also the ‘correct’ state of zeroth order must be cho-
sen with this quantum number. It is therewith clear that the spherical
harmonics from part 1. are already the ‘correct’ states of zeroth order.
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4. With the given formula it can be easily realized that all elements of the
perturbation matrix are zero:

〈l ml|H1|l m′
l〉 = H

mlm
′
l

1l = 0 .

The energy correction of first order therewith is of course also zero:

E
(1)
l = 0 .

The degeneracy with respect to ml is thus completely retained!

5. For the energy correction of second order we have (7.61) and (7.63), respec-
tively:

E
(2)
l ml

=
∑

l′,ml′
(l′ �= l)

|〈l′ml′ |H1|l ml〉|2
E

(0)
l − E

(0)
l′

.

We calculate the matrix element using the given formula:

〈l′ ml′ |H1|l ml〉 =
∫∫

dϕ d cosϑY ∗
l′ml′ (ϑ, ϕ)mgR cosϑYlml

(ϑ,ϕ)

=mgR

⎧
⎨

⎩

√
(l + 1)2 −m2

l

(2l + 1) (2l + 3)

∫∫
dϕ d cos ϑY ∗

l′ml′ (ϑ, ϕ)Yl+1ml
(ϑ,ϕ)

+

√
l2 −m2

l

(2l + 1) (2l − 1)

∫∫
dϕ d cosϑY ∗

l′ml′ (ϑ,ϕ)Yl− 1ml
(ϑ, ϕ)

⎫
⎬

⎭

(5.102)
= mgRδml′ml

⎧
⎨

⎩

√
(l + 1)2 −m2

l

(2l + 1)(2l + 3)
δl′l+1 +

√
l2 −m2

l

(2l + 1)(2l − 1)
δl′l−1

⎫
⎬

⎭ .

It is clear according to 2. and 3. that the matrix element can be unequal
zero only for ml = ml′ . This could have been assumed, actually from the
beginning, in the above energy formula.

E
(2)
lml

=
2J

�2
(mgR)2

[
(l + 1)2 −m2

l

(2l+ 3) (2l+ 1)

1

l(l + 1)− (l + 1) (l + 2)

+
l2 −m2

l

(2l− 1) (2l+ 1)

1

l(l + 1)− (l − 1) l

]

=
2J

�2

(mgR)2

(2l + 3) (2l+ 2) (2l + 1) 2l (2l − 1)

·{−m2
l [(2l + 3) (2l+ 2)− 2l (2l − 1)]

+ l2 (2l + 3) (2l+ 2)− (l + 1)2 2l (2l − 1)
}

.

The degeneracy with respect to ml is to a great part removed by the
energy correction of second order:

E
(2)
lml

=
2J

�2
(mgR)2

l(l+ 1)− 3m2
l

(2l+ 3) (l + 1) 2l (2l − 1)
= E

(2)
l|ml| .
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Each eigen-value, unless that of ml = 0, is still twofold degenerate (ml

and −ml).

Solution 7.2.9
We build with the degenerate states |E(0)

n1 〉, |E(0)
n2 〉 the elements

Hαβ
1n = 〈E(0)

nα |H1|E(0)
nβ 〉

of the perturbation matrix, and calculate the secular determinant (7.49):

∣∣∣∣∣
H11

1n − E
(1)
n H12

1n

H21
1n H22

1n − E
(1)
n

∣∣∣∣∣
!
= 0 =

(
H11

1n − E(1)
n

) (
H22

1n − E(1)
n

)
− |H12

1n|2 .

=⇒ energy correction of first order:

E
(1)
n± =

1

2

{(
H11

1n +H22
1n

)±
√
(H11

1n −H22
1n)

2
+ 4|H12

1n|2
}

.

If the root is different from zero, then the energy correction of first order leads
to a repulsion of the originally degenerate levels!

‘Correct’ states of zeroth order:
∣∣∣E(0)

n±
〉

= c
(±)
1

∣∣∣E(0)
n1

〉
+ c

(±)
2

∣∣∣E(0)
n2

〉
.

Linear, homogeneous system of equations:

(
H11

1n − E
(1)
n± H12

1n

H21
1n H22

1n − E
(1)
n±

) (
c
(±)
1

c
(±)
2

)
=

(
0
0

)

=⇒
(
H11

1n − E
(1)
n±

)
c
(±)
1 +H12

1n c
(±)
2 = 0

=⇒ |c(±)
1 |2 =

|H12
1n|2(

H11
1n − E

(1)
n±

)2

∣∣∣c(±)
2

∣∣∣
2

.

Normalization:

∣∣∣c(±)
2

∣∣∣
2

= 1−
∣∣∣c(±)

1

∣∣∣
2

=⇒
∣∣∣c(±)

1

∣∣∣
2

=

∣∣H12
1n

∣∣2
(
H11

1n − E
(1)
n±

)2

+ |H12
1n|2

= 1−
∣∣∣c(±)

2

∣∣∣
2

.
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Solution 7.2.10

1. Potential energy of the electron in the homogeneous electric field:

V (r) = V (z) = +e F z,

because:

− d

dz
V (z) = −e F

Hamilton operator:

H = H0 +H1 ,

H0 : unperturbed hydrogen problem, solution known!

H1 = e F z : perturbation .

Because of (5.19):

[H1, Lz]− = e F [z, Lz]− = 0 .

2. We have proven this statement, in another context, already as part 2. of
Exercise 6.2.9. Repeat the path of solution!

3. Unperturbed hydrogen eigen-states:
(6.60) and (5.108):

|100〉 =̂ 1√
π a3B

e−r/aB .

(6.61) and (5.108):

|200〉 =̂ 1

2
√
2π a3B

(
1− r

2aB

)
e−r/2aB .

(6.62) and (5.109):

|210〉 =̂ 1

4
√
2π a5B

cosϑ r e−r/2aB .

(6.62) and (5.110):

|21± 1〉 =̂ ∓1

8
√
π a5B

sinϑ r e−r/2aB e±i ϕ .

Unperturbed eigen-energies:

E(0)
n = −ER

n2
,

without spin n2-fold degenerate!
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a) n = 1 =⇒ l = 0, ml = 0
no degeneracy!

E
(1)
1 = 〈100|H1|100〉 = 0 because of 2. .

b)

n = 2 =⇒ l = 0, ml = 0 ,

l = 1,ml = ±1, 0 .

Perturbation matrix:
(
Hαβ

12

)
≡

⎛

⎜⎜⎝

〈200|H1|200〉 〈200|H1|210〉 〈200|H1|211〉 〈200|H1|21 − 1〉
〈210|H1|200〉 〈210|H1|210〉 〈210|H1|211〉 〈210|H1|21 − 1〉
〈211|H1|200〉 〈211|H1|210〉 〈211|H1|211〉 〈211|H1|21 − 1〉
〈21 − 1|H1|200〉〈21 − 1|H1|210〉〈21 − 1|H1|211〉〈21 − 1|H1|21 − 1〉

⎞

⎟⎟⎠

decomposes into blocks because of 1.:

(
Hαβ

12

)
=

⎛

⎜⎜⎝

0 〈200|H1|210〉 0 0
〈210|H1|200〉 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ .

Matrix element:

〈200|H1|210〉

=
e F 2π

16 π a4B

∞∫

0

r2 dr

+1∫

−1

d cosϑ

(
1− r

2aB

)
e−r/2aB r cosϑ cosϑ r e−r/2aB

=
e F

8a4B

2

3

∞∫

0

dr

(
r4 − r5

2aB

)
e−r/aB

=
e F

12 a4B
aB

∞∫

0

dx

(
a4B x4 − 1

2
a4B x5

)
e−x

=
1

12
e F aB

(
Γ(5)− 1

2
Γ(6)

)

=
1

12
e F aB (24− 60) = −3e aBF .

Secular determinant:

0
!
=

∣∣∣∣∣∣∣∣∣

−E
(1)
2 −3e aB F 0 0

−3e aB F −E
(1)
2 0 0

0 0 −E
(1)
2 0

0 0 0 −E
(1)
2

∣∣∣∣∣∣∣∣∣
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Figure A.5:

The first two rows belong to ml = 0, the third belongs to ml = 1,
and the fourth to ml = −1.
The states |21± 1〉 are in first order not disturbed:

E
(1)
21±1 = 0 .

Energy correction for ml = 0:

0
!
=

∣∣∣∣∣
−E

(1)
2 −3e aB F

−3e aB F −E
(1)
2

∣∣∣∣∣ =
(
E

(1)
2

)2

− (3e aB F )2

=⇒ E
(1)
2l ml=0 = ±3e aB F .

The degeneracy of the energy level E
(0)
2 is partly lifted by the electric

field (Fig. A.5). The levels split linearly with the field. One speaks
of the linear Stark effect.

4. The degeneracy is completely removed in the ml = 0-subspace. We can
thus determine the ‘correct’ states of zeroth order:

|2ml = 0〉(±) = c
(±)
0 |200〉+ c

(±)
1 |210〉 .

E
(1)
2l ml=0 = +3aB e F :

(−3aB e F −3aB e F
−3aB e F −3aB e F

) (
c
(+)
0

c
(+)
1

)
=

(
0
0

)

=⇒ c
(+)
0 = −c

(+)
1 =

1√
2

(with normalization) .

E
(1)
2l ml=0 = −3aB e F :

(
3aB e F −3aB e F
−3aB e F 3aB e F

) (
c
(−)
0

c
(−)
1

)
=

(
0
0

)

=⇒ c
(−)
0 = c

(−)
1 =

1√
2

(with normalization)

=⇒ |2ml = 0〉(±) =
1√
2
(|200〉 ∓ |210〉) .
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Solution 7.2.11

1. Nuclear charge Z:

H(Z) =
p2

2m
− Ze2

4πε0 · r = T + V (Z)

Nuclear charge Z + α:

H(Z + α) =
p2

2m
− (Z + α) e2

4πε0 · r
� H(Z + α) = H(Z) +H1 ; H1 = −α

e2

4πε0 · r .

Energy correction of first order:

E(1) = Z〈nlml|H1|nlml〉Z = − αe2

4πε0
Z〈nlml|1

r
|nlml〉Z .

Comparison with V (Z):

E(1) =
α

Z
Z〈nlml|V (Z)|nlml〉Z .

We now exploit the virial theorem from Exercise 7.1.7. Since |nlml〉Z is
eigen-state of H(Z), it must follow:

2 Z〈nlml|T |nlml〉Z = n′
Z〈nlml|V (Z)|nlml〉Z = − Z〈nlml|V (Z)|nlml〉Z .

Here it is used that for the Coulomb potential: V ∝ 1
r � n′ = −1. It thus

remains:

Z〈nlml|H(Z)|nlml〉Z =

(
−1

2
+ 1

)
Z〈nlml|V (Z)|nlml〉Z .

Hydrogen problem:

Z〈nlml|H(Z)|nlml〉Z = −Z2ER

n2

� Z〈nlml|V (Z)|nlml〉Z = −2
Z2ER

n2

Energy correction of first order:

E(1) = −2α
ZER

n2
.

or

E(Z + α) ≈ −ER

n2

(
Z2 + 2Zα

)
.
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2. Exact result:

E(Z + α) = −ER

n2
(Z + α)2 = −ER

n2

(
Z2 + 2Zα+ α2

)
.

Perturbation theory is therefore reasonable if

α2 � 2Zα ⇐⇒ α � 2Z .

Solution 7.2.12

1.

H0 =
p2

2m
= − �

2

2m

d2

dz2
,

H0ϕ(z) = E ϕ(z) =⇒ ϕ(z) ∼ eikz .

Normalization on L = N a : 1 =
∫ L

0
dz|ϕ(z)|2

=⇒ ϕ(z) =
1√
L
eikz ; E0(k) =

�
2k2

2m

Periodic boundary conditions:

ϕ(z +N a)
!
= ϕ(z) =⇒ k =

2π

N a
m ; m ∈ Z ,

ϕ(z) −→ ϕk(z) .

2. E0(k) = E0(−k) =⇒ each energy level is twofold degenerate!

V (z) =
∑

K

VK eiKz ,

V (z) : real � VK = V−K

V (z + a) = V (z) =⇒ K =
2π

a
n ; n ∈ Z ,

K : reciprocal lattice vector .

3.

〈ϕk|V |ϕk′ 〉 =
1

L

L∫

0

dz ei(k
′−k)z V (z)

=
∑

K

VK
1

L

L∫

0

dz ei(k
′ − k+K)z =

∑

K

VK δk′, k−K .

Necessary condition:

k − k′ = K =
2π

a
n ; n ∈ Z .



APPENDIX A. SOLUTIONS OF THE EXERCISES 475

Otherwise, it must also hold:

k − k′ =
2π

N a
(m−m′) =⇒ m−m′

N
= n ∈ Z .

The states of equal energy are of special interest:

k′ = −k ⇐⇒ m′ = −m =⇒ 2m

N
= n =⇒ m =

N

2
n

=⇒ condition for degeneracy: k =
π

a
n =

K

2
.

4. Perturbation theory for twofold degenerate levels: Perturbation matrix:

V ≡
( 〈ϕk|V |ϕk〉 〈ϕk|V |ϕ−k〉
〈ϕ−k|V |ϕk〉 〈ϕ−k|V |ϕ−k〉

)
.

From part 3.:

〈ϕk|V |ϕk〉 = 〈ϕ−k|V |ϕ−k〉 = V0 ,

〈ϕ−k|V |ϕk〉 =
∑

K

VK δk, 12 K = 〈ϕk|V |ϕ−k〉 .

Case-by case analysis:

a) k �= K/2 :

V ≡
(
V0 0
0 V0

)
=⇒ E(1) (k) ≡ V0 .

Degeneracy is not removed. For such k-values even non-degenerate
perturbation theory is applicable, because for k′ = −k the corre-
sponding matrix elements vanish. With

|〈ϕk|V |ϕk′ 〉|2 =
∑

K,K′
VKVK′ δk′,k−Kδk,k′−K′

=
∑

K

VKVk′−k δk′,k−K

=
∑

K

VKV−K δk′,k−K

VK=V−K
=

∑

K

V 2
K δk′,k−K

it follows:

E(k) ≈ E0(k) + V0 +

�= k,−k∑

k′

|〈ϕk′ |V |ϕk〉|2
E0(k)− E0(k′)

= E0(k) + V0 +

�=0,2k∑

K

V 2
K

E0(k)− E0(k −K)

= E0(k) + V0 +
m

�2

�=0,2k∑

K

V 2
K

K
(
k − K

2

) .
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b) k = K/2 :

V ≡
(
V0 VK

VK V0

)
=⇒ secular determinant:

∣∣∣∣
V0 − E(1) VK

VK V0 − E(1)

∣∣∣∣
!
= 0 ⇐⇒ E

(1)
± = ±VK + V0 .

Degeneracy is removed =⇒ energy gap.

‘Correct’ states of zeroth order:

a) k �= (1/2)K :

|E0(k)〉 ←→ ϕk(z) : propagating plane wave.

b) k = (1/2)K :

|E±(k)〉 ←→ c
(±)
1 ϕk(z) + c

(±)
2 ϕ−k(z) ,

(∓VK VK

VK ∓VK

) (
c
(±)
1

c
(±)
2

)
=

(
0
0

)

=⇒ c
(+)
1 = c

(+)
2 ; c

(−)
1 = −c

(−)
2 .

Normalization:

c
(+)
1 = c

(+)
2 =

1√
2
; c

(−)
1 = −c

(−)
2 =

1√
2

=⇒ |E±(k)〉 ←→ 1√
2L

(
eikz ± e−ikz

)
.

Standing waves:

|E+(k)〉 ←→
√

2

L
cos

(
1

2
K z

)
,

|E−(k)〉 ←→ i

√
2

L
sin

(
1

2
K z

)
.

5. Band structure model (Fig. A.6): Condition of degeneracy in three dimen-
sions:

k2 = (k−K)2 ⇐⇒ k · eK =
1

2
K ;

Bragg planes (Sect. 1.4.3, Vol. 6).
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Figure A.6:

Solution 7.2.13

1. H0 can be separated with respect to wave number and spin projection:

H0 =
∑

k,σ
α,β

εαβ(k) |kσα〉〈kσβ| =
∑

kσ

(Hkσ)
(0)

.

In the basis of the |kσα〉 for fixed k, σ one has:

(Hkσ)
(0) =

(
ε(k) t(k)
t∗(k) ε(k)

)
.

Eigen-values:

det

(
ε(k)− E t(k)
t∗(k) ε(k)− E

)
!
= 0

� E
(0)
± (kσ) = ε(k)± |t(k)| ≡ E

(0)
± (k) .

No real spin-dependence!
Eigen-states:

|E(0)
± (kσ)〉 = c±A|kσA〉 + c±B|kσB〉

�

(
ε(k)− E

(0)
± t(k)

t∗(k) ε(k)− E
(0)
±

)(
c±A
c±B

)
= 0 .

From this it follows
∓|t(k)| c±A + t(k) c±B = 0

which, together with the normalization, leads to

c±A =
γ√
2

; c±B = ± 1√
2

; γ =
t(k)

|t(k)| .

The eigen-states in zeroth order therewith read:

∣∣∣E(0)
± (k)

〉
=

1√
2

(
γ|kσA〉 ± |kσB〉) .

Note that, because of the symmetry (σ,A) ↔ (−σ,B) of the antiferro-
magnet, the eigen-states do not exhibit a real spin-dependence.
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2. Perturbation:

H1 = −1

2
J
∑

kσαβ

zσmα|kσα〉〈kσβ|δαβ =
∑

kσ

(Hkσ)
(1)

mA = −mB = m
(
zσ = δσ↑ − δσ↓

)
.

It holds in the basis of the initial states |kσα〉:

(Hkσ)
(1)

=

( − 1
2Jzσm 0
0 + 1

2Jzσm

)
.

Perturbation matrix in the basis of the eigen-states of the ‘unperturbed’
Hamilton operator:

〈E(0)
± | (Hkσ)

(1) |E(0)
± 〉 =

1

2

(
γ∗ ±1

)( − 1
2Jzσm 0

0 + 1
2Jzσm

)(
γ

±1

)

=
1

2

(
−1

2
Jzσm|γ|2 +

1

2
Jzσm

)
= 0

〈E(0)
+ | (Hkσ)

(1) |E(0)
− 〉 =

1

2

(
γ∗ +1

)( − 1
2Jzσm 0

0 + 1
2Jzσm

)(
γ

−1

)

= −1

4
Jzσm(|γ|2 + 1) = −1

2
Jzσm

= 〈E(0)
− | (Hkσ)

(1) |E(0)
+ 〉 .

The perturbation operator in the basis of the H0-eigen states therewith
takes the following simple form:

(Hkσ)
(1)

=

(
0 − 1

2Jzσm− 1
2Jzσm 0

)

3. Exact solution:
Total Hamilton operator in the H0-basis:

(Hkσ) =

(
ε(k) + |t(k)| − 1

2Jzσm− 1
2Jzσm ε(k)− |t(k)|

)
.

Eigen-values:

det

(
ε(k) + |t(k)| − E − 1

2Jzσm− 1
2Jzσm ε(k) − |t(k)| − E

)
!
= 0 .

It remains to be solved:

(
ε(k)− E

)2 − |t(k)|2 =
1

4
J2m2 .

That yields:

E±(k) = ε(k)±
√

1

4
J2m2 + |t(k)|2



APPENDIX A. SOLUTIONS OF THE EXERCISES 479

4. Schrödinger perturbation theory:
Energy correction of first order:

〈
E

(0)
± (kσ)

∣∣∣ (Hkσ)
(1)

∣∣∣E(0)
± (kσ)

〉
= 0 � E

(1)
± (kσ) = 0 .

Energy correction of second order:

E
(2)
± (kσ) =

∣∣∣
〈
E

(0)
∓ (kσ)

∣∣∣ (Hkσ)
(1)

∣∣∣E(0)
± (kσ)

〉∣∣∣
2

E
(0)
± (kσ) − E

(0)
∓ (kσ)

=
1
4J

2m2

±2|t(k)| ≡ E
(2)
± (k) .

The perturbation theory thus yields:

E±(k) ≈ ε(k)± |t(k)| ± J2m2

8|t(k)| .

That corresponds to the first term of an expansion of the exact eigen-
energies for 1

2Jm � |t(k|. Now there are, though, k-vectors, for which the
|t(k)| can become very small or even zero (edge of the Brillouin zone!). In
such cases the Schrödinger perturbation theory obviously becomes unus-
able.

5. Brillouin-Wigner perturbation theory:
The energy correction of first order is the same as that given by the
Schrödinger version, i.e., it vanishes.

Energy correction of second order:

E±(kσ) = E
(0)
± (k) + E

(1)
± (k) +

∣∣∣
〈
E

(0)
∓ (k)

∣∣∣ (Hkσ)
(1)

∣∣∣E(0)
± (k)

〉∣∣∣
2

E±(kσ) − E
(0)
∓ (k)

= ε(k) ± |t(k)|+
1
4J

2m2

E±(kσ) − ε(k)± |t(k)| .

This is a quadratic equation for the sought eigen-energies E±(kσ) with
the obvious spin-independent solution:

E±(k) = ε(k)±
√

1

4
J2m2 + |t(k)|2 .

The Brillouin-Wigner perturbation theory thus already in second order
yields the exact result!

Section 7.3.5

Solution 7.3.1
According to (7.104):

|ψ(t)〉 = U(t, 0)
∣∣∣E(0)

i

〉
= e−(i/�)H0t UD(t, 0)

∣∣∣E(0)
i

〉

(ti = t0 = 0) .
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Ansatz as in (7.90):

|ψ(t)〉 =
∑∫

m

am(t)
∣∣∣E(0)

m

〉
.

Scalar multiplication by
〈
E

(0)
n

∣∣∣ yields:

an(t) = e−(i/�)E(0)
n t

〈
E(0)

n

∣∣∣UD(t, 0)
∣∣∣E(0)

i

〉
.

This is still exact and is in first order perturbation theory, according to (7.101),
approximated by:

a(1)n (t) = e−(i/�)E(0)
n t

⎧
⎨

⎩δni − i

�

t∫

0

dt1 Hni(t1) e
(i/�)E

(0)
ni t1

⎫
⎬

⎭ ,

Hni(t1) =
〈
E(0)

n

∣∣∣H1t1

∣∣∣E(0)
i

〉
,

E
(0)
ni = E(0)

n − E
(0)
i .

Solution 7.3.2
Unperturbed oscillator:

H0 =
p2

2m
+

1

2
mω2z2 ,

H0|m〉 = �ω0

(
m+

1

2

)
|m〉 ,

Perturbation:

H1t = −q z F cosωt .

Ansatz:

|ψ(t)〉 =
∑

m

am(t)|m〉 ,

|ψ(t = 0)〉 = |n〉 .

Dipole moment:

〈p̂〉 = q
∑

m,r

a∗m(t) ar(t)〈m|z|r〉 .

According to ((4.127), Vol. 6) it holds:

〈m|z|r〉 =

√
�

2mω0
〈m|(a+ a+)|r〉

=

√
�

2mω0

(
δmr− 1

√
r + δmr+1

√
r + 1

)
.
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Intermediate result:

〈p̂〉 = q

√
�

2mω0

∑

r

ar(t)
(√

r a∗r− 1(t) +
√
r + 1 a∗r+1(t)

)
.

Expansion coefficients in first order perturbation theory (see solution 7.3.1):

a(1)r (t) = e−(i/�)E(0)
r t

⎧
⎨

⎩δrn − i

�

t∫

0

dt1 Hrn(t1) e
(i/�)E(0)

rn t1

⎫
⎬

⎭ ,

Hrn(t1) = −q F cosω t1

√
�

2mω0

(
δr n− 1

√
n+ δr n+1

√
n+ 1

)
.

Up to the first order:

ar(t) a
∗
r− 1(t) ≈ e−(i/�)E(0)

r t δrn a
(1)∗
r− 1(t)

+e(i/�)E
(0)
r − 1t δr− 1n a

(1)
r (t) ,

ar(t) a
∗
r+1(t) ≈ e−(i/�)E(0)

r t δrn a
(1)∗
r+1(t)

+e(i/�)E
(0)
r +1t δr+1n a

(1)
r (t) ,

δr− 1n a
(1)
r (t) = +i

q

�
F

√
�

2mω0

√
n+ 1 e−(i/�)E

(0)
n +1t

·
t∫

0

dt1 cosω t1 e
iω0t1 δr n+1 ,

δr+1n a
(1)
r (t) = +i

q

�
F

√
�

2mω0

√
n e−(i/�)E

(0)
n− 1t

·
t∫

0

dt1 cosω t1 e
−i ω0t1 δr n− 1 ,

δrn a
(1)∗
r− 1(t) = −i

q

�
F

√
�

2mω0

√
ne+(i/�)E

(0)
n − 1t

·
t∫

0

dt1 cosω t1 e
+iω0t1 δrn ,

δrn a
(1)∗
r+1(t) = −i

q

�
F

√
�

2mω0

√
n+ 1 e(i/�)E

(0)
n +1t

·
t∫

0

dt1 cosω t1 e
−iω0t1δrn .
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By insertion we find a further intermediate result:

〈p̂〉 = i
q2F

2mω0

t∫

0

dt1 cosω t1

(
eiω0(t1 − t) − eiω0(t− t1)

)

=
q2F

mω0

t∫

0

dt1 cosω t1 sinω0(t− t1)

=
q2F

2mω0

⎡

⎣
t∫

0

dt1 sin[(ω − ω0)t1 + ω0t] +

t∫

0

dt1 sin[−(ω0 + ω) t1 + ω0t]

⎤

⎦

=
q2F

2mω0
(cosω t− cosω0t)

(
− 1

ω − ω0
+

1

ω0 + ω

)
.

Thereby we have utilized the addition theorem

2 sinx cos y = sin(x+ y) + sin(x− y) .

Finally we get:

〈p̂〉 = q2F

m(ω2
0 − ω2)

(cosωt− cosω0t) .

Solution 7.3.3

• t < 0 :
Oscillator in the ground state:

ϕ(q, t) = e−(i/�)Ht ϕ0(q) = e−(i/2)ωt ϕ0(q) .

((4.158), Vol. 6):

ϕ0(q) =
(mω

�π

)1/4

e−(mω/2�) q2 .

• t = 0− :
ϕ(q, 0−) ≡ ϕ0(q).

• t = 0 :
Abrupt change of the force constant:

k −→ k′ ⇐⇒ ω =

√
k

m
−→ ω′ =

√
k′

m
.

• t = 0+ :
The wave function can not have changed yet:

ϕ(q, 0+) ≡ ϕ0(q) .
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But ϕ0(q) is not an eigen-state of the new Hamilton operator H ′:

H ′ =
p2

2m
+

1

2
mω′2q2 ,

H ′ϕ′
n(q) = E′

n ϕ′
n(q) .

The new eigen-functions build a complete system:

ϕ0(q) =
∑

n

αnϕ
′
n(q) .

• t > 0 :
H ′ is time-independent for t > 0:

ϕ(q, t) = e−(i/�)H′t ϕ(q, 0+) =
∑

n

αn ϕ
′
n(q) e

−iω′(n+1/2) t .

Therewith it results as probability to find the oscillator at the time t > 0 in the
new eigen-state ϕ′

n:

wn =

∣∣∣∣∣∣

+∞∫

−∞
dq ϕ(q, t)ϕ′∗

n (q, t)

∣∣∣∣∣∣

2

= |αn|2 .

Especially for the ground state:

w0 =

∣∣∣∣∣∣

+∞∫

−∞
dq ϕ(q, t)ϕ′∗

0 (q, t)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

+∞∫

−∞
dqϕ0(q)ϕ

′∗
0 (q)

∣∣∣∣∣∣

2

=
m

�π

√
ω ω′

∣∣∣∣∣∣

+∞∫

−∞
dq exp

(
−m

2�
(ω + ω′) q2

)
∣∣∣∣∣∣

2

=
m

�π

√
ω ω′ 1

(m/2�)(ω + ω′)

∣∣∣∣∣∣

+∞∫

−∞
dy e−y2

∣∣∣∣∣∣

2

.

We have calculated the integral in the solution 2.2.1 (Vol. 6). It has the
value

√
π:

w0 =
2

ω + ω′
√
ω ω′ (w0 = 1 for ω = ω′!) .
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Solution 7.3.4
The same considerations about the transition probability as in the preceding

exercise are valid here also:

wn =

∣∣∣∣∣∣

+∞∫

−∞
dq ϕ0(q)ϕ

′∗
n (q)

∣∣∣∣∣∣

2

,

H ′ = H − F q ,

H =
p2

2m
+

1

2
mω2q2 .

We have calculated ϕ′
n(q) in Exercise 4.4.14 (Vol. 6):

ϕ′
n(q) =

(
2n n! q0

√
π
)−1/2

exp

[
−1

2

(
q − a

q0

)2
]
Hn

(
q − a

q0

)
,

a =
F

mω2
; q0 =

√
�

mω
.

For the ground-state of H we have already used in the preceding exercise:

ϕ0(q) =
(
q0

√
π
)−1/2

exp

[
−1

2

(
q

q0

)2
]

.

We write for abbreviation:

y =
q − a

q0
; y0 =

a

q0
.

It then follows with (4.163, Vol. 6),

Hn(y) = (−1)n ey
2 dn

dyn
e−y2

,

the following expression for wn:

wn =
(
2n n!π q20

)−1

∣∣∣∣∣∣
q0

+∞∫

−∞
dy e−(1/2)(y2+2y y0+y2

0−y2) dn

dyn
e−y2

∣∣∣∣∣∣

2

=
e−y2

0

2n n!π
|I|2 .

The integral

I =

+∞∫

−∞
dy e−y y0

dn

dyn
e−y2

can be n-times integrated by parts, where the integrated part always drops out:

I = (−y0)
n

+∞∫

−∞
dy e−y y0 e−y2

= (−y0)
n e(1/4) y

2
0

+∞∫

−∞
dz e−z2

=
√
π (−y0)

n e(1/4) y
2
0 .
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Transition probability:

wn =
a2n

q2n0 2n n!
exp

[
−1

2

(
a

q0

)2
]

.

Solution 7.3.5
The considerations about the transition probability in solution 7.3.3 are

again valid:

w1s→ 2s =

∣∣∣∣
∫

d3r ϕ
(Z)∗
100 (r)ϕ

(Z+1)
200 (r)

∣∣∣∣
2

.

(6.60):

ϕ
(Z)
100(r) =

√
Z3

π a3B
exp

(
−Z r

aB

)
.

(6.61):

ϕ
(Z+1)
200 (r) =

1

2

√
(Z + 1)3

2π a3B

(
1− (Z + 1)r

2aB

)
exp

(
− (Z + 1)r

2aB

)
.

Insertion leads to:

w1s→ 2s = 16 π2 Z3

π a3B

1

4

(Z + 1)3

2π a3B

∣∣∣∣∣∣

∞∫

0

dr r2
[
1− (Z + 1)r

2aB

]
·

· exp
{
− r

aB

[
Z +

1

2
(Z + 1)

]}∣∣∣∣∣∣

2

=
2

a6B
Z3(Z + 1)3|I1 − I2|2 ,

I1 =

∞∫

0

dr r2 exp

[
− r

2aB
(3Z + 1)

]
=
(

2aB
3Z + 1

)3 ∞∫

0

dy y2 e−y

︸ ︷︷ ︸
=Γ(3)=2!

= 2
(

2aB
3Z + 1

)3
,

I2 =
Z + 1

2aB

∞∫

0

dr r3 exp

[
− r

2aB
(3Z + 1)

]

=
Z + 1

2aB

(
2aB

3Z + 1

)4
Γ(4) = 3

Z + 1

aB

(
2aB

3Z + 1

)4
.

Transition probability:

w1s→ 2s = 211
Z3(Z + 1)3

(3Z + 1)8
.
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Solution 7.3.6

1. The formulas (7.115) and (7.118) yield:

w
(1)
12 (t) =

1

�2

∣∣∣
〈
ϕ
(0)
1 |H1|ϕ(0)

2

〉 ∣∣∣
2

t2 .

2a) We have solved this problem as Exercise 7.2.9. Using the abbreviation

Hαβ
1 ≡

〈
ϕ(0)
α |H1|ϕ(0)

β

〉
; α, β = 1, 2,

we get:

E
(1)
± =

1

2

{
H11

1 +H22
1 ±

√
(H11

1 −H22
1 )

2
+ 4 |H12

1 |2
}

,

∣∣∣ϕ(0)
±
〉

= c
(±)
1

∣∣∣ϕ(0)
1

〉
+ c

(±)
2

∣∣∣ϕ(0)
2

〉
,

∣∣∣c(±)
1

∣∣∣
2

=

∣∣H12
1

∣∣2
(
H11

1 − E
(1)
±

)2

+ |H12
1 |2

= 1−
∣∣∣c(±)

2

∣∣∣
2

.

We presume real coefficients and respect the orthogonality of the

states |ϕ(0)
± 〉:

〈
ϕ
(0)
+ |ϕ(0)

−
〉

= 0 = c
(+)
1 c

(−)
1 + c

(+)
2 c

(−)
2 .

If one still writes

∣∣H12
1

∣∣2 =
1

4

(√
(H11

1 −H22
1 )

2
+ 4 |H12

1 |2
)2

− 1

4

(
H11

1 −H22
1

)2

≡ 1

4
A2 − 1

4

(
H11

1 −H22
1

)2

and additionally

(
H11

1 −E
(1)
±

)2

+
∣∣H12

1

∣∣2 =
1

4

(
H11

1 −H22
1 ∓A

)2
+
∣∣H12

1

∣∣2

=
1

4

(
H11

1 −H22
1

)2
+
1

4
A2 ∓ 1

2
A
(
H11

1 −H22
1

)
+
∣∣H12

1

∣∣2

=
1

2
A
(
A∓ (

H11
1 −H22

1

))

then it follows:

∣∣∣c(±)
1

∣∣∣
2

=
1
4

(
A+

(
H11

1 −H22
1

)) (
A− (

H11
1 −H22

1

))

1
2
A (A∓ (H11

1 −H22
1 ))

=
1

2A

(
A± (

H11
1 −H22

1

))
.

This means for real c
(±)
1 :

c
(±)
1 =

⎧
⎨

⎩
1

2

⎛

⎝1± H11
1 −H22

1√
(H11

1 −H22
1 )

2
+ 4 |H12

1 |2

⎞

⎠

⎫
⎬

⎭

1/2

.
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With
c
(±)
2 = ±c

(∓)
1

orthogonality as well as normalization are then guaranteed!

2b) It holds obviously:

∣∣∣ϕ(0)
1

〉
=

c
(−)
2

∣∣∣ϕ(0)
+

〉
− c

(+)
2

∣∣∣ϕ(0)
−
〉

c
(+)
1 c

(−)
2 − c

(+)
2 c

(−)
1

.

The time-dependence of the ‘correct’ states of zeroth order are,
because of

H
∣∣∣ϕ(0)

±
〉

≈
(
E(0) + E

(1)
±

) ∣∣∣ϕ(0)
±
〉

,

relatively simple:
∣∣∣ϕ(0)

± (t)
〉

= e−(i/�)H t
∣∣∣ϕ(0)

±
〉

≈ e
−(i/�)

(
E(0)+E

(1)
±

)
t
∣∣∣ϕ(0)

±
〉

.

This means for the state of the system:

∣∣∣ϕ(0)
1 (t)

〉
= e−(i/�)H t

∣∣∣ϕ(0)
1

〉
≈ e−(i/�)E(0)t

c
(+)
1 c

(−)
2 − c

(+)
2 c

(−)
1

×

×
(
c
(−)
2 e−(i/�)E

(1)
+ t

∣∣∣ϕ(0)
+

〉
− c

(+)
2 e−(i/�)E

(1)
− t

∣∣∣ϕ(0)
−

〉)
.

2c) Because of 〈
ϕ
(0)
2

∣∣ϕ(0)
±
〉

= c
(±)
2

we have at first:

〈
ϕ

(0)
2

∣∣ϕ1(t)
〉
≈e−(i/�)E(0)t c

(+)
2 c

(−)
2

c
(+)
1 c

(−)
2 −c

(+)
2 c

(−)
1

(
e−(i/�)E

(1)
+

t−e−(i/�)E
(1)
− t

)
.

We need the square of the magnitude:

∣∣∣c(+)
2 c

(−)
2

∣∣∣
2

=
1

4

(
1−

(
H11

1 −H22
1

)2

(H11
1 −H22

1 )
2
+4 |H12

1 |2
)

,

∣∣∣c(+)
1 c

(−)
2 − c

(+)
2 c

(−)
1

∣∣∣
2

=

∣∣∣∣−
(
c
(+)
1

)2

−
(
c
(+)
2

)2
∣∣∣∣
2

= 1 ,

∣∣∣e−(i/�)E
(1)
+ t − e−(i/�)E

(1)
− t

∣∣∣
2

=

∣∣∣∣e
−(i/�)

(
E

(1)
+ −E

(1)
−

)
t − 1

∣∣∣∣
2

=

{
cos

[
1

�

(
E

(1)
+ − E

(1)
−

)
t

]
− 1

}2

+sin2
[
1

�

(
E

(1)
+ − E

(1)
−

)
t

]

= 2

{
1− cos

[
1

�

(
E

(1)
+ − E

(1)
−

)
t

]}
.
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After all, this yields the following transition probability:

w̃12(t) =

∣∣H12
1

∣∣2

(H11
1 −H22

1 )
2
+ 4 |H12

1 |2

×
[
1− cos

(
1

�

√
(H11

1 −H22
1 )

2
+ 4 |H12

1 |2 t
)]

.

It oscillates with the frequency:

ω =
1

�

√
(H11

1 −H22
1 )

2
+ 4 |H12

1 |2 .

2d) Perturbation theory of first order is applicable only for small pertur-
bation times. For t � 1/ω it holds approximately:

w̃12(t) ≈ 1

�2

∣∣H12
1

∣∣2 t2 .

This agrees with the result for w
(1)
12 from part 1.!

Solution 7.3.7

1. H = H0 +H1t

H0|n〉 = �ω

(
n+

1

2

)
|n〉 ,

H1t = −q F e−αt2z .

Transition probability (7.110):

w
(1)
0n (∞) =

1

�2

∣∣∣∣∣∣

+∞∫

−∞
dt1〈n|H1 t1 |0〉 e(i/�)�ω n t1

∣∣∣∣∣∣

2

=
q2F 2

�2
|〈n|z|0〉|2

∣∣∣∣∣∣

+∞∫

−∞
dt1 exp

(−α t21 + i ω n t1
)
∣∣∣∣∣∣

2

.

According to ((4.127), Vol. 6):

〈n|z|0〉 =
√

�

2mω
〈n|(a+ a+)|0〉 =

√
�

2mω
δn1 .
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Evaluation of the integral:

+∞∫

−∞
dt1 exp

(
−α t21 + i ω n t1

)
=

+∞∫

−∞
dt1 exp

[
−α

(
t1 − i ω n

2α

)2

− ω2n2

4α

]

= exp

(
−ω2n2

4α

)
1√
α

+∞− i x∫

−∞− i x

dy e−y2

; x =
ω n

2
√
α

,

+∞− i x∫

−∞− i x

dy e−y2

=
√
π (see Exercise 2.2.2, Vol. 6) .

It results therewith as transition probability:

w
(1)
0n (∞) =

q2F 2π

2mα�ω
e−(n2ω2/2α) δn1 .

Residence probability (7.107):

ŵ
(1)
00 (∞) = 1−

�=0∑

n

w
(1)
0n (∞) = 1− q2F 2π

2mα �ω
e−(ω2/2α) .

2. Requirement:

w
(1)
0n (∞) � 1 ; ŵ

(1)
00 (∞) � 1 .

This means:
q2F 2π

2mα �ω
e−(ω2/2α) � 1 .

Solution 7.3.8
According to (7.110) it is to evaluate:

w
(1)
n0 (t) =

1

�2

∣∣∣∣∣∣

t∫

0

dt′ (0)〈n|H1t′ |0〉(0) exp
(
i

�

(
E(0)

n − E
(0)
0

)
t′
)∣∣∣∣∣∣

2

.

We utilize for this purpose:

E(0)
n − E

(0)
0 = n�ω

(0)〈n|H1t|0〉(0) = c e−γt (0) 〈n| (a2 + a†2
) |0〉(0)

a|0〉(0) = 0

a†|0〉(0) =
√
1 |1〉(0)

a†2|0〉(0) =
√
1
√
2 |2〉(0)

�
(0)〈n|H1t|0〉(0) =

√
2 c e−γtδn2 .
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It follows therewith:

w
(1)
n0 (t) = 2

c2

�2

∣∣∣∣∣∣

t∫

o

dt′ e−γt′ eniωt′

∣∣∣∣∣∣

2

δn2

= 2
c2

�2

∣∣∣∣
1

−γ + niω

(
e(niω−γ)t − 1

)∣∣∣∣
2

δn2

= 2
c2

�2

1

γ2 + n2ω2

(
e(niω−γ)t − 1

)(
e(−niω−γ)t − 1

)
δn2

=
2c2

�2(γ2 + n2ω2)

(
e−2γt + 1− e−γt 2 cos(nωt)

)
δn2

=
2c2

�2(γ2 + n2ω2)
e−γt (2 cosγt− 2 cos(nωt)) δn2

� w
(1)
n0 (t) =

4c2

�2(γ2 + n2ω2)
e−γt (cos γt− cos(nωt)) δn2 .

Solution 7.3.9

1.

H0 |n〉 = εn|n〉 ; n = 1, 2 .

Schrödinger equation

i�
∂

∂t
|n(t)〉 = H0 |n(t)〉 = εn|n(t)〉 .

H0 is time-independent. Therefore:

|n(t)〉 = e−
i
�
H0t |n〉 = e−

i
�
εt |n〉 .

e−
i
�
H0t is the time evolution operator of the ‘free’ system.

2. General state:

|ψ(t)〉 =
2∑

n′=1

αn′(t)|n′(t)〉 =
2∑

n′=1

αn′(t) e−
i
�
εn′ t|n′〉

Time-dependent Schrödinger equation:

i�
∂

∂t
|ψ(t)〉 =

2∑

n′=1

(i�α̇n′(t) + εn′ αn′(t)) e−
i
�
εn′ t|n′〉

!
= (H0 +H1t) |ψ(t)〉

=

2∑

n′=1

αn′(t) e−
i
�
εn′ t (εn′ +H1t) |n′〉

� i�
2∑

n′=1

α̇n′(t) e−
i
�
εn′ t|n′〉 =

2∑

n′=1

αn′(t) e−
i
�
εn′ t H1t |n′〉 .
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Scalar multiplication from the left by 〈n|:

i�α̇n(t) =
2∑

n′=1

αn′(t) e
i
�
(εn−εn′)t 〈n|H1t |n′〉 .

That yields a coupled system of equations:

i�α̇1(t) = �ω0 e
i
�
(ε1−ε2)t α2(t) e

iωt

i�α̇2(t) = �ω0 e
i
�
(ε2−ε1)t α1(t) e

−iωt .

With the abbreviation

�ω = ε2 − ε1 − �ω

it remains to be solved:

i α̇1(t) = ω0 α2(t) e
−iωt

i α̇2(t) = ω0 α1(t) e
iωt .

From the second equation it follows:

i α̈2 = ω0α̇1(t)e
iωt + iωω0α1(t)e

iωt

= −iω2
0α2(t)e

−iωteiωt + iωω0
iα̇2(t)

ω0
e−iωteiωt

� α̈2(t)− iω α̇2(t) + ω2
0 α2(t) = 0 .

Ansatz:

α2(t) = Aeγt

� γ2 − iωγ + ω2
0 = 0

� γ± =
1

2
iω ± id ; d2 = ω2

0 +
1

4
ω2

� α2(t) = e
1
2 iωt

(
A+e

idt +A−e−idt
)
.

Initial condition:

α2(0)
!
= 0 = A+ +A− � A+ = −A− .

Therewith it follows:

α2(t) = A sin(dt) e
1
2 iωt (A = 2iA+) .

The second coefficient is calculated from:

α1(t) =
i

ω0
e−iωt α̇2(t) =

i

ω0
e−iωt Ae

1
2 iωt

(
d cos(dt) +

1

2
iω sin(dt)

)
.
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Initial condition:

α1(0)
!
= 1 =

id

ω0
A � A = −i

ω0

d
.

That leads to the complete solution:

α1(t) = e−
1
2 iωt

(
cos(dt) +

iω

2d
sin(dt)

)

α2(t) = −i
ω0

d
sin(dt) e

1
2 iωt d =

√
ω2
0 +

1

4
ω2 .

Occupation probabilities:

|α1(t)|2 = cos2(dt) +
ω2

4d2
sin2(dt)

|α2(t)|2 =
ω2
0

d2
sin2(dt) .

Because of

d2 = ω2
0 +

1

4
ω2

it is obviously:

|α1(t)|2 + |α2(t)|2 = 1 .

The occupation probabilities are periodic functions of the time. At the
points of time

tn = 2nπ
1

d

the system is in the ground-state |1〉. A perturbation (e.g. light source),
switched on at t = 0 and switched off at t = tn allows the system to be in
the ground state!

3. Transition probability in first order perturbation theory:

w
(1)
21 (t) =

1

�2

∣∣∣∣
∫ t

0

dt1 〈2|H1t1 |1〉 e
i
�
(ε2−ε1)t1

∣∣∣∣
2

=
1

�2

∣∣∣∣
∫ t

0

dt1 �ω0 e
iωt1

∣∣∣∣
2

=
ω2
0

ω2

∣∣ eiωt − 1
∣∣2

=
ω2
0

ω2

∣∣∣ ei
1
2ωt

(
ei

1
2ωt − e−i 12ωt

)∣∣∣
2

w
(1)
21 (t) = 4

ω2
0

ω2 sin2
(
1

2
ωt

)
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That can be compared with the exact expression for |α2(t)|2 from part 2.
For a weak perturbation

ω0 � |ω| ; d ≈ 1

2
ω

the exact solution can be approximated:

|α2(t)|2 =
ω2
0

d2
sin2(dt) ≈ 4ω2

0

ω2 sin2
(
1

2
ωt

)
.

In the case of weak perturbation the perturbation theory of first order
thus becomes exact!

Solution 7.3.10

1. Schrödinger picture
lim

t→−∞ ρt = ρ0

Dirac picture

lim
t→−∞ ρDt (t) = ρ0 (boundary condition)

(ρ̇0 = 0 → [ρ0, H0]− = 0).
Equation of motion (3.207), Vol. 6:

ρ̇Dt (t) =
i

�
[ρDt (t), H

D
1t(t)]−

Formal integration

ρDt (t) = ρ0 − i

�

t∫

−∞
t.
′[HD

1t′(t
′), ρDt′ (t

′)]− .

ρDt (t): t as index refers to an explicit time-dependence due to an external
perturbation means, while that in the argument refers to the ‘dynamic’
time-dependence in the Dirac picture.

2. Formal solution by iteration:

ρDt (t) = ρ0 +

∞∑

n=1

ρ
D(n)
t (t)

ρ
D(n)
t (t) = (− i

�
)n

t∫

−∞
dt1

t1∫

−∞
dt2 . . .

tn−1∫

−∞
dtn

×[HD
1t1(t1), [H

D
1t2(t2), [. . . [H

D
1tn(tn), ρ0]− . . .]−]−]− .
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3. Linear response

ρDt (t) ≈ ρ0 − i

�

t∫

−∞
dt′[HD

1t′(t
′), ρ0]−

→ Schrödinger picture:

ρt = ρ0 − i

�

t∫

−∞
dt′e−

i
�
H0t[HD

1t′(t
′), ρ0]−e

i
�
H0t .

Expectation values:

〈Â〉t = Tr(ρtÂ)

〈Â〉0 = Tr(ρ0Â) .

We find:

ΔAt = − i

�

t∫

−∞
dt′ Tr(e−

i
�
H0t[HD

1t′(t
′), ρ0]−e

i
�
H0tÂ)

= − i

�

t∫

−∞
dt′ f(t′)Tr

(
[BD(t′), ρ0]−AD(t)︸ ︷︷ ︸

=Bρ0A− ρ0BA

)

= − i

�

t∫

−∞
dt′ f(t′)Tr(ρ0[AD(t), BD(t′)]−)

= − i

�

t∫

−∞
dt′ f(t′) 〈[AD(t), BD(t′)]−〉0 .

In the first and the second step we have utilized the cyclic invariance of
the trace. The averaging in the last row is done in the free(!) system.

Section 7.4.7

Solution 7.4.1
It holds:

k(q) =

√
2m

�

√
E − V (q) =

1

�

√

2m

(
E − 1

2
mω2q2

)
.

Classical turning points:

q∗1,2 = ±
√

2E

mω2
.
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We calculate the integral

I =

q∗2∫

q∗1

dq
1

�

√

2m

(
E − 1

2
mω2q2

)
=

√
2mE

�

q∗2∫

q∗1

dq

√
1− mω2

2E
q2

using the substitution

y =

√
m

2E
ω q =⇒ dq =

√
2E

m

1

ω
dy,

which leads to a standard integral:

I =
2E

�ω

+1∫

−1

dy
√
1− y2 =

2E

�ω

1

2
arcsiny

∣∣∣∣
+1

−1

=
Eπ

�ω
.

The WKB-condition (7.187) requires:

I
!
=

(
n+

1

2

)
π =⇒ E = �ω

(
n+

1

2

)
; n ∈ Z .

In this case the WKB-procedure is thus exact!

Solution 7.4.2
The α → 0-behavior of the Bessel function is known (7.194):

J1/3(α) ∼ α1/3 ; J−1/3(α) ∼ α−1/3 .

Furthermore it holds near the turning point α = 0:

k(α) ∼ α1/3 =⇒
√

α

k
∼ α1/3 .

The two terms of the Langer solution thus behave as follows:

√
α

k
J1/3(α) ∼ α2/3 ;

√
α

k
J−1/3(α) ∼ α0 .

They therefore remain finite for α → 0.

Solution 7.4.3

1. According to (7.160) the WKB-solution reads in the classically allowed
region:

û(α) =
γ∗
+√
k
ei(α−π/4) +

γ∗
−√
k
e−i(α−π/4) .

Here it turns out to be useful to split off the factors e±iπ/4:

û(α) =
1√
k

{(
γ∗
+ + γ∗

−
)
cos

(
α− π

4

)
+ i

(
γ∗
+ − γ∗

−
)
sin

(
α− π

4

)}
.
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With the ansatz

γ∗
± =

1

2
γ̂ e±i ϕ ; γ̂, ϕ : complex constants

it follows:

û(α) =
γ̂√
k

{
cosϕ cos

(
α− π

4

)
− sinϕ sin

(
α− π

4

)}
.

In the classically allowed region the WKB-solution therewith has the struc-
ture,

û(α) =
γ̂√
k
cos

(
α− π

4
+ ϕ

)
,

where:

γ± =
1

2
γ̂ e±i(ϕ+π/4) .

2. Asymptotically it holds with (7.195) for the Langer solution (7.170):

v(α) −→
α→∞

√
2

πk

{
(a+b) cos

π

6
cos

(
α−π

4

)
+(a−b) sin

π

6
sin

(
α−π

4

)}
,

cos
π

6
=

1

2

√
3 ; sin

π

6
=

1

2
.

Comparison with the WKB-solution yields:

√
3

2π
(a+ b) = γ̂ cosϕ ,

√
1

2π
(a− b) = −γ̂ sinϕ

or:

a+ b =

√
2π

3
γ̂ cosϕ ; a− b = −√

2π γ̂ sinϕ .

3. For the Langer solution v(α) one finds, according to (7.172), in the clas-
sically forbidden regions:

v(α) =

√∣∣∣
α

k

∣∣∣
(−a I1/3 (|α|) + b I−1/3 (|α|)

)

=

√∣∣∣
α

k

∣∣∣
{
−1

2
(a+ b)

(
I 1

3
(|α|) − I−1/3(|α|)

)

−1

2
(a− b)

(
I1/3 (|α|) + I−1/3 (|α|)

)}
.
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Asymptotic behavior of the modified Bessel functions:

I1/3(|α|) + I−1/3(|α|)
(7.212)−→
|α|→∞

2√
2π|α|

e|α| ,

I1/3(|α|) − I−1/3(|α|)
(7.208)
= − 2

π
sin

1

3
πK−1/3(|α|)

(7.212)−→
|α|→∞

−
√

3

2π|α| e
−|α|

(
sin

1

3
π =

1

2

√
3
)

.

This means:

v(α) −→
|α|→∞

1√|k|

[
1

2
(a+ b)

√
3

2π
e−|α| − (a− b)

1√
2π

e|α|
]

.

4. WKB-solution (7.160) in the classically forbidden region:

û(α) =
1√|k|

(
δ+ e|α| + δ− e−|α|

)
.

Asymptotic comparison with v(α):

δ+ = − 1√
2π

(a− b)
2)
= γ̂ sinϕ ,

δ− =
1

2

√
3

2π
(a+ b)

2)
=

1

2
γ̂ cosϕ .

From that follows the assertion:

û(α) =
γ̂√|k|

(
sinϕe|α| +

1

2
cosϕe−|α|

)
.

Solution 7.4.4

1. ρ∗1 is a right-hand turning point. With the underlying assumptions the
classically forbidden region ρ∗1 < ρ can be approximately considered as
reaching up to infinity so that (7.182) and (7.183) become valid:

ρ < ρ∗1 : û(ρ) =
γ√
k
cos

⎡

⎢⎣

ρ∗
1∫

ρ

dρ′k(ρ′)− π

4

⎤

⎥⎦ ,

ρ > ρ∗1 : û(ρ) =
γ

2
√
k
exp

⎡

⎢⎣−
ρ∫

ρ∗
1

dρ′ |k(ρ′)|

⎤

⎥⎦ .
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2.

ρ < ρ∗1 : û(ρ) =
γ

2
√
k

⎧
⎪⎨

⎪⎩
exp

⎡

⎢⎣i

⎛

⎜⎝

ρ∗
1∫

ρ

dρ′k(ρ′)− π

4

⎞

⎟⎠

⎤

⎥⎦

+ exp

⎡

⎢⎣−i

⎛

⎜⎝

ρ∗
1∫

ρ

dρ′k(ρ′)− π

4

⎞

⎟⎠

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
.

The second(!) summand represents the incident wave, the first summand
the reflected wave:

ûin(ρ) =
γ

2
√
k
exp

⎡

⎢⎣−i

⎛

⎜⎝

ρ∗
1∫

ρ

dρ′k(ρ′)− π

4

⎞

⎟⎠

⎤

⎥⎦

=⇒ d

dρ
ûin(ρ) =

(
−1

2

k′

k
+ i k

)
ûin(ρ)

=⇒ û∗
in (ρ)

d

dρ
ûin(ρ) =

1

4
|γ|2

(
−1

2

k′

k2
+ i

)
.

Analogously one finds:

ûin(ρ)
d

dρ
û∗
ein (ρ) =

1

4
|γ|2

(
−1

2

k′

k2
− i

)
.

Current density (4.55), Vol. 6:

jin =
�

2mi

(
û∗
in (ρ)

d

dρ
ûin (ρ)− ûin (ρ)

d

dρ
û∗
in (ρ)

)

=⇒ jin =
�

4m
|γ|2 .

3. At first, the general solutions (7.184) and (7.185) are valid. ρ∗2 is a left-
hand turning point.

ρ∗
2 < ρ

û(ρ) =
γ̂

2
√
k

⎧
⎪⎨

⎪⎩
exp

⎡

⎢⎣i

⎛

⎜⎝
ρ∫

ρ∗
2

dρ′k(ρ′)− π

4
+ ϕ

⎞

⎟⎠

⎤

⎥⎦

+ exp

⎡

⎢⎣−i

⎛

⎜⎝
ρ∫

ρ∗
2

dρ′k(ρ′)− π

4
+ ϕ

⎞

⎟⎠

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
.
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No reflection at ρ = +∞ means:

γ̂ e−iϕ !
= 0 =⇒ γ̂ cosϕ = i γ̂ sinϕ (γ̂, ϕ complex !)

=⇒ γ̂ e+iϕ = 2i γ̂ sinϕ .

Outgoing wave:

ûout(ρ) = i
γ̂√
k
sinϕ exp

⎡

⎢⎣i

⎛

⎜⎝
ρ∫

ρ∗
2

dρ′k(ρ′)− π

4

⎞

⎟⎠

⎤

⎥⎦ .

ρ < ρ∗
2

û(ρ) =
γ̂√|k| sinϕ

(
i

2
e−|α| + e|α|

)
.

In the WKB-validity region the first term can in any case be neglected
compared to the second summand:

û(ρ) ≈ γ̂√|k| sinϕ exp

⎡

⎢⎣

ρ∗
2∫

ρ

|k(ρ′)| dρ′
⎤

⎥⎦ .

4. Calculation for jout is equivalent to that for jin in part 2.:

ρ∗
2 < ρ

jout =
�

2mi

(
û∗
out

d

dρ
ûout − ûout

d

dρ
û∗
out

)
=

�

m
|γ̂|2 sin2 ϕ .

5. According to the partial results 2. and 4. it follows at first:

T (E) =

∣∣∣∣
jout
jin

∣∣∣∣ = 4

∣∣∣∣
γ̂

γ

∣∣∣∣
2

sin2 ϕ .

The still missing connection between γ̂ and γ is given by the requirement
that for ρ∗1 < ρ < ρ∗2 the WKB-solution with respect to ρ∗1 must coincide
with that for ρ∗2. It holds according to 1. and 3.:

γ

2
√
k

exp

⎡

⎢⎣−
ρ∫

ρ∗
1

dρ′ |k(ρ′)|

⎤

⎥⎦ !
=

γ̂√|k| sinϕ exp

⎡

⎢⎣

ρ∗
2∫

ρ

|k(ρ′)| dρ′
⎤

⎥⎦

=⇒ γ = 2 γ̂ sinϕ exp

⎡

⎢⎣

ρ∗
2∫

ρ∗
1

|k(ρ′)| dρ′
⎤

⎥⎦ .

This means:

T (E) = exp

⎡

⎢⎣−2

ρ∗
2∫

ρ∗
1

|k(ρ′)| dρ′
⎤

⎥⎦ (see 7.186) .
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Solution 7.4.5

J−n(z) =
(z
2

)−n ∞∑

k=0

(−1)k

k! Γ(k − n+ 1)

(z
2

)2k

=
(z
2

)n ∞∑

k=0

(−1)k

k! Γ(k − n+ 1)

(z
2

)2(k−n)

=
(z
2

)n ∞∑

k′=−n

(−1)k
′+n

(k′ + n)! Γ(k′ + 1)

(z
2

)2k′

= (−1)n
(z
2

)n ∞∑

k′=0

(−1)k
′

(k′ + n)! Γ(k′ + 1)

(z
2

)2k′

−(−1)n
(z
2

)n 0∑

k′=−n

(−1)k
′

(k′ + n)! Γ(k′ + 1)

(z
2

)2k′

.

Because of 2. the second sum vanishes.

J−n(z)
1.
= (−1)n

(z
2

)n ∞∑

k′=0

(−1)k
′

(k′ + n)! k′!

(z
2

)2k′

1.
= (−1)n

(z
2

)n ∞∑

k′=0

(−1)k
′

Γ(k′ + n+ 1) k′!

(z
2

)2k′

= (−1)n Jn(z) .

Solution 7.4.6

•
J1/2(z) =

(z
2

) 1
2

∞∑

k=0

(−1)k

k! Γ(k + 1
2 + 1)

(z
2

)2k

.

We consider at first the denominator of this expression:

22kk!Γ
(
k +

1

2
+ 1

)
= (2k)!!2k

(
k +

1

2

)
Γ
(
k +

1

2

)

= (2k)!!2k
(
k +

1

2

)(
k − 1 +

1

2

)
· · ·

(
k − k +

1

2

)
Γ
(
1

2

)

=
1

2
(2k)!!(2k + 1)(2k − 1) · · · · 1√π

=
1

2
(2k)!!(2k + 1)!!

√
π

=
1

2

√
π(2k + 1)!

It follows therewith:

J1/2(z) =

(
1

2z

) 1
2 2√

π

∞∑

k=0

(−1)k

(2k + 1)!
z2k+1

=

√
2

πz
sin z
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•
J−1/2(z) =

(z
2

)− 1
2

∞∑

k=0

(−1)k

k! Γ(k − 1
2 + 1)

(z
2

)2k

.

We consider at first again the denominator:

22kk!Γ(k − 1

2
+ 1) = (2k)!!2k

(
k − 1

2

)(
k − 1− 1

2

)
· · ·

· · ·
(
k − (k − 1)− 1

2

)
Γ

(
1

2

)

= (2k)!!(2k − 1)!!
√
π = (2k)!

√
π .

It remains:

J−1/2(z) =

√
2

πz

∞∑

k=0

(−1)k

(2k)!
z2k

=

√
2

πz
cos z .

Solution 7.4.7

1.

exp

(
z

2

(
t− 1

t

))
= exp

(
zt

2

)
exp

(
− z

2t

)

=

∞∑

r=0

tr

r!

(z
2

)r ∞∑

s=0

(−1)s

s!

(z
2

)s

t−s

=
∞∑

s=0

∞∑

r=0

(−1)s

s! r!

(z
2

)r+s

tr−s .

Take n = r − s, where n can take integral values between −∞ and +∞:

exp

(
z

2

(
t− 1

t

))
=

+∞∑

n=−∞

( ∞∑

s=0

(−1)s

s! (n+ s)!

(z
2

)2s+n
)

tn

(7.190)
=

+∞∑

n=−∞
Jn(z) t

n .

2. Partial differentiation of the generating function with respect to t:

z

2

(
1 +

1

t2

)
exp

(
z

2

(
t− 1

t

))
=

+∞∑

n=−∞
nJn(z)t

n−1

�
z

2

+∞∑

n=−∞
Jn(z)t

n +
z

2

+∞∑

n=−∞
Jn(z)t

n−2 =

+∞∑

n=−∞
nJn(z)t

n−1

�
z

2

+∞∑

n=−∞
Jn−1(z)t

n−1 +
z

2

+∞∑

n=−∞
Jn+1(z)t

n−1 =

+∞∑

n=−∞
nJn(z)t

n−1 .
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Comparison of the coefficients of equal powers of t:

z

2
(Jn−1(z) + Jn+1(z)) = nJn(z) .

That is the assertion! It represents a very useful formula. When one has
found J0 and J1 via the definition equation (7.190), then one can derive
step-by-step all higher indexed Bessel functions by the use of this recursion
formula.

3. Partial differentiation of the generating function with respect to z:

1

2

(
t− 1

t

)
exp

(
z

2

(
t− 1

t

))
=

+∞∑

n=−∞

(
d

dz
Jn(z)

)
tn

�
1

2

+∞∑

n=−∞
Jn(z)t

n+1 − 1

2

+∞∑

n=−∞
Jn(z)t

n−1 =

+∞∑

n=−∞

(
d

dz
Jn(z)

)
tn

�
1

2

+∞∑

n=−∞
Jn−1(z)t

n − 1

2

+∞∑

n=−∞
Jn+1(z)t

n =

+∞∑

n=−∞

(
d

dz
Jn(z)

)
tn .

Comparison of coefficients:

1

2
(Jn−1(z)− Jn+1(z)) =

d

dz
Jn(z)

4. Addition of the recursion formulas 2. (7.203) and 3. (7.204):

2Jn−1(z) =
2n

z
Jn(z) + 2

d

dz
Jn(z) �

d

dz
Jn(z) = Jn−1(z)− n

z
Jn(z) .

Subtraction of the two recursion formulas:

2Jn+1(z) =
2n

z
Jn(z)− 2

d

dz
Jn(z) �

d

dz
Jn(z) = −Jn+1(z) +

n

z
Jn(z)

5. Multiplication of the recursion formula in 4. by zn:

zn
d

dz
Jn(z) = znJn−1(z)− nzn−1Jn(z)

�
d

dz

(
zn Jn(z)

)
= zn Jn−1(z) .

Alternative derivation by multiplying the second version of the recursion
formula in 4. by −z−n:

−z−n d

dz
Jn(z) = +z−nJn+1(z)− nz−n−1Jn(z)

�
d

dz

(
z−n Jn(z)

)
= −z−n Jn+1(z) .
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Section 8.1.4

Solution 8.1.1

|ϕ2〉 =
∑∫

i, j

αij(ϕ)
∣∣∣ϕ(1)

i

〉 ∣∣∣ϕ̂(2)
j

〉
,

|ψ2〉 =
∑∫

i, j

αij(ψ)
∣∣∣ψ(1)

i

∣∣ψ̂(2)
j

〉
.

It is convenient to expand the one-particle states on the right-hand side in

the orthonormalized bases
{
|a(1)n 〉

}
,
{
|b(2)m 〉

}
of the H(1)

1 and H(2)
1 , respectively

(see (8.14)):

|ϕ2〉 =
∑∫

n,m

γnm(ϕ)
∣∣∣a(1)n

〉 ∣∣∣b(2)m

〉
,

|ψ2〉 =
∑∫

n,m

γnm(ψ)
∣∣∣a(1)n

〉 ∣∣∣b(2)m

〉
.

Equation (8.11) then reads:

〈ψ2|ϕ2〉 =
∑∫

n,m

∑∫

n′,m′

γ∗
nm(ψ)γn′m′(ϕ)

〈
a(1)n

∣∣∣a(1)n′

〉 〈
b(1)m

∣∣∣b(1)m′

〉

=
∑∫

n,m

γ∗
nm(ψ)γnm(ϕ) .

The axioms can therewith easily be verified:

1.

〈ψ2|ϕ2〉 =
⎛

⎝
∑∫

n,m

γ∗
nm(ϕ)γnm(ψ)

⎞

⎠
∗

= 〈ϕ2|ψ2〉∗ ((3.15),Vol. 6) .

2.

〈ψ2|ϕ2+χ2〉=
∑∫

n,m

γ∗
nm(ψ)

(
γnm(ϕ)+γnm(χ)

)
=〈ψ2|ϕ2〉+〈ψ2|χ2〉 ((3.16),Vol. 6)

3. c ∈ C
〈ψ2|c ϕ2〉 =

∑∫

n,m

γ∗nm(ψ) (c γnm(ϕ)) =
∑∫

n,m

(
c∗γnm(ψ)

)∗
γnm(ϕ)

= c
∑∫

n,m

γ∗nm(ψ) γnm(ϕ)= 〈c∗ψ2|ϕ2〉 = c〈ψ2|ϕ2〉 ((3.17),Vol. 6) .

4.

〈ϕ2|ϕ2〉 =
∑∫

n,m

|γnm(ϕ)|2 ≥ 0 ,

〈ϕ2|ϕ2〉=0 ⇐⇒ γnm(ϕ) = 0 ∀n,m ⇐⇒ |ϕ2〉= |0〉 ((3.18),Vol. 6) .
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Solution 8.1.2

1. Matrix elements of the operator A
(1)
1 = A

(1)
1 1l

(2)
1 :

〈
an bm

∣∣∣A(1)
1 1l

(2)
1

∣∣∣ ap bq
〉

=
〈
a(1)n

∣∣∣A(1)
1

∣∣∣ a(1)p

〉 〈
b(2)m

∣∣b(2)q

〉
= αnp δmq .

pq →
nm
↓ 11 12 21 22

11 α11 0 α12 0

A
(1)
1 ⇐⇒ 12 0 α11 0 α12

⎛

⎜⎝

⎞

⎟⎠21 α21 0 α22 0
22 0 α21 0 α22

2. Matrix elements of the operator B
(2)
1 = 1l

(1)
1 ·B(2)

1 :

〈
an bm

∣∣∣1l(1)1 ·B(2)
1

∣∣∣ ap bq
〉

=
〈
a(1)n

∣∣a(1)p

〉 〈
b(2)m

∣∣B(2)
1 |b(2)q

〉
= δnp βmq .

pq →
nm
↓ 11 12 21 22

11 β11 β12 0 0

B
(2)
1 ⇐⇒ 12 β21 β22 0 0

⎛

⎜⎝

⎞

⎟⎠21 0 0 β11 β12

22 0 0 β21 β22

3. Matrix element of the operator A
(1)
1 B

(2)
1 :

〈
an bm

∣∣∣A(1)
1 B

(2)
1

∣∣∣ ap bq
〉
=
〈
a(1)n

∣∣∣A(1)
1

∣∣∣ a(1)p

〉 〈
b(2)m

∣∣∣B(2)
1

∣∣∣ b(2)q

〉
=αnp βmq .

pq →
nm
↓ 11 12 21 22

11 α11 β11 α11 β12 α12 β11 α12 β12

A
(1)
1 B

(2)
1 ⇐⇒ 12 α11 β21 α11 β22 α12 β21 α12 β22

⎛

⎜⎝

⎞

⎟⎠21 α21 β11 α21 β12 α22 β11 α22 β12

22 α21 β21 α21 β22 α22 β21 α22 β22

This matrix is of course identical to the product of the two matrices from
1. and 2.!

Commutation of the operators A
(1)
1 and B

(2)
1 means only that in each

matrix element the complex numbers αij and βij are to be interchanged.
Because of αij βij = βij αij∀i, j it is also

A
(1)
1 B

(2)
1 = B

(2)
1 A

(1)
1 .
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Section 8.2.7

Solution 8.2.1
It holds in general, according to ((3.169), Vol. 6), for the time evolution

operator

i �
d

dt
U(t, t0) = HN U (t, t0)

with the boundary condition U(t0, t0) = 1lN . In any case:

[HN , Pij ]− = 0 .

We multiply the above differential equation from the left as well as from the
right by Pij :

i �
d

dt
Pij U Pij = Pij HN U Pij = HN Pij U Pij .

Boundary condition:

Pij U(t0, t0)Pij = P 2
ij = 1lN .

We see that U as well as Pij U Pij are solutions of the same differential equation
of first order with identical boundary condition. Because of the uniqueness of
the solution of such a differential equation we have to conclude

U = Pij U Pij .

Therefore:

U Pij = Pij U P 2
ij = Pij U =⇒ [U, Pij ]− = 0

Solution 8.2.2

〈
ϕ
(+)
N |AN |ψ(−)

N

〉
(8.50)
=

〈
ϕ
(+)
N

∣∣P+
ij AN Pij

∣∣ψ(−)
N

〉

(8.60)
= −

〈
ϕ
(+)
N |AN |ψ(−)

N

〉
= 0 .

Solution 8.2.3

1. N = 2:

S
(+)
2 =

1

2
(1l2 + P12) ,

S
(−)
2 =

1

2
(1l2 − P12)

=⇒ S
(+)
2 + S

(−)
2 = 1l2 .

H(+)
2 and H(−)

2 obviously build the entire H2.
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2. N = 3:

S
(+)
3 =

1

6
(1l3 + P12 + P13 + P23 + P12 P23 + P12 P13) ,

S
(−)
3 =

1

6
(1l3 − P12 − P13 − P23 + P12 P23 + P12 P13)

=⇒ S
(+)
3 + S

(−)
3 �= 1l3 .

H3 contains states with components, which belong neither to H(+)
N nor to

H(−)
N .

Solution 8.2.4
Let |ϕ(±)

N 〉, |ψ(±)
N 〉 be arbitrary elements of the H(±)

N :

〈
ϕ
(±)
N

∣∣P+
∣∣ψ(±)

N

〉
=

〈
P ϕ

(±)
N

∣∣ψ(±)
N

〉
(8.60)
= (±)p

〈
ϕ
(±)
N

∣∣ψ(±)
N

〉

(8.60)
=

〈
ϕ
(±)
N

∣∣P ψ
(±)
N

〉
=
〈
ϕ
(±)
N |P|ψ(±)

N

〉

=⇒ P = P+ in H(±)
N .

Solution 8.2.5

1.

H = H(1) +H(2) = − �
2

2m

(
d2

dq21
+

d2

dq22

)
+ V (q1) + V (q2) .

The Hamilton operator does not contain any spin contributions. Further-
more, H commutes of course with the total spin operators S2, Sz. There-
fore there must exist common eigen-states, which factorize in position and
spin states:

|E2〉 = |q〉|S, MS〉(+) .

According to the presumption, the spin state is symmetric. The position
state |q〉 as well as the total state |E2〉 must therefore be symmetric for
bosons, and antisymmetric for fermions.

2. Non-symmetrized product state:

|ϕα1 ϕα2〉 =
∣∣∣ϕ(1)

α1

〉 ∣∣∣ϕ(2)
α2

〉
.

(Anti)symmetrized:

|ϕα1 ϕα2〉(±) =
1√
2

(∣∣∣ϕ(1)
α1

〉 ∣∣∣ϕ(2)
α2

〉
±
∣∣∣ϕ(2)

α1

〉 ∣∣∣ϕ(1)
α2

〉)
.

The corresponding one-particle problem is solved as Exercise 4.2.1 in
Vol. 6. We take over:



APPENDIX A. SOLUTIONS OF THE EXERCISES 507

Quantum numbers:

α ≡ (n, γ) ; γ = ± : parity.

Position representation:

γ = − : ϕn−(q) =
1√
q0

sin

(
π

q0
n q

)
,

En− =
�
2π2

2mq20
n2 , n = 1, 2, 3, . . .

γ = + : ϕn+(q) =
1√
q0

cos

[
π

2q0
(2n+ 1) q

]
,

En+ =
�
2π2

8mq20
(2n+ 1)2 n = 0, 1, 2, . . . .

It results for the position part

|q〉(±) =⇒ 1√
2
{ϕnγ(q1)ϕn′γ′(q2)± ϕnγ(q2)ϕn′γ′(q1)}

with (n, γ) �= (n′, γ′) for fermions, because the spin quantum numbers are
the same for both particles. In contrast, no restriction for bosons!

Eigen-energies:

Enγ,n′γ′ = Enγ + En′γ′

with (n, γ) �= (n′, γ′) for fermions.

3. Ground-state energies:
Ground-state of the one-particle system:

E0+ =
�
2π2

8mq20
.

First excited state of the one-particle system:

E1− =
�
2π2

2mq20
.

=⇒ Ground-state energy of

two bosons: EB
0 = 2E0+ ,

two fermions: EF
0 = E0+ + E1− .

Solution 8.2.6

1. We have antisymmetric fermion-states. Therefore:

P12

∣∣∣ψ(S,T )
2

〉
= −

∣∣∣ψ(S,T )
2

〉
.
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2. In a system of identical particles each observable commutes with P12

(8.51). That holds also for H :

[H,P12]− = 0

H is spin-independent and commutes therefore with P
(S)
12 :

0 = [H,P12]− =
[
P

(S)
12 · P (q)

12 , H
]

−
= P

(S)
12

[
P

(q)
12 , H

]

−
.

Therefore [
P

(q)
12 , H

]

−
= 0 .

3. Equation of motion of the time evolution operator ((3.169), Vol. 6):

i�
∂

∂t
U(t, t0) = H U(t, t0) initial condition: U(t0, t0) = 1l .

We multiply the equation of motion from the left and from the right by

P
(q)
12 :

i�
∂

∂t
P

(q)
12 U(t, t0)P

(q)
12 = P

(q)
12 H U(t, t0)P

(q)
12 = HP

(q)
12 U(t, t0)P

(q)
12 .

Initial condition for this differential equation:

P
(q)
12 U(t0, t0)P

(q)
12 = P

(q)
12 1lP

(q)
12 =

(
P

(q)
12

)2

= 1l .

We see that U(t, t0) and P
(q)
12 U(t, t0)P

(q)
12 fulfill the same differential equa-

tion of first order with the same initial condition. Thus they must be
identical:

U(t, t0) = P
(q)
12 U(t, t0)P

(q)
12 � P

(q)
12 U(t, t0) = U(t, t0)P

(q)
12

�

[
U(t, t0), P

(q)
12

]

−
= 0 .

4. General state:
|ψ〉 = |q〉 |SmS〉 .

t = t0
P

(q)
12 |ψ(t0)〉 = ± |ψ(t0)〉 .

t > t0

P
(q)
12 |ψ(t)〉 = P

(q)
12 U(t, t0) |ψ(t0)〉

= U(t, t0)P
(q)
12 |ψ(t0)〉

= ±U(t, t0) |ψ(t0)〉
= ± |ψ(t)〉

|ψ(t)〉 therefore retains its symmetry character for all times with respect
to its position part. There are thus no transitions possible between |ψ〉 =∣∣∣ψ(S)

2

〉
and |ψ〉 =

∣∣∣ψ(T )
2

〉
!
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Solution 8.2.7

1.

P 2
12|m1m2〉 = P12|m2m1〉 = |m1m2〉 ∀ |m1m2〉
=⇒ P 2

12 = 1l =⇒ P12 = P−1
12 .

〈m̂1m̂2|P12|m1m2〉 = 〈m̂1m̂2|m2m1〉
= (1)〈m̂1|m2〉(1) (2)〈m̂2|m1〉(2)
= δm̂1m2δm̂2m1 real

= (1)〈m1|m̂2〉(1) (2)〈m2|m̂1〉(2)
= 〈m1m2|m̂2m̂1〉
= (〈m1m2|m̂2m̂1〉)∗
= (〈m1m2|P12|m̂1m̂2〉)∗

=⇒ P+
12 = P12 .

Eigen-values:

P12|p〉 = c12|p〉 |p〉 ∈ H2 |p〉 �= 0

P 2
12 = 1l

=⇒ P 2
12|p〉 = c212|p〉 = |p〉

=⇒ c12 = ±1 .

2. Common eigen-states (Exercise 5.4.1):

S = 0, 1

|0 0〉 = (|1
2
− 1

2
〉 − |−1

2

1

2
〉)

|1 1〉 = |1
2

1

2
〉

|1 0〉 =
1√
2
(|1
2
− 1

2
〉+ |−1

2

1

2
〉)

|1− 1〉 = |−1

2
− 1

2
〉 .

Obviously,

P12|0 0〉 = −|0 0〉
P12|1ms〉 = |1ms〉 ,

are also eigen-states of P12!
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3. |m1m2〉 arbitrary basis-state of the H2:

P12S
z
1P

+
12|m1m2〉 = P12S

z
1P12|m1m2〉

= P12S
z
1 |m2m1〉

= �m2P12|m2m1〉
= �m2|m1m2〉
= Sz

2 |m1m2〉

=⇒ P12S
z
1P

+
12 = Sz

2

analogously P12S
z
2P

+
12 = Sz

1 .

Proof for x-, y-components:

Sx
i =

1

2
(S+

i + S−
i ) ; Sy

i =
1

2i
(S+

i − S−
i ) .

It holds:

P12S
±
1 P+

12|m1m2〉 = P12S
±
1 |m2m1〉

= �

√
1

2
(
1

2
+ 1)−m2(m2 ± 1)P12|m2 ± 1m1〉

= �

√
1

2
(
1

2
+ 1)−m2(m2 ± 1) |m1m2 ± 1〉

= S±
2 |m1m2〉

=⇒ P12S
±
1 P+

12 = S±
2

analogously P12S
±
2 P+

12 = S±
1 .

Therewith we have:

=⇒ P12S1P
+
12 = S2 ; P12S2P

+
12 = S1 .

4.

P12 =
1

2
[1l +

4

�2
S1 · S2]

=
1

2
[1l +

2

�2
(S+

1 S−
2 + S−

1 S+
2 ) +

4

�2
Sz
1S

z
2 ]

(1) |m1m2〉 = | 12 1
2 〉:

P12|m1m2〉 =
1

2
|1
2

1

2
〉+ 1

�2
(S+

1 S−
2 + S−

1 S+
2 )|

1

2

1

2
〉

︸ ︷︷ ︸
=0

+
2

�2
Sz
1S

z
2 |
1

2

1

2
〉

︸ ︷︷ ︸
�2

4 | 12 1
2 〉

= (
1

2
+

1

2
) |1
2

1

2
〉 = |1

2

1

2
〉 = |m2m1〉
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(2) Analogously to (1) |m1m2〉 = | − 1
2 − 1

2 〉:

P12|−1

2
− 1

2
〉 = |−1

2
− 1

2
〉

(3) |m1m2〉 = | 12 − 1
2 〉:

P12|m1m2〉 =
1

2
|1
2
− 1

2
〉+ 1

�2
(S+

1 |1
2
〉(1))(S−

2 |−1

2
〉(2))

+
1

�2
(S−

1 |1
2
〉(1))(S+

2 |−1

2
〉(2))

+
2

�2
(Sz

1 |
1

2
〉(1))(Sz

2 |−
1

2
〉(2))

=
1

2
|1
2
− 1

2
〉+ 0 + (

√
3

4
+

1

4
| − 1

2
〉(1))(

√
3

4
+

1

4
|1
2
〉(2))

+
2

�2
(−�

2

4
|1
2
− 1

2
〉)

= |−1

2

1

2
〉 = |m2m1〉

(4) |m1m2〉 = | − 1
2

1
2 〉:

P12|m1m2〉 =
1

2
|−1

2

1

2
〉+ 1

�2
(S+

1 |−1

2
〉(1))(S−

2 |1
2
〉(2))

+
1

�2
(S−

1 |−1

2
〉(1))(S+

2 |1
2
〉(2))

+
2

�2
(Sz

1 |−
1

2
〉(1))(Sz

2 |
1

2
〉(2))

=
1

2
|−1

2

1

2
〉+ |1

2
− 1

2
〉+ 0− 1

2
|−1

2

1

2
〉

= |1
2
− 1

2
〉 = |m2m1〉 .

All in all:
P12|m1m2〉 = |m2m1〉

Solution 8.2.8

1.

S
(−)
2 =

1

2
(1l2 − P12)

S
(+)
3 =

1

6
(1l3 + P12 + P13 + P23 + P12P23 + P12P13)

2. No exclusion principle for bosons
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→ energetically lowest state, if all the three bosons occupy the one-particle
ground state:

E
(+)
0 = 3ε0

|E(+)
0 〉 = S

(+)
3 |0 0 0〉

= S
(+)
3

(|0〉(1) |0〉(2) |0〉(3))

= |0〉(1) |0〉(2) |0〉(3) .

3. By reason of the Pauli principle it follows for the ground state: one fermion
in |0〉, the other in |1〉:

E
(−)
0 = α+ 2ε0

|E(−)
0 〉 = S

(−)
2 |0 1〉 = S

(−)
2

(|0〉(1) |1〉(2))

=
1

2

(|0〉(1) |1〉(2) − |0〉(2) |1〉(1))

=
1

2

∣∣∣∣
|0〉(1) |0〉(2)
|1〉(1) |1〉(2)

∣∣∣∣

(not-normalized) Slater determinant .

4. First excited state =̂ 1 boson in |1〉, 2 bosons in |0〉:
E

(+)
1 = α+ 3ε0

|E(+)
1 〉 = S

(+)
3 |0 0 1〉

= S
(+)
3

(|0〉(1) |0〉(2) |1〉(3))

=
1

6

(|0〉(1) |0〉(2) |1〉(3) + |0〉(2) |0〉(1) |1〉(3) + |0〉(3) |0〉(2) |1〉(1)

+|0〉(1) |0〉(3) |1〉(2) + |0〉(3) |0〉(1) |1〉(2) + |0〉(2) |0〉(3) |1〉(1))

=
1

3

(|0 0 1〉+ |0 1 0〉+ |1 0 0〉) (states not symmetrized).

Solution 8.2.9

1. Eigen-functions are plane waves:

ϕk(r) ∼ eik·r .

Periodic boundary conditions:

kx,y,z =
2π

L
nx,y,z ; nx,y,z ∈ Z .

Energies:

ε(k) =
�
2k2

2m
=

2π2
�
2

mL2

(
n2
x + n2

y + n2
z

)
.
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2. Ground state:

a) Bosons:
All particles are in the energetically lowest state,

b) Fermions (S = 1/2):
Each state can be occupied by at most two electrons of opposite spins
(ms = ±1/2) (Pauli principle)!

Per grid volume Δk = (2π/L)3 there is state in the k-space one, which can
at most be twofold occupied. In the ground-state, therefore N fermions
enter all the states inside the so-called Fermi sphere, whose radius kF
(Fermi wave vector) is determined by the particle number N ,

N = 2
(4π/3) k3F

Δk
=

L3 k3F
3π2

,

in the form:

=⇒ kF =

(
3π2 N

V

)1/3

; pF = � kF .

3. Fermi energy: maximal one-particle energy:

εF =
�
2k2F
2m

.

Ground-state energy:

E
(F)
0 = 2

k≤ kF∑

k

�
2k2

2m
=

2

Δk

∫

(k≤ kF)

d3k
�
2k2

2m
=

L3

4π3
4π

kF∫

0

dk k2
�
2k2

2m

=
V �

2

2mπ2

k5F
5

=
V εF
5π2

k3F

=⇒ E
(F)
0 =

3

5
N εF .

For bosons it is of course:
E

(O)
0 = 0 .

Solution 8.2.10
The Hamilton operator

H = H(1) +H(2) +H(3) =

3∑

i=1

(
− �

2

2m

d2

dq2i
+ V (qi)

)

is spin-independent. Therefore the eigen-state separates in a position and a
spin part. Since all the three particles possess the spin S = 0, the spin state is
trivially symmetric with respect to particle interchange. Therefore we need to
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discuss in the following only the position part. This also must be symmetric,
because the particles are bosons.

One-particle problem (see solution of Exercise (8.2.5)) and ((4.2.1), Vol. 6):

ϕn−(q) =
1√
q0

sin

(
π

q0
n q

)

En− =
�
2π2

2mq20
n2 , n = 1, 2, 3, . . . ,

ϕn+(q) =
1√
q0

cos

[
π

2q0
(2n+ 1) q

]
,

En+ =
�
2π2

8mq20
(2n+ 1)2 n = 0, 1, 2, . . . .

Hence, the two energetically lowest one-particle states are:

|0〉 ←→ ϕ0+(q) =
1√
q0

cos

(
π

2q0
q

)
,

E0+ =
�
2π2

8mq20
,

|1〉 ←→ ϕ1−(q) =
1√
q0

sin

(
π

q0
q

)
,

E1− =
�
2π2

2mq20
.

Ground state |E0〉(+) of the three-particle system:

|E0〉(+) (8.84)
=

√
3!

3!
S
(+)
3

(
|0〉(1)|0〉(2)|0〉(3)

)
.

According to Solution 8.2.3:

S
(+)
3 =

1

6
(1l3 + P12 + P13 + P23 + P12 P23 + P12 P13)

=⇒ S
(+)
3 |0 0 0〉 =

1

6
61l3|0 0 0〉 = |0〉(1)|0〉(2)|0〉(3)

=⇒ |E0〉(+) ↔ 1√
q30

cos

(
π

2q0
q1

)
cos

(
π

2q0
q2

)
cos

(
π

2q0
q3

)
.

First excited state |E1〉(+):
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Two particles in the state |0〉, the third in the state |1〉

|E1〉(+) =

√
3!√
2! 1!

S
(+)
3

(
|0〉(1)|0〉(2)|1〉(3)

)

=

√
3

6
(|0 0 1〉+ |0 0 1〉+ |1 0 0〉+ |0 1 0〉+ |1 0 0〉+ |0 1 0〉)

=
1√
3
(|0 0 1〉+ |1 0 0〉+ |0 1 0〉)

=⇒ |E1〉(+) ←→ 1√
3q30

[
cos

(
π

2q0
q1

)
cos

(
π

2q0
q2

)
sin

(
π

q0
q3

)

+sin

(
π

q0
q1

)
cos

(
π

2q0
q2

)
cos

(
π

2q0
q3

)

+ cos

(
π

2q0
q1

)
sin

(
π

q0
q2

)
cos

(
π

2q0
q3

)]
.

Eigen-energies: E0 = 3E0+; E1 = 2E0+ + E1−.

Section 8.3.4

Solution 8.3.1
Bosons:

| · · ·nαr · · ·nαs · · · 〉(+) : arbitrary Fock state.

r �= s :

a+αr
a+αs

| · · ·nαr · · ·nαs · · · 〉(+)

=
√
nαr + 1

√
nαs + 1 | · · ·nαr + 1 · · ·nαs + 1 · · · 〉(+)

= a+αs
a+αr

| · · ·nαr · · ·nαs · · · 〉(+)

=⇒ [
a+αr

, a+αs

]
− = 0 .

For r = s this relation is trivially fulfilled.
Because of

[aαr , ααs ]− =
([

a+αs
, a+αr

]
−

)+

it follows immediately:

[aαr , aαs ]− = 0 .

r �= s :

aαra
+
αs

| · · ·nαr · · ·nαs · · · 〉(+) =
√
nαr

√
nαs + 1| · · ·nαr − 1 · · ·nαs + 1 · · · 〉(+)

= a+αs
aαr | · · ·nαr · · ·nαs · · · 〉(+) .
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r = s :

aαr a
+
αr
| · · ·nαr · · · 〉(+) = aαr

√
nαr + 1| · · ·nαr + 1 · · · 〉(+)

= (nαr + 1)| · · ·nαr · · · 〉(+) ,

a+αr
aαr | · · ·nαr · · · 〉(+) =

√
nαr a

+
αr
| · · ·nαr − 1 · · · 〉(+) = nαr | · · ·nαr · · · 〉(+)

=⇒ [aαr , a
+
αs
]− = δr,s .

Fermions:

(
a+αr

)2| · · ·nαr · · · 〉(−) = 0 (Pauli principle!) (8.104)

r < s :

a+αr
a+αs

| · · ·nαr · · ·nαs · · · 〉(−)

= a+αr
(−1)Ns δnαs ,0| · · ·nαr · · ·nαs + 1 · · · 〉(−)

= (−1)Nr (−1)Ns δnαs ,0 δnαr ,0| · · ·nαr + 1 · · ·nαs + 1 · · · 〉(−) ,

a+αs
a+αr

| · · ·nαr · · ·nαs · · · 〉(−)

= (−1)Nr δnαr ,0 a
+
αs
| · · ·nαr + 1 · · ·nαs · · · 〉(−)

= (−1)Nr (−)N
′
s δnαr ,0 δnαs ,0| · · ·nαr + 1 · · ·nαs + 1 · · · 〉(−) ,

N ′
s = Ns + 1

=⇒ (
a+αr

a+αs
+ a+αs

a+αr

) |· · ·nαr · · ·nαs · · · 〉 (−) = 0

=⇒ [
a+αr

, a+αs

]
+

= 0 .

Because of

[aαr , aαs ]+ =
([

a+αs
, a+αr

]
+

)+

it follows again immediately the second anti-commutator relation:

[aαr , aαs ]+ = 0 .

r = s :

aαr a
+
αr
| · · ·nαr · · · 〉(−) = aαr (−1)Nr δnαr ,0| · · ·nαr + 1 · · · 〉(−)

= (−1)2Nr δnαr ,0| · · ·nαr · · · 〉(−)

= δnαr ,0| · · ·nαr · · · 〉(−) ,

a+αr
aαr | · · ·nαr · · · 〉(−) = δnαr ,1| · · ·nαr · · · 〉(−) .

Since in any case nαr = 0 or 1:

(
aαr a

+
αr

+ a+αr
aαr

) |· · ·nαr · · · 〉(−) = |· · ·nαr · · · 〉(−) .
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r < s :

aαr a
+
αs
| · · ·nαr · · ·nαs · · · 〉(−)

= aαr (−1)Ns δnαs ,0| · · ·nαr · · ·nαs + 1 · · · 〉(−)

= (−1)Nr+Ns δnαr ,1 δnαs ,0| · · ·nαr − 1 · · ·nαs + 1 · · · 〉(−) ,

a+αs
aαr | · · ·nαr · · ·nαs · · · 〉(−)

= a+αs
(−1)Nr δnαr ,1| · · ·nαr − 1 · · ·nαs · · · 〉(−)

= (−1)Nr+N ′′
s δnαr ,1 δnαs ,0| · · ·nαr − 1 · · ·nαs + 1 · · · 〉(−) ,

N ′′
s = Ns − 1

=⇒ (
aαr a

+
αs

+ a+αs
aαr

) |· · ·nαr · · ·nαs · · · 〉 (−) = 0 .

Finally we have:
[
aαr , a

+
αs

]
+
= δr,s .

Solution 8.3.2
Proof by full induction:

N = 1

〈0|aβ1 a
+
α1
|0〉 =

〈
0|[δ(β1, α1)± a+α1

aβ1

]|0〉

= δ(β1, α1)〈0|0〉 ± 〈0|a+α1
aβ1 |0〉 = δ(β1, α1)

because of aβ1 |0〉 = 0 .

N − 1 −→ N

αβ1 : pull to the right

〈0|aβN · · ·aβ1 a
+
α1

· · ·a+αN
|0〉

= δ(β1, α1)〈0|aβN · · ·aβ2 a
+
α2

· · ·a+αN
|0〉

+(±)1δ(β1, α2)〈0|aβN · · ·aβ2 a
+
α1

a+α3
· · · a+αN

|0〉
+ · · ·
+(±)N−1 δ(β1, αN )〈0|aβN · · · aβ2 a

+
α1

a+α2
· · · a+αN − 1

|0〉
presumption of the induction

= δ(β1, α1)
∑

Pα

(±)pα Pα

[
δ(β2, α2) · · · δ(βN , αN )

]

+(±)1δ(β1, α2)
∑

Pα

(±)pα Pα

[
δ(β2, α1)δ(β3, α3) · · · δ(βN , αN )

]

+ . . .

+(±)N−1 δ(β1, αN )
∑

Pα

(±)pα Pα

[
δ(β2, α1)δ(β3, α2) · · · δ(βN , αN − 1)

]

=
∑

Pα

(±)pα Pα

[
δ(β1, α1)δ(β2, α2) · · · δ(βN , αN )

]
.
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Solution 8.3.3

1.

[n̂α, a
+
β ]− = a+α aα a+β − a+β a+α aα = δ(α− β) a+α ± a+α a+β aα − a+β a+α aα

= δ(α− β) a+α + a+β a+α aα − a+β a+α aα = δ(α− β) a+α .

2.

[n̂α, aβ ]− = a+α aα aβ − aβ a
+
α aα = a+α aα aβ − δ(β − α) aα ∓ a+α aβ aα

= a+α aα aβ − δ(β − α) aα − a+α aα aβ = −δ(α− β) aα .

These relations are valid for fermions as well as bosons.

Solution 8.3.4
1.

[n̂αr , a
+
αs

]− = a+αr
aαra

+
αs

− a+αs
a+αr

aαr = a+αr
δrs ± a+αr

a+αs
aαr − a+αs

a+αr
aαr

= a+αr
δrs + a+αs

a+αr
aαr − a+αs

a+αr
aαr = δrsa

+
αr

.

2.

[n̂αr , aαs ]− = a+αr
aαr aαs − aαs a

+
αr

aαr

= a+αr
aαr aαs − δrs aαr ∓ a+αr

aαs aαr

= a+αr
aαr aαs − δrs aαr − a+αr

aαr aαs = −δrs aαr .

These relations are likewise valid for fermions as well as bosons. In the interme-
diate steps of the calculations the upper signs always hold for bosons and the
lower ones for fermions.

Solution 8.3.5

1.

[aα, aβ ]+ = 0 � [aα, aα]+ = 2a2α = 0 � a2α = 0
[
a+α , a

+
β

]

+
= 0 �

[
a+α , a

+
α

]
+
= 2

(
a+α

)2
= 0 �

(
a+α

)2
= 0

(Pauli principle!)

2.

n̂2
α = a+αaαa

+
αaα = a+α

(
1− a+αaα

)
aα

= a+αaα − (
a+α

)2
(aα)

2 1.
= n̂α (Pauli principle!)

3.

aαn̂α = aαa
+
αaα =

(
1− a+αaα

)
aα

1.
= aα

a+α n̂α = a+αa
+
αaα

1.
= 0

4.

n̂α aα = a+αaαaα
1.
= 0

n̂α a+α = a+αaαa
+
α = a+α

(
1− a+αaα

) 1.
= a+α
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Solution 8.3.6

N̂ =

∫
dα n̂α .

We calculate at first the following commutators:

[N̂ , a+β ]− =

∫
dα[n̂α, a

+
β ]−

ex. 8.3.3
=

∫
dα a+α δ(α− β) = a+β ,

[N̂ , aβ]− =

∫
dα [n̂α, aβ]−

ex. 8.3.3
=

∫
dα [−δ(α− β) aα] = −aβ .

It thus holds:

N̂ a+β = a+β (N̂ + 1l) ; N̂ aβ = aβ (N̂ − 1l) .

1.

N̂
(
a+β |ϕα1 · · · 〉(±)

)
= a+β (N̂ +1l)|ϕα1 · · · 〉(±) = (N +1)

(
a+β |ϕα1 · · · 〉(±)

)
.

It is, as stated, an eigen-state. The eigen-value is N + 1. The denotation
creator for a+β is obviously reasonable!

2.

N̂
(
aβ |ϕα1 · · · 〉(±)

)
= aβ (N̂ − 1l)|ϕα1 · · · 〉(±) = (N − 1)

(
aβ|ϕα1 · · · 〉(±)

)
.

aβ |ϕα1 · · · 〉(±) is thus also an eigen-state of the particle number operator

N̂ with the eigen-value N − 1. The name annihilator for aβ becomes
therewith plausible.

Solution 8.3.7
Plane wave:

ϕk(r) =
1√
V

eik·r = 〈r|k〉 .

Periodic boundary conditions:

V = L3 ,

ϕk(x+ L, y, z)
!
= ϕk(x, y + L, z)

!
= ϕk(x, y, z + L)

!
= ϕk(x, y, z)

=⇒ kx,y,z =
2π

L
nx,y,z ; nx, y, z ∈ Z discrete!
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Kinetic energy:
One-particle basis: |kσ〉 = |k〉|σ〉

σ = ↑, ↓ ←→ ms=1/2 = +
1

2
, −1

2
,

5.172 : |↑ 〉 =

(
1
0

)
; |↓ 〉 = (

0
)
,

〈
kσ

∣∣∣∣
p2

2m

∣∣∣∣k
′ σ′

〉
=

�
2k′2

2m
〈kσ|k′σ′〉 = �

2k′2

2m
δkk′ δσσ′

=⇒
N∑

i=1

p2
i

2m
=

∑

kk′σσ′

〈
kσ

∣∣∣∣
p2

2m

∣∣∣∣k
′σ′

〉
a+kσ ak′σ′ =

∑

kσ

�
2k2

2m
a+kσ akσ .

Interaction:
〈
k1 σ1,k2 σ2

∣∣∣∣
1

|r̂(1) − r̂(2)|
∣∣∣∣k3 σ3,k4 σ4

〉

= δσ1σ3 δσ2σ4

〈
k1 k2

∣∣∣∣
1

|r̂(1) − r̂(2)|
∣∣∣∣k3 k4

〉
.

The interaction is spin-independent. The spin parts of the one-particle states
can therefore be directly evaluated leading to the two Kronecker-deltas. The
two-particle states are non-symmetrized:

〈
k1 k2

∣∣∣∣
1

|r̂(1) − r̂(2)|
∣∣∣∣k3 k4

〉

=

∫∫
d3r1 d

3r2

〈
k1 k2

∣∣∣∣
1

|r̂(1) − r̂(2)|
∣∣∣∣ r1 r2

〉
〈r1 r2 |k3 k4〉

=

∫∫
d3r1 d

3r2
1

|r1 − r2| 〈k
(1)
1 |r(1)1 〉〈k(2)

2 |r(2)2 〉〈r(1)1 |k(1)
3 〉〈r(2)2 |k(2)

4 〉

=
1

V 2

∫∫
d3r1 d

3r2
1

|r1 − r2| e
i(k3−k1)·r1 ei(k4 −k2)·r2

= δk1 +k2,k3 +k4

1

V

∫
d3r

1

r
ei(k3−k1)·r .

The last step results from the introduction of relative and center-of-mass coor-
dinates, likewise as in (8.119).

α > 0: convergence generating factor

lim
α→0

∫
d3r

1

r
eiq·r e−αr = lim

α→ 0
2π

+1∫

−1

dx

∞∫

0

dr r eiqrx e−αr

= lim
α→ 0

2π

i q

∞∫

0

dr
(
eiqr − e−iqr

)
e−αr = lim

α→ 0

4π

q2 + α2
=

4π

q2
.
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The interaction-matrix element is therewith calculated as follows:
〈
k1 σ1,k2 σ2

∣∣∣∣∣
1∣∣r̂(1) − r̂(2)

∣∣

∣∣∣∣∣k3 σ3,k4 σ4

〉

= δσ1σ3 δσ2σ4 δk1+k2,k3+k4

4π

V |k3 − k1|2 .

The interaction thus reads in second quantization:

1

2

i �= j∑

i, j

1

|r̂i − r̂j |

=
1

2

∑

k1σ1, k2σ2,
k3σ3, k4σ4

〈
k1 σ1,k2 σ2

∣∣∣∣∣
1∣∣r̂(1) − r̂(2)

∣∣

∣∣∣∣∣k3 σ3,k4 σ4

〉
·

·a+k1σ1
a+k2σ2

ak4σ4 ak3σ3

=
1

2

∑

k1σ1, k2σ2
k3

4π

V |k3 − k1|2 a+k1σ1
a+k2σ2

ak1 + k2 −k3σ2 ak3σ1 .

We put

k1 → k+ q ; k2 → p− q ; k3 → k ; σ1 → σ ; σ2 → σ′

and have then, after all, the Hamilton operator of the N -electron system in
second quantization:

HN =
∑

kσ

ε0(k) a
+
kσ akσ +

1

2

∑

kpq
σσ′

v0(q) a
+
k+qσ a

+
p− qσ′ apσ′ akσ ,

ε0(k) =
�
2k2

2m
; v0(q) =

e2

ε0V q2
.

Solution 8.3.8
ρ̂ is a one-particle operator. According to (8.113) it must be:

ρ̂(r) =
∑

k,k′
σ, σ′

〈kσ|δ(r − r̂′)|k′σ′〉 a+kσ ak′σ′ .

Matrix element:

〈kσ|δ(r − r̂′)|k′σ′〉 = δσσ′ 〈k|δ(r − r̂′)|k′〉
= δσσ′

∫
d3r′′〈k|δ(r− r̂′)|r′′〉〈r′′|k′〉

= δσσ′

∫
d3r′′ δ(r − r′′)〈k|r′′〉〈r′′|k′〉 = δσσ′

1

V
ei(k

′ −k)·r .
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k′ → k+ q:

=⇒ ρ̂(r) =
1

V

∑

k,q, σ

a+kσ ak+qσ e
iq·r .

Solution 8.3.9

1.

P −→
∑

kk′σσ′
〈kσ|p |k′σ′〉 a+kσak′σ′ .

Matrix element:

〈kσ|p |k′σ′〉 = 〈k| � k̂ |k′〉 〈σ| σ′〉 = δσσ′�k′ 〈k| k′〉 = δkk′δσσ′ �k′ .

It follows therewith:

P =
∑

kσ

�k a+kσakσ .

2. x-component of the total spin:

Sx −→
∑

kk′σσ′
〈kσ| sx |k′σ′〉 a+kσak′σ′ .

Matrix element:

〈kσ| sx
∣∣k′σ′〉 = δkk′ 〈σ| �

2

(
0 1

1 0

) ∣∣σ′〉

=
�

2
δkk′

[
δσ′↑〈σ|

(
0 1

1 0

)(
1

0

)
+ δσ′↓〈σ|

(
0 1

1 0

)(
0

1

)]

=
�

2
δkk′

[
δσ′↑〈σ| ↓〉 + δσ′↓〈σ| ↑〉

]

=
�

2
δkk′

[
δσ′↑ δσ↓ + δσ′↓ δσ↑

]
.

It follows for the spin operator:

Sx =
�

2

∑

k

(
a+k↓ak↑ + a+k↑ak↓

)
.

3.
[
Sx, P

]
− =

�

2

∑

k

∑

k′σ

�k′ [a+k↓ak↑ + a+k↑ak↓, a
+
k′σak′σ

]

−

=
�

2

∑

kk′σ

�k′δkk′

([
a+k↓ak↑, a

+
kσakσ

]

−
+
[
a+k↑ak↓, a

+
kσakσ

]

−

)

=
�

2

∑

kσ

�k
(
δσ↑a

+
k↓akσ − δσ↓a

+
kσak↑ + δσ↓a

+
k↑akσ − δσ↑a

+
kσak↓

)

=
�

2

∑

k

�k
(
a+k↓ak↑ − a+k↓ak↑ + a+k↑ak↓ − a+k↑ak↓

)

= 0 .
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Solution 8.3.10

n̂kσ = a+kσ akσ =⇒ [
n̂kσ, n̂k′σ′

]
− = 0 .

The kinetic energy in any case commutes with N̂ . The commutator with the
interaction remains to be calculated:

1

2

∑

k,p,q,

σ,σ′,k′,σ′′

v0(q)
[
a+k+qσ a

+
p−qσ′ apσ′ akσ, a

+
k′σ′′ ak′σ′′

]

−

=
1

2

∑

k,p, q
k′, σ, σ′, σ′′

v0(q)
{
δkk′ δσσ′′ a+k+qσ a

+
p−qσ′ apσ′ ak′σ′′

−δp,k′ δσ′σ′′ a+k+qσ a
+
p−qσ′ akσ ak′σ′′

+δp−qk′δσ′σ′′a+k′σ′′a
+
k+qσapσ′akσ − δk+qk′δσσ′′a+k′σ′′a

+
p−qσ′apσ′akσ

}

=
1

2

∑

k,p, q
σ,σ′

v0(q)
{
a+k+qσ a

+
p−qσ′ apσ′ akσ − a+k+ qσ a

+
p−qσ′ akσ apσ′

+a+p−qσ′ a
+
k+qσ apσ′ akσ − a+k+qσ a

+
p− qσ′ apσ′ akσ

}
= 0

=⇒ [HN , N̂ ]− = 0 .

HN and N̂ have common eigen-states. The particle number is a conserved
quantity!

Solution 8.3.11
We have to show:

[
S+
i , S

−
j

]
− = 2� δij S

z
i

[
Sz
i , S

±
j

]
− = ±� δij S

±
i

1.
[
S+
i , S−

j

]
− = �

2
[
a+i↑ai↓, a

+
j↓aj↑

]

−

= �
2δij

(
a+i↑aj↑ − a+j↓ai↓

)

= �
2δij (ni↑ − ni↓)

= 2� δij S
z
i

2.

[
Sz
i , S

+
j

]
− =

�
2

2

[
ni↑ − ni↓, a+j↑aj↓

]

−

=
�
2

2
δij

([
ni↑, a+i↑ai↓

]

−
−
[
ni↓, a+i↑ai↓

]

−

)

=
�
2

2
δij

(
a+i↑ai↓ + a+i↑ai↓

)

= �
2δij a

+
i↑ai↓

= +� δij S
+
i
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3.

[
Sz
i , S

−
j

]
− =

�
2

2

[
ni↑ − ni↓, a+j↓aj↑

]

−

=
�
2

2
δij

([
ni↑, a+i↓ai↑

]

−
−
[
ni↓, a+i↓ai↑

]

−

)

=
�
2

2
δij

(
−a+i↓ai↑ − a+i↓ai↑

)

= −�
2δij a

+
i↓ai↑

= −� δij S
−
i

Section 8.4.4

Solution 8.4.1
Test state:

|q〉 = c1

∣∣∣ϕ(1)
a

〉 ∣∣∣ϕ(2)
b

〉
+ c2

∣∣∣ϕ(2)
a

〉 ∣∣∣ϕ(1)
b

〉
; c1,2 real .

Normalization:

〈q|q〉 = c21 + c22 + c1 c2

(〈
ϕ(1)
a

∣∣∣ϕ(1)
b

〉 〈
ϕ
(2)
b

∣∣∣ϕ(2)
a

〉
+
〈
ϕ(2)
a

∣∣∣ϕ(2)
b

〉 〈
ϕ
(1)
b

∣∣∣ϕ(1)
a

〉)

= c21 + c22 + 2c1 c2|Lab|2 .

Furthermore we use the denotations (8.156) and (8.157):

〈
ϕ(1)
a

∣∣∣
〈
ϕ
(2)
b

∣∣∣H
∣∣∣ϕ(1)

a

〉 ∣∣∣ϕ(2)
b

〉
=

〈
ϕ(2)
a

∣∣∣
〈
ϕ
(1)
b

∣∣∣H
∣∣∣ϕ(2)

a

〉 ∣∣∣ϕ(1)
b

〉

= Ea + Eb + Cab ,〈
ϕ(1)
a

∣∣∣
〈
ϕ
(2)
b

∣∣∣H
∣∣∣ϕ(2)

a

〉 ∣∣∣ϕ(1)
b

〉
+

〈
ϕ(2)
a

∣∣∣
〈
ϕ
(1)
b

∣∣∣H
∣∣∣ϕ(1)

a

〉 ∣∣∣ϕ(2)
b

〉

= 2(Ea + Eb)|Lab|2 + 2Aab .

Therewith the energy functional reads:

〈H〉q =
〈q|H |q〉
〈q|q〉 = Ea + Eb +

(
c21 + c22

)
Cab + 2c1 c2 Aab

c21 + c22 + 2c1 c2|Lab|2 .

This expression is symmetric in c1 and c2. The variational condition reads:

∂

∂c1
〈H〉q !

= 0 =
2c2

(
Cab|Lab|2 −Aab

)
(
c21 + c22 + 2c1 c2|Lab|2

)2
(
c21 − c22

)
.

In general it is surely
Cab|Lab|2 �= Aab .

The above condition is thus satisfiable only if

c1 = ±c2 .
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We get therewith exactly the same result as in Sect. 8.4.2. The variational
condition leads to the correct (anti)symmetrized test state |q〉!
Solution 8.4.2

We have shown in Exercise 5.4.1 that the four spin states ((8.149), (8.150)),

|S1 S2; S ms〉 ≡ |S ms〉 = |1 1〉, |1 0〉, |1 − 1〉, |0 0〉,
are common eigen-states of the operators

S2 =
(
S1 + S2

)2
, Sz =

(
Sz
1 + Sz

2

)
, S2

1, S
2
2

and because of

S1 · S2 =
1

2

(
S2 − S2

1 − S2
2

)

also eigen-states of S1 · S2:

(S1 · S2)|0 0 〉 =
1

2

(
0− 3

4
− 3

4

)
�
2|0 0〉 = −3

4
�
2|0 0〉 ,

(S1 · S2)|1ms〉 =
1

2

(
2− 3

4
− 3

4

)
�
2|1ms〉 = 1

4
�
2|1ms〉 .

Requirement:

Ĥ |1ms〉(+) !
= E−|1ms〉(+) ; ms = ±1, 0 ,

Ĥ|0 0〉(−) !
= E+|0 0〉(−) .

This is guaranteed by

Ĥ = E0 − J12 (S1 · S2) ,

E0 =
1

4
(E+ + 3E−) ; J12 =

1

�2
(E+ − E−) .

Solution 8.4.3
We calculate at first the normalization integral:

〈ψZ∗ |ψZ∗〉 = 16 π2

∞∫

0

dr1

∞∫

0

dr2 r
2
1 r

2
2 e

−(2Z∗/aB)(r1 + r2)

=

⎡

⎣4π
∞∫

0

dr r2 exp

(
−2Z∗

aB
r

)⎤

⎦
2

=

[
4π · 2!

( aB
2Z∗

)3
]2

=
π2 a6B
Z∗6 ,

⎛

⎝
∞∫

0

dxxn e−ax =
1

an+1
Γ(n+ 1) =

n!

an+1

⎞

⎠ .



526 APPENDIX A. SOLUTIONS OF THE EXERCISES

We need for the energy functional:

〈
ψZ∗

∣∣∣
(
H

(1)
1 +H

(2)
1

)∣∣∣ψZ∗
〉

= 2
〈
ψZ∗

∣∣∣H(2)
1

∣∣∣ψZ∗
〉

= 2

∫
d3r1e

−(2Z∗/aB)r1

∫
d3r2e

−(Z∗/aB)r2

(
− �

2

2m
Δ2 − 2e2

4πε0

1

r2

)
e−(Z∗/aB)r2

=
2πa3B
Z∗3 4π

∞∫

0

dr2r
2
2e

−(Z∗/aB)r2

[
− �

2

2m

(
∂2

∂r22
+

2

r2

∂

∂r2

)
− e2

2πε0

1

r2

]
e−(Z∗/aB)r2

=
8π2 a3B
Z∗3

∞∫

0

dr2 e
−(2Z∗/aB) r2

[
− �

2

2m

(
Z∗2

a2B
r22 − 2

Z∗

aB
r2

)
− e2 r2

2π ε0

]

=
8π2 a3B
Z∗3

{
− �

2

2m

[
Z∗2

a2B
2!
(

aB
2Z∗

)3
− 2

Z∗

aB

(
aB
2Z∗

)2]
− e2

2π ε0

(
aB
2Z∗

)2}

=
8π2a3B
Z∗3

[
�
2aB

8mZ∗ − e2 a2B
8π ε0 Z∗2

]
.

We exploit:

ER =
e2

8π ε0aB
; aB =

�
24π ε0
me2

;
�
2

m
= 2a2BER .

It follows therewith:

〈
ψZ∗

∣∣∣
(
H

(1)
1 +H

(2)
1

)∣∣∣ψZ∗
〉

=
8π2a6B
Z∗3 ER

(
1

4Z∗ − 1

Z∗2

)
,

〈
ψZ∗

∣∣∣
(
H

(1)
1 +H

(2)
1

)∣∣∣ψZ∗
〉

〈ψZ∗ |ψZ∗〉 = ER

(
2Z∗2 − 8Z∗) .

The interaction part

〈ψZ∗ |H(1,2)
2 |ψZ∗〉

〈ψZ∗ |ψZ∗〉
can of course be calculated in the same manner as the perturbation correction
of first order (8.169) and must agree with this for Z∗ = 2:

〈ψZ∗ |H(1, 2)
2 |ψZ∗〉 = e2

4π ε0

∫∫
d3r1 d

3r2
e−(2Z∗/aB) (r1 + r2)

|r1 − r2| .

The integrand is fully symmetric in r1 and r2. Hence we can presume r2 ≥ r1,
when adding to the result a factor 2. With

e2

4π ε0
= 2aBER
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it is to be calculated:

〈ψZ∗ |H(1,2)
2 |ψZ∗〉 = 8π aBER Q ,

Q =

∫
d3r1 e

−(2Z∗/aB) r1 Dr1 ,

Dr1 =

∞∫

r1

dr2 r
2
2 e

−(2Z∗/aB) r2 Ir1 ≤ r2 ,

Ir1≤r2 =

+1∫

−1

dx√
r21 + r22 − 2r1r2x

= − 1

r1r2

(√
(r1 − r2)2 −

√
(r1 + r2)2

)
=

2

r2
.

It remains for Dr1 :

Dr1 = 2

∞∫

r1

dr2 r2 exp

(
−2Z∗

aB
r2

)
= −2

⎡

⎣ d

dλ

∞∫

r1

dr2 e
−λr2

⎤

⎦

λ=2Z∗/aB

= −2

[
d

dλ

1

λ
e−λr1

]

λ=2Z∗/aB

=

[
a2B
2Z∗2 +

r1 aB
Z∗

]
exp

(
−2Z∗

aB
r1

)

=
aB
Z∗

(
r1 +

1

2

aB
Z∗

)
exp

(
−2Z∗

aB
r1

)
.

We determine in the next step:

Q = 4π
aB
Z∗

∞∫

0

dr1

(
r31 +

1

2

aB
Z∗ r21

)
exp

(
−4Z∗

aB
r1

)

= 4π
aB
Z∗

[
3!
( aB
4Z∗

)4

+
1

2

aB
Z∗ 2!

( aB
4Z∗

)3
]

= 4π
(aB
Z∗

)5 1

43

(
3

2
+ 1

)
=

5π

32

( aB
Z∗

)5

.

Finally this yields:

〈
ψZ∗

∣∣∣H(1,2)
2

∣∣∣ψ(1,2)
Z∗

〉

〈ψZ∗ |ψZ∗〉 =
5

4
Z∗ER .

Altogether the to be varied energy functional reads:

〈H〉Z∗ =
〈ψZ∗ |H |ψZ∗〉
〈ψZ∗ |ψZ∗〉 = ER

(
2Z∗2 − 27

4
Z∗

)
.
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Variational condition:

0
!
=

d

dZ∗ 〈H〉Z∗ = ER

(
4Z∗ − 27

4

)
=⇒ Z∗

0 =
27

16
< 2 .

Upper limit for the ground-state energy:

E0 ≤ 〈H〉Z∗
0
= −ER

(27)2

128
≈ −5.7ER ≈ −77.49 eV ,

Z∗
0 : effective nuclear charge. Because of the presence of the respective other

electron the He-electrons do not see the full nuclear charge Z = 2.

Solution 8.4.4
Equation (2.169) in Vol. 3 proves to be very useful:

1

|r1 − r2| =
4π

r>

∑

l

+l∑

m=−l

1

2l+ 1

(
r<
r>

)l

Y ∗
lm(ϑ1, ϕ1)Ylm(ϑ2, ϕ2) ,

ri ≡ (ri, ϑi, ϕi) ,

r> = max (r1, r2) ; r< = min (r1, r2) .

With (5.108),

Y00(ϑ, ϕ) ≡ 1√
4π

,

it follows for the exchange integrals:

Anl
10 =

e2

4π ε0

∞∫

0

r21 dr1

∞∫

0

r22 dr2 R10(r1)Rnl(r2)

·R10(r2)Rnl(r1)
1

r>

∑

l′m′

1

2l′ + 1

(
r<
r>

)l′

·
∫

dϕ1 d cosϑ1

∫
dϕ2 d cosϑ2 Y ∗

l′m′(ϑ1, ϕ1)

·Yl′m′(ϑ2, ϕ2)Y
∗
l0(ϑ2, ϕ2)Yl0(ϑ1, ϕ1) .

Orthogonality relation (5.102) of the spherical harmonics:

Anl
10 =

e2

4π ε0(2l + 1)

∞∫

0

r21dr1

∞∫

0

r22dr2 R10(r1)Rnl(r2)R10(r2)Rnl(r1)
rl<
rl+1
>

.

According to (6.59) the radial function with l = n− 1 has no nodes. But then
it must be

R10(r1)R10(r2) ≥ 0 ,

Rnl(r1)Rnl(r2) ≥ 0 (l = n− 1) .
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Consequently:
Ann−1

10 ≥ 0 .

Solution 8.4.5
According to (8.177) and (8.178) the splitting is given by the corresponding

exchange integral:
ΔE = 2A20

10 .

For its calculation we use the formula from Exercise 8.4.4:

A20
10 =

e2

4π ε0

∞∫

0

r21dr1

∞∫

0

r22dr2
1

r>
R10(r1)R20(r2)R10(r2)R20(r1) ,

(6.60) : R10(r) = 2

(
2

aB

)3/2

e−2r/aB ,

(6.61) : R20(r) = 2

(
2

2aB

)3/2 (
1− r

aB

)
e−r/aB .

Substitution:

xi =
ri
aB

; i = 1, 2
e2

4πε0
= 2aBER

=⇒ A20
10 = 28ER

∞∫

0

x2
1(1− x1) dx1

∞∫

0

x2
2(1− x2) dx2

e−3(x1+x2)

r>/aB

= 28ER

∞∫

0

dx1 x
2
1(1 − x1) e

−3x1 [I1 + I2] ,

I1 =
1

x1

x1∫

0

dx2

(
x2
2 − x3

2

)
e−3x2

=
1

x1

x1∫

0

dx2
1

3

d

dx2
x3
2 e

−3x2 =
1

3
x2
1 e

−3x1 .

For the calculation of the other integral I2 the formula from Exercise 7.2.1 is
useful:

x0∫

0

dx e−x xn = n!

(
1− e−x0

n∑

μ=0

xμ
0

μ!

)

=⇒
∞∫

x0

dx e−x xn = n! e−x0

n∑

μ=0

xμ
0

μ!
,
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I2 =

∞∫

x1

dx2

(
x2 − x2

2

)
e−3x2 =

1

3

∞∫

3x1

dy2

(
1

3
y2 − 1

9
y22

)
e−y2

=
1

9
e−3x1 (1 + 3x1)− 2!

27
e−3x1

(
1 + 3x1 +

9x2
1

2!

)

=
1

9
e−3x1

(
1

3
+ x1 − 3x2

1

)

=⇒ I1 + I2 =
1

9
e−3x1

(
1

3
+ x1

)
.

It is left:

A20
10 =

28

9
ER

∞∫

0

dx1 e
−6x1

(
1

3
x2
1 +

2

3
x3
1 − x4

1

)

=
28

9
ER

(
1

3

2!

63
+

2

3

3!

64
− 4!

65

)

=⇒ A20
10 =

(
2

3

)6

ER ≈ 1.19 eV =⇒ ΔE ≈ 2.38 eV .

Solution 8.4.6
The path of solution is in principle the same as that for the exchange integrals

in Exercise 8.4.4. We use for 1/|r1 − r2| the same expression as there:

Cnl
10 =

e2

4π ε0

∞∫

0

r21 dr1

∞∫

0

r22 dr2 R
2
10(r1)R

2
nl(r2)

1

r>

·
∑

l′m′

1

(2l′ + 1)

(
r<
r>

)l′ ∫
dϕ1 d cosϑ1 Y ∗

l′m′ (ϑ1, ϕ1) ·

·
∫

dϕ2 d cosϑ2 Yl′m′(ϑ2, ϕ2)|Yl0(ϑ2 ϕ2)|2 ,
∫

dϕ1 d cosϑ1 Y ∗
l′m′(ϑ1, ϕ1)

=
√
4π

∫
dϕ1 d cosϑ1 Y ∗

l′m′(ϑ1ϕ1)Y00(ϑ1ϕ1) =
√
4π δl′0 δm′0 .

It follows therewith:

Cnl
10 =

e2

4π ε0

∞∫

0

r21 dr1

∞∫

0

r22 dr2 R
2
10(r1)R

2
nl(r2)

1

r>
·

·√4π
1√
4π

∫
dϕ2 d cosϑ2|Yl0(ϑ2, ϕ2)|2

=
e2

4π ε0

∞∫

0

r21 dr1

∞∫

0

r22 dr2 R
2
10(r1)R

2
nl(r2)

1

r>
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Solution 8.4.7
We use for C20

10 the formula from Exercise 8.4.6:

C20
10 = 2aBER

∞∫

0

r21 dr1

∞∫

0

r22 dr2 R
2
10(r1)R

2
20(r2)

1

r>
.

With R10(r1) according to (6.60) and R20(r2) according to (6.61) as well as

xi =
ri
aB

, i = 1, 2

it remains to be calculated:

C20
10 = 28 ER

∞∫

0

dx2

(
x2
2 − 2x3

2 + x4
2

)
e−2x2 [J1 + J2] .

We use again the integral formulas from solution 8.4.5:

J1 =
1

x2

x2∫

0

dx1 x
2
1 e

−4x1

=
1

43x2

4x2∫

0

dy1 y
2
1 e

−y1 =
2!

43x2

{
1− e−4x2

[
1 + 4x2 +

1

2!
(4x2)

2

]}

=
1

32 x2
− e−4x2

16

(
1

2x2
+ 2 + 4x2

)
,

J2 =

∞∫

x2

dx1 x1 e
−4x1 =

1

42

∞∫

4x2

dy1 y1 e
−y1 =

e−4x2

16
(1 + 4x2) .

From that we get for the Coulomb integral:

C20
10 = 23 ER

⎡

⎣
∞∫

0

dx2
(
x2 − 2x22 + x32

)
e−2x2 −

∞∫

0

dx2
(
x2 − 3x32 + 2x42

)
e−6x2

⎤

⎦

= 23 ER

[
1

22
− 2

2!

23
+

3!

24
− 1

62
+

3 · 3!
64

− 2
4!

65

]
,

C20
10 =

68

81
ER ≈ 11.42 eV ,

solution 8.4.5 =⇒ A20
10 ≈ 1.19 eV .

The Coulomb integral is larger by one order of magnitude!

Solution 8.4.8

ΔE
(21)
para
ortho

= C21
10 ±A21

10 .
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We use for the calculation the formulas from the Exercises 8.4.4 and 8.4.6 with
the radial functions according to (6.60) and (6.62):

R10(r) = 2

(
2

aB

)3/2

e−2r/aB ,

R21(r) =
1√
3

(
2

2aB

)3/2
2r

aB
e−r/aB .

With the substitutions

xi =
ri
aB

it is then to calculate:

C21
10 =

28

3
ER

∞∫

0

dx1 x
2
1

∞∫

0

dx2 x
4
2

1

x>
e−
(
4x1 +2x2

)
,

A21
10 =

28

32
ER

∞∫

0

dx1 x
3
1

∞∫

0

dx2 x
3
2

r<
r2>

e−3
(
x1 +x2

)
.

We start with the Coulomb integral:

C21
10 =

28

3
ER

∞∫

0

dx2 x
4
2 e

−2x2 (J1 + J2) .

J1 and J2 are exactly the same integrals as those in the Solution 8.4.7. We thus
can adopt directly the partial results:

J1 =
1

x2

x2∫

0

dx1 x
2
1 e

−4x1 =
1

32 x2
− e−4x2

16

(
1

2x2
+ 2 + 4x2

)
,

J2 =

∞∫

x2

dx1 x1 e
−4x1 =

e−4x2

16
(1 + 4x2) .

It remains to be calculated:

C21
10 =

28

3
ER

⎡

⎣ 1

32

∞∫

0

dx2 x
3
2 e

−2x2 − 1

16

∞∫

0

dx2 e
−6x2

(
1

2
x3
2 + x4

2

)⎤

⎦

=
2

3

3

ER

[
3!

24
−
(
3!

64
+ 2

4!

65

)]
= ER

[
1− 7

243

]
=

236

243
ER

=⇒ C21
10 ≈ 13.21 eV .
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We need for the exchange integral:

A21
10 =

28

32
ER

∞∫

0

dx1 x
3
1 e

−3x1 [I1 + I2] ,

I1 =
1

x2
1

x1∫

0

dx2 x
4
2 e

−3x2 =
1

35 x2
1

3x1∫

0

dy2 y
4
2 e

−y2

=
4!

35 x2
1

[
1− e−3x1

(
1 + 3x1 +

1

2
(3x1)

2 +
1

6
(3x1)

3 +
1

24
(3x1)

4

)]
,

I2 = x1

∞∫

x1

dx2 x2 e
−3x2 =

x1

32

∞∫

3x1

dy2 y2 e
−y2 =

1

32
x1 e

−3x1 (1 + 3x1) .

For the calculation of I1 and I2 we have again applied the integral formulas
from solution 8.4.5:

A21
10 =

28

36
ER

⎡

⎣23
∞∫

0

dx1 x1 e
−3x1 −

∞∫

0

dx1 e
−6x1

(
8x1 + 24 x2

1 + 36x3
1 + 27 x4

1

)
⎤

⎦

=
28

36
ER

[
8

1

32
− 8

1

62
− 24

2

63
− 36

3!

64
− 27

4!

65

]
=

28

36
ER

7

36
=

448

6561
ER

=⇒ A21
10 ≈ 0.93 eV .

The exchange integral is smaller by one order of magnitude than the correspond-
ing Coulomb integral:

ΔE(21)
para ≈ 14.14 eV ,

ΔE
(21)
ortho ≈ 12.28 eV .

Section 9.1.3

Solution 9.1.1

k = kez , k · r = kz = kr cos δ ,

ϕ∗ ∇ϕ =

(
e−ik·r +

f∗(ϑ)
r

e−ikr

)
∇
(
eik·r +

f(ϑ)

r
eikr

)
,

∇
(
eik·r +

f(ϑ)

r
eikr

)
= ik eik·r +∇

(
f(ϑ)

r
eikr

)
.

Gradient in spherical coordinates:

∇ ≡ er
∂

∂r
+ eϑ

1

r

∂

∂ϑ
+ eϕ

1

r sinϑ

∂

∂ϕ
.

It follows therewith:

∇
(
f(ϑ)

r
eikr

)
= er

(
−f(ϑ)

r2
+ i k

f(ϑ)

r

)
eikr + eϑ

1

r2
∂f

∂ϑ
eikr .
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We neglect terms of the order 1/r3 and take k · r = k r cosϑ:

ϕ∗ ∇ϕ = ik+ ik
f∗(ϑ)
r

e−ikr (1−cosϑ)

+er

[
−f(ϑ)

r2
eikr (1−cosϑ) + i k

f(ϑ)

r
eikr (1−cosϑ) + i k

|f(ϑ)|2
r2

]

+eϑ
1

r2
∂f(ϑ)

∂ϑ
eikr (1−cosϑ) .

ϕ∇ϕ∗ is just the conjugate-complex of this expression:

ϕ∗ ∇ϕ− ϕ∇ϕ∗

= 2ik+ ik
1

r

[
f∗(ϑ) e−ikr (1−cosϑ) + f(ϑ) eikr (1−cosϑ)

]

+er

[
− 1

r2

(
f(ϑ) eikr (1−cosϑ) − f∗(ϑ) e−ikr (1−cosϑ)

)

+
i k

r

(
f(ϑ) eikr (1−cosϑ) + f∗(ϑ) e−ikr (1−cosϑ)

)
+ 2i k

|f(ϑ)|2
r2

]

+eϑ
1

r2

[
∂f(ϑ)

∂ϑ
eikr (1−cosϑ) − ∂f∗(ϑ)

∂ϑ
e−ikr (1−cosϑ)

]
.

Current density:

j =
�

2mi

(
ϕ∗∇ϕ− ϕ∇ϕ∗) = �k

m
+

� k

m
er

|f(ϑ)|2
r2

+
� k

m

1

r
(er + ez) Re

(
f(ϑ) eikr (1−cosϑ))− �

m

1

r2
er Im

(
f(ϑ) eikr (1−cosϑ))

+
�

m

1

r2
eϑ Im

(
∂f(ϑ)

∂ϑ
eikr (1−cosϑ)

)
.

The last three summands are terms representing interference!

Solution 9.1.2

Schrödinger equation:

(
− �

2

2m
Δ+ V (r)

)
ϕ(r) = E ϕ(r) ,

E =
�
2k2

2m
=⇒ − �

2

2m
Δ eikz = E eikz .

It remains to show for r → ∞:

− �
2

2m
Δ

(
f(ϑ)

eikr

r

)
+ V (r)

(
eikz + f(ϑ)

eikr

r

)
= E f(ϑ)

eikr

r
.

Since V (r) vanishes stronger than 1/r at infinity, one can for r → ∞ at first



APPENDIX A. SOLUTIONS OF THE EXERCISES 535

neglect the potential term with respect to the 1/r-terms:

− �
2

2m
Δ

(
f(ϑ)

eikr

r

)
= − �

2

2m

(
Δ(f(ϑ))

) eikr

r
− �

2

2m
f(ϑ)

(
Δ

(
eikr

r

))

= E f(ϑ)
eikr

r
.

Laplace operator in spherical coordinates (5.83):

Δ =
∂2

∂r2
+

2

r

∂

∂r
− L2

�2r2
.

The operator of the square of the angular momentum L2 contains differentia-
tions exclusively with respect to angles. That means:

− �
2

2m

(
Δ(f(ϑ))

) eikr

r
∼ O

(
1

r3

)
.

This term, too, can thus be neglected for r → ∞. That also holds for the
following expression:

2

r

∂

∂r

eikr

r
=

2

r

(
− 1

r2
+

ik

r

)
eikr ∼ O

(
1

r2

)
.

It still remains:

∂2

∂r2
eikr

r
=

(
− ik

r2
− k2

r
+

2

r3
− ik

r2

)
eikr ∼ −k2

eikr

r
+O

(
1

r2

)
.

The following equation must be asymptotically valid:

�
2k2

2m
f(ϑ)

eikr

r
= E f(ϑ)

eikr

r
.

This obviously succeeds with the above E!

Section 9.2.7

Solution 9.2.1

dσ

dΩ
= a = const =⇒ σ =

∫
dΩ

dσ

dΩ
= 4π a ,

dσ

dΩ
= |f(ϑ)|2 =⇒ a = [Im f(ϑ)]2 + [Re f(ϑ)]2 .

Pure s-scattering =⇒ l = 0; P0(cosϑ) = 1 :

(9.23) =⇒ f(ϑ) =
1

k
eiδ0 sin δ0 ,

(9.24) =⇒ f(0) =
1

k
eiδ0 sin δ0 ≡ f(ϑ) .
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Optical theorem (9.28):

σ =
4π

k
Im f(0) =

4π

k
Im f(ϑ) = 4π a

=⇒ Im f(ϑ) = k a .

This means eventually:

a = k2a2 + [Re f(ϑ)]2

=⇒ Re f(ϑ) = ±
√
a(1− a k2)

=⇒ f(ϑ) = ±
√
a(1− a k2) + i k a .

Solution 9.2.2
Ansatz as in (9.33):

ϕ(r) =

∞∑

l=0

Rl(r)Pl(cosϑ) .

Laplace operator in spherical coordinates (5.83):

Δ =
∂2

∂r2
+

2

r

∂

∂r
− L2

�2r2
.

Schrödinger equation:

(
− �

2

2m
Δ+

c

r2

)
ϕ(r) = E ϕ(r)

k2 =
2m

�2
E

=⇒
[
∂2

∂r2
+

2

r

∂

∂r
+ k2 − 1

r2

(
l(l + 1) +

2mc

�2

)]
Rl(r) = 0 .

We take

λ(λ + 1) = l(l + 1) +
2mc

�2

ρ = k r

and have to then solve the following differential equation:

(
d2

dρ2
+

2

ρ

d

dρ
+ 1− λ(λ+ 1)

ρ2

)
Rl(ρ) = 0 .

If λ were integral, then this would be the spherical Bessel differential equation
(7.214) with spherical Bessel (jλ) and spherical Neumann functions (nλ) as
solutions. Because of

2mc

�2
� 1
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we write approximately
Rl(ρ) −→ jλ(ρ) .

From the asymptotic behavior ((9.21) and (9.22)),

Rl(ρ) −→ 1

ρ
sin

(
ρ− l π

2
+ δl

)
eiδl ,

and (6.125),

jλ(ρ) −→ 1

ρ
sin

(
ρ− λπ

2

)
,

we conclude with eiδl ≈ 1:

δl(k) ≡ δl =
π

2
(l − λ) .

λ can be calculated as function of l:

λ2 + λ = l2 + l+
2mc

�2

=⇒ λ = −1

2
+

√(
l +

1

2

)2

+
2mc

�2

=⇒ λ ≈ l +
mc

�2

1

l + 1/2
.

It thus holds for the scattering phases:

δl ≈ − πmc

(2l+ 1) �2
� 1 .

Scattering amplitude (9.23):

δl � 1 =⇒ eiδl ≈ 1 ; sin δl ≈ δl

=⇒ f(ϑ) ≈ 1

k

∞∑

l=0

(2l + 1) δl Pl(cosϑ) ≈ −πmc

k �2

∞∑

l=0

Pl(cosϑ)

= −πmc

2k �2
1

sin ϑ
2

.

Solution 9.2.3

1. With the definitions

k =

√
2mE

�2
; k20 =

2m

�2
(E − V0) = −p2 < 0 , q2 =

{
k2 for r ≥ a ,

k20 = −p2 for r < a

we have to solve for s-scattering according to (9.18) the following differ-
ential equation:

d2

dr2
u0(r) + q2 u0(r) = 0 .
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q is imaginary for r < a. The solution function exhibits exponentially
decaying behavior. Because of the additional boundary condition (6.21),
u0(0) = 0, it follows as ansatz:

r < a : u<
0 (r) = a0 sinh(p r) .

For r > a the solution function must oscillate and has to simultaneously
guarantee the asymptotic behavior (9.21). Therefore the ansatz should be
of the form:

r > a : u>
0 (r) = b0 sin(k r + δ0) .

Fitting condition:

(d/dr)u<
0 (r)

u<
0 (r)

∣∣∣∣
r= a

!
=

(d/dr)u>
0 (r)

u>
0 (r)

∣∣∣∣
r= a

.

This is easily evaluated:

p coth(p a) = k cot(k a+ δ0) .

Conditional equation for δ0:

tan(k a+ δ0) =
k

p
tanh(p a)

δ0 = arctan

(
k

p
tanh(p a)

)
− k a .

Compare this result with (6.143)!

2. It always holds:
0 ≤ tanh(p a) ≤ 1 .

For low particle energies (k → 0) the arc tangent can in any case be
replaced by its argument (modulo π):

δ0 ≈ k

p
tanh(p a)− k a+ nπ .

With the definition,

as ≡ a

(
1− tanh p a

p a

)
: scattering length (cf. (9.64)) ,

there results an expression which is completely analogous to (9.65):

δ0 ≈ nπ − k as −→
k→ 0

nπ .

Cross-section:

σ0 =
4π

k2
sin2 δ0 ≈ 4π

k2
sin2 k as ≈ 4π a2s (cf. (9.66)) .
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Limiting case:

V0 → ∞ (hard sphere)

=⇒ p → ∞, tanh p a → 1 =⇒ as → a, δ0 → nπ − k a

=⇒ σ0 −→ 4π a2 (cf. (9.40)) .

Solution 9.2.4

1. We consider pure s-scattering (l = 0) at a central-symmetric potential
V (r). Therefore we have to solve a radial equation of the form (6.17) for
l = 0, which, with the ansatz (6.18), u0(r) = rR0(r), goes over into the
Eq. (6.19),

u′′
0(r) + k2u0(r) =

2m

�2
V0 δ(r −R)u0(r) ,

with

k2 =
2m

�2
E and the boundary condition: u0(0) = 0 .

The classically allowed region lies inside (r < R) and outside (r > R)
the ‘potential shell’. The solution function will therefore exhibit there
oscillatory behavior. A proper ansatz, which fulfills the above boundary
condition and shows the correct asymptotic behavior, then might be:

u0(r) =

{
α sin(kr) for r < R
β sin(kr + δ0(k)) for r > R

.

Continuity at r = R:

α sin(kR)
!
= β sin(kR+ δ0(k)) .

Because of the δ-potential the first derivative of u0 performs a jump at
r = R (see (4.107) or also Exercise 4.2.5 in Vol. 6):

u′
0(R+ 0+)− u′

0(R − 0+) =
2m

�2
V0 u0(R) .

That means here:

βk cos(kR+ δ0(k))− αk cos(kR) =
2m

�2
V0α sin(kR) .

Division by the continuity condition results in:

k cot(kR + δ0(k))− k cot(kR) =
2m

�2
V0 .

That can be rearranged:

tan(kR+ δ0(k)) =
tan(kR)

1 + 2mV0

�2k tan(kR)
=

tan(kR) + tan(δ0(k))

1− tan(kR) tan(δ0(k))
.
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–1
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Figure A.7:

In the second step we have used the addition theorem for the tangent.
Solving for tan(δ0(k)) yields:

tan(δ0(k)) =
− sin2(kR)

�2k
2mV0

+ 1
2 sin(2kR)

(A.7)

Thereby we used sin(kR) cos(kR) = 1
2 sin(2kR).

2. The zeros of the denominator in (A.7) can give rise to resonance scattering
(Sect. 9.2.4). They can be taken from:

sin(2kR)
!
= − �

2

2mV0R
(2kR) (A.8)

As function of 2kR the solutions correspond to the intersection points of
the sine function on the left-hand side, which oscillates between +1 and
−1, and the straight line with negative(!) slope on the right-hand side.
There can exist several intersection points kn, and that the more the flatter
the line runs, i.e., the stronger the coupling V0R (Fig. A.7). Let us number
them consecutively by n = 1, 2, . . . according to their magnitude. One can
easily imagine, because of the known behavior of the sine, that for large
V0R the oddly indexed solutions 2k2ν−1R (ν = 1, 2, . . .) lie slightly above
(2ν − 1)π and the evenly indexed ones 2k2νR slightly below 2νπ.

We investigate the behavior of tan(δ0(k)) in the neighborhoods of the
‘resonances’ kn. For this purpose we expand the denominator in (A.7)
according to Taylor:

‘denominator’ = 0 +

(
�
2

2mV0
+R cos(2knR)

)
(k − kn) +O (

(k − kn)
2
)
.

In addition:

E − En =
�
2

2m

(
k2 − k2n

)
=

�
2

2m
(k + kn)(k − kn) ≈ �

2kn
m

(k − kn) .

Insertion:

‘denominator’ ≈
(

1

2V0kn
+

mR

�2kn
cos(2knR)

)
(E − En) .
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We can therewith bring (A.7) for k ≈ kn into the form of (9.59):

tan δ0,n ≈ γn
kR

E − En
; (n = 1, 2, . . .)

with

γn =
− sin2(knR)

R
2V0

+ mR2

�2 cos(2knR)
. (A.9)

Finally, statements are still possible about the sign of γn. The right-hand
and the left-hand side of the condition (A.8) have different slopes at the
intersection points:

slope of the left-hand side|kn = 2R cos(2knR)

slope of the right-hand side|kn = − �
2

mV0
.

One again realizes easily (Fig. A.7) that it holds for the, respectively, odd
and even intersection points:

2R cos(2k2ν−1R) < − �
2

mV0
⇔ mR2

�2
cos(2k2ν−1R) < − R

2V0

2R cos(2k2νR) > − �
2

mV0
⇔ mR2

�2
cos(2k2νR) > − R

2V0
.

It then follows with (A.9):

γn :

{
> 0 for n odd
< 0 for n even

.

This transfers to the scattering phase:

• n odd:

tan δ0 :

{
< 0 for E

<∼ En

> 0 for E
>∼ En

• n even:

tan δ0 :

{
> 0 for E

<∼ En

< 0 for E
>∼ En

.

Since the phase δ0 can be fixed only except for an integral multiple of
π, we can restrict our considerations to the interval [0, π]. Solution (A.7)
tells us that tan δ0 → 0 follows for E → 0 as well as for E → ∞. The
phase then takes the value 0 or π. If one presumes that δ0 is a monotonic
function of the energy E, then the phase has to monotonically decrease
from π for E = 0 to 0 for E → ∞, with the value π/2 at E = En, in order
to realize the above expressions of tan δ0 with odd n. From a physical
point of view, though, the phase should disappear at E = 0, because
in this case no particle ‘comes in’, so that no scattering whatsoever can
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take place. One will therefore suppose that the oddly indexed graphical
solutions of Eq. (A.8) do not represent real resonances. We will therefore
no longer discuss them in what follows.

For even n, however, the above expression for tan δ0 can be realized by a
phase, which vanishes at E = 0 and runs for E → ∞ into the value π. For
E = En in this case also δ0 = π/2.

3. Determination of the resonance energies for strong couplings V0R � 1!
Then the right-hand side of (A.8) is very small in magnitude. That means
for the left-hand side:

2knR = nπ + α ; (|α| � 1)

(see remark after (A.8)). It can therewith be estimated:

sin(2knR) = sin(nπ + α) = sin(nπ) cosα+ cos(nπ) sinα

= (−1)n sinα ≈ (−1)nα .

On the other hand:

sin(2knR)
!
= − �

2

2mV0R
(nπ + α) ≈ − �

2

2mV0R
nπ .

Equating the last two expressions:

α ≈ (−1)n+1 �
2

2mV0R
nπ .

That means:

2knR ≈ nπ

(
1 + (−1)n+1 �

2

2mV0R

)
.

Resonance energies:

En =
�
2k2n
2m

≈ �
2

8mR2
(nπ)2

(
1 + (−1)n+1 �

2

mV0R

)
.

For the here interesting even n = 2ν (ν = 1, 2, 3, . . .) this expression reads:

Eν ≈ �
2

2mR2
(νπ)2

(
1− �

2

mV0R

)
= E0,ν

(
1− �

2

mV0R

)
. (A.10)

The pre-factor is identical to the l = 0-energies E0,ν in the infinitely high
spherical potential well (radius R), which were calculated in Exercise 6.3.1.
That means that the resonance energies Eν , which belong to the evenly
indexed solutions kn from (A.8), lie very close to the energies E0,ν of the
(bound) states in the spherical hollow-potential (cf. also the discussion
after (9.56)).
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4. For the coefficients γn with n = 2ν (ν = 1, 2, 3, . . .), given in (A.9), we
estimate for strong coupling (V0R � 1):

sin(knR) = sin
(nπ

2
+

α

2

)
(n=2ν)
= sin

(
νπ − �

2

2mV0R
νπ

)

= sin(νπ) cos

(
�
2

2mV0R
νπ

)
− cos(νπ) sin

(
�
2

2mV0R
νπ

)

= (−1)ν+1 sin

(
�
2

2mV0R
νπ

)
≈ (−1)ν+1 �

2

2mV0R
νπ

cos(2knR) ≈ cos(nπ) = (−1)n
(n=2ν)
= +1 .

The estimations are of course valid only for not too large quantum numbers
ν. We insert them now into(A.9):

γn = γ2ν =
−
(

�
2

2mV0R

)2

(νπ)2

mR2

�2

(
1 + �2

2mV0R

) ≈ − �
2

mR2

(
�
2

2mV0R

)2

(νπ)2

= −1

2
E0,2ν

(
�
2

2mV0R

)2

E0,n

(A.9)≈ En

(
1 +

�
2

mV0R

)

� γn ≈ −1

2
En

(
1+

�
2

mV0R

)(
�
2

2mV0R

)2

≈−1

2
En

(
�
2

2mV0R

)2

.

That was to be shown!

Solution 9.2.5
Equation (9.25) yields:

dσ

dΩ
=

1

k2

∑

l,l′
(2l + 1)(2l′ + 1) sin δl sin δl′ e

i(δl−δl′ )Pl(cosϑ)Pl′ (cosϑ) .

For a centrally symmetric scattering potential the differential cross-section, too,
will show this symmetry. An expansion in Legendre polynomials therefore
appears to be reasonable:

dσ

dΩ
=

∞∑

ν=0

aνPν(cosϑ) .

With the orthogonality relation for Legendre polynomials (5.98)

+1∫

−1

d cosϑPν(cosϑ)Pμ(cosϑ) =
2

2ν + 1
δνμ
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it follows immediately for the expansion coefficients:

aμ =
2μ+ 1

2

+1∫

−1

d cosϑPμ(cosϑ)
dσ

dΩ
=

2μ+ 1

4π

+1∫

−1

dΩPμ(cosϑ)
dσ

dΩ
.

The integrals, given in the problem, are, except for trivial pre-factors, identical
to the expansion coefficients a0 and a1:

P0(cosϑ) = 1 � a0 =
1

4π

∫
dΩ

dσ

dΩ

P1(cosϑ) = cosϑ � a1 =
3

4π

∫
dΩcosϑ

dσ

dΩ
.

The calculation of the coefficient a0 is relatively simple:

a0 =
2π

4πk2

∑

l,l′
(2l + 1)(2l′ + 1) sin δl sin δl′ e

i(δl−δl′) �

�

+1∫

−1

d cosϑPl(cosϑ)Pl′(cosϑ)

=
1

2k2

∑

l

(2l+ 1)2 sin2 δl
2

2l+ 1

=
1

k2

∑

l

(2l + 1) sin2 δl
(9.26)
=

1

4π
σ .

For the determination of a1 we need expressions of the form

cosϑPl(cosϑ)Pl′ (cosϑ) .

The recursion formula from part 2. of Exercise 6.2.9 helps:

cosϑPl(cosϑ) =
1

2l+ 1

(
(l + 1)Pl+1 + lPl−1

)
�

+1∫

−1

d cos ϑ cos ϑPl(cosϑ)Pl′(cos ϑ) =
l + 1

2l + 1

+1∫

−1

d cosϑPl+1(cos ϑ)Pl′(cos ϑ)

+
l

2l + 1

+1∫

−1

d cos ϑPl−1(cosϑ)Pl′(cosϑ)

=
2(l + 1) δl′l+1

(2l + 1)(2l + 3)
+

2l δl′l−1

(2l + 1)(2l − 1)
.
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Therewith it is:

a1 =
3

4π

2π

k2

∑

l,l′
(2l + 1)(2l′ + 1) sin δl sin δl′ e

i(δl−δl′ ) �

�

+1∫

−1

d cosϑ cosϑPl(cosϑ)Pl′ (cosϑ)

=
3

2k2

∑

l

(2l + 1)(2l + 3)
l + 1

2l+ 1

2

2l+ 3
sin δl sin δl+1 e

i(δl−δl+1)

+
3

2k2

∑

l

(2l + 1)(2l− 1)
l

2l+ 1

2

2l− 1
sin δl sin δl−1 e

i(δl−δl−1)

=
3

2k2

∞∑

l=0

2(l + 1) sin δl sin δl+1 e
i(δl−δl+1)

+
3

2k2

∞∑

l=0

2l sin δl sin δl−1 e
i(δl−δl−1)

=
3

k2

∞∑

l=0

(l + 1) sin δl sin δl+1

(
ei(δl−δl+1) + ei(δl+1−δl)

)
.

It remains:

a1 =
6

k2

∞∑

l=0

(l + 1) sin δl sin δl+1 cos(δl+1 − δl) .

Section 9.3.3

Solution 9.3.1

1. We use the formula (9.93) for the calculation of the scattering amplitude:

f (1)(ϑ) = − 2m

�2K
α

∞∫

0

dr′ e−r′/R0 sin(K r′) ≡ −2mα

�2K
J ,

J =

∞∫

0

dr′ e−r′/R0 sin(K r′)

= −R0 e−r′/R0 sin(K r′)
∣∣∣
∞

0
+KR0

∞∫

0

dr′ e−r′/R0 cos(K r′)

= 0−KR2
0 e−r′/R0 cos(K r′)

∣∣∣
∞

0
−K2R2

0 J = K R2
0 −K2R2

0 J

=⇒ J =
KR2

0

1 +K2R2
0

.
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Scattering amplitude:

f (1)(ϑ) = −2mα

�2

R2
0

1 + 4k2R2
0 sin

2(ϑ/2)
.

(K = 2k sin(ϑ/2) inserted according to (9.92)!)
Differential cross-section:

dσ(1)

dΩ
= |f (1)(ϑ)|2 =

4m2α2

�4

R4
0(

1 + 4k2R2
0 sin

2(ϑ/2)
)2 .

2. Low energies: kR0 � 1
Criterion (9.96) should be fulfilled:

∣∣∣∣∣∣

∞∫

0

dr r V (r)

∣∣∣∣∣∣
= α

∣∣∣∣∣∣

∞∫

0

dr e−r/R0

∣∣∣∣∣∣
= αR0 .

Requirement:

αR0 � �
2

2m
.

3. The Coulomb potential represents the R0 → ∞-limiting case of the
Yukawa potential, when one still chooses

α =
Z1 Z2 e

2

4π ε0

(Z1 (Z2) e: charge of the scattered (scattering) particle).

(R0 → ∞ contradicts, though, 2.!). According to part 1. we now have for
the scattering amplitude:

f (1)(ϑ) = −mZ1Z2 e
2

4π ε0 �2
1

2k2 sin2(ϑ/2)
.

Differential cross-section:

dσ(1)

dΩ
= |f (1)(ϑ)|2 =

(
Z1Z2 e

2

4π ε0

1

4E

)2
1

sin4(ϑ/2)
.

This result agrees exactly with the Rutherford scattering formula ((1.67),
Vol. 6) for the classical particle scattering. On the other hand, the scat-
tering problem for the Coulomb potential can also be exactly treated.
Surprisingly, it comes out again ((1.67), Vol. 6). The first Born approx-
imation thus yields for (dσ/dΩ) already the exact result. That must be
judged, though, as only accidental. It is not at all so that all higher
Born approximations would vanish. The second Born approximation, for
instance, diverges for R0 → ∞. The scattering amplitude f (1)(ϑ) does not
agree with the exact one, either. It differs from that by a phase factor,
which is unimportant, though, for (dσ/dΩ).
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Solution 9.3.2

1. We use formula (9.93) for the calculation of the scattering amplitude:

f (1)(ϑ) =
2mV0

�2

1

K

∞∫

0

dr r e
− r

R0 sinK r ,

K = 2k sin
ϑ

2
.

Substitution:

x =
r

R0
; q = K R0

=⇒ f1(ϑ) =
2mV0

�2

R3
0

q

∞∫

0

dxx e−x sin q x

︸ ︷︷ ︸
I(q)

I(q) = − d

dq

∞∫

0

dx e−x cos(q x) = − d

dq
Re

∞∫

0

dx e−x+ iqx

= +
d

dq
Re

1

−1 + i q
=

d

dq

−1

1 + q2
=

2q

(1 + q2)2
.

Scattering amplitude:

f (1)(ϑ) =
4mV0 R

3
0

�2

1
(
1 + 4k2R2

0 sin
2(ϑ/2)

)2 .

2. ∣∣∣∣∣∣

∞∫

0

dr V0 e
−r/R0

(
e2ikr − 1

)
∣∣∣∣∣∣

!� �
2k

m

V0

∣∣∣∣
−1

−1/R0 + 2i k
−R0

∣∣∣∣ = V0

∣∣∣∣
R0

1− 2i k R0
−R0

∣∣∣∣ = V0

∣∣∣∣
2i kR2

0

1− 2i kR0

∣∣∣∣

= V0 R0

∣∣∣∣
2i k R0(1 + 2i k R0)

1 + 4k2R2
0

∣∣∣∣ =
V0R0

1 + 4k2R2
0

√
16 k4R4

0 + 4k2R2
0

=
2V0 kR

2
0√

1 + 4k2R2
0

!� �
2k

m
.

In particular it must be required:

k R0 � 1 : V0 R0

!� �
2k

m
,

k R0 � 1 : V0 R
2
0

!� �
2

2m
.
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3. With the exact expression (9.23)

f(ϑ) =
1

k

∞∑

l=0

(2l+ 1) eiδl sin δl Pl(cosϑ)

and the orthogonality relation (5.98) for Legendre polynomials

+1∫

−1

d cosϑPl(cosϑ)Pl′(cosϑ) =
2

2l + 1
δl l′

it follows, at first very general:

2 sin δl e
iδl = k

+1∫

−1

d cosϑ f(ϑ)Pl(cosϑ) .

s-scattering:

sin2
ϑ

2
=

1

2
(1− cosϑ) ,

2 sin δ0 e
iδ0 =

4mV0R
3
0

�2
k

+1∫

−1

d cosϑ

[1 + 2k2R2
0 (1− cosϑ)]

2

=
2mV0R0

�2k

+1∫

−1

d cosϑ
d

d cosϑ

1

1 + 2k2R2
0(1 − cosϑ)

=
2mV0R0

�2k

(
1− 1

1 + 4k2 R2
0

)
,

2 sin δ0 e
iδ0 = −i

(
e2iδ0 − 1

)
.

This yields:

e2i δ0 = 1+ i
8mV0 kR

3
0

�2 (1 + 4k2R2
0)

.

This relation can not be actually fulfilled, because on the right-hand side
there stands a complex number with a magnitude larger than 1. It can
be correct only approximately. In the sense of part 1. the imaginary part
should be smaller than one:

cos 2δ0 = 1 ,

sin 2δ0 =
8mV0 kR

3
0

�2
(
1 + 4k2R2

0

) ≈ 2δ0 ,

δ0 ≈ 4mV0 kR
3
0

�2
(
1 + 4k2R2

0

) .
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High particle energies (k R0 � 1):

δ0 ≈ mV0 R0

�2k
� 1 . part 2.

Low particle energies (k R0 � 1):

δ0 ≈ 4mV0 kR
3
0

�2
� 2kR0 � 1 part 2.

In these limits the approximation is thus unambiguous.

4. To facilitate the paperwork we put:

y0 = k R0 ; cosϑ = z .

p-scattering:

P1(cosϑ) = cosϑ ,

2 sin δ1 e
iδ1 =

4mV0 R
2
0

�2
y0

+1∫

−1

dz
z

[
1 + 2y20(1 − z)

]2
︸ ︷︷ ︸

I

,

I =
(1/2y20) z

1 + 2y20(1− z)

∣∣∣∣
+1

−1

− 1

2y20

+1∫

−1

dz

1 + 2y20(1− z)

=
1

2y20
+

1

2y20

1

1 + 4y20
+

1

4y40
ln

1

1 + 4y20

=
1

2y20

[
2 + 4y20
1 + 4y20

− 1

2y20
ln
(
1 + 4y20

)]

=⇒ 2 sin δ1 e
iδ1 =

4mV0 R
2
0

�2 y0

[
1 + 2y20
1 + 4y20

− 1

4y20
ln
(
1 + 4y20

)]
.

The conditional equation

e2i δ1 = 1 + i
4mV0 R

2
0

�2y0

[
1 + 2y20
1 + 4y20

− 1

4y20
ln
(
1 + 4y20

)]

is actually not satisfiable as in part 3.. With the same ‘justification’ as
there, (cos 2δ1 = 1, sin 2δ1 ≈ 2δ1 � 1), we conclude:

δ1 ≈ 2mV0 R0

�2k

[
1 + 2k2R2

0

1 + 4k2R2
0

− 1

4k2 R2
0

ln
(
1 + 4k2R2

0

)]
.
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Solution 9.3.3

1. Starting point is formula (9.93):

f (1)(ϑ) =
2mV0
�2 K

R0∫

0

dr′ r′ sin(K r′) = 2mV0
�2 K

⎛

⎝− d

dK

R0∫

0

dr′ cosK r′
⎞

⎠

= −2mV0
�2K

d

dK

1

K
sinKR0

=⇒ f (1)(ϑ) =
2mV0
�2K3

(
sinKR0 −KR0 cosKR0

)
,

K = 2k sin
ϑ

2
.

2.

dσ(1)

dΩ
=
∣∣∣f (1)(ϑ)

∣∣∣
2

=

(
2mV0R

3
0

�2

)2 (
sinKR0 −K R0 cosKR0

)2

(KR0)6
.

We investigate the limit of low particle energies. According to l’Hospital’s
rule it holds at first:

lim
x→0

sin x−x cosx

x3
= lim

x→0

cos x− cosx+x sin x

3x2
= lim

x→0

sin x

3x
= lim

x→0

cos x

3
=

1

3
.

k R0 � 1 also means KR0 � 1. It thus follows for the differential cross-
section at low energy of the incident particle:

dσ(1)

dΩ
≈ 1

9
R2

0

(
2mV0 R

2
0

�2

)2

.

It turns out to be isotropic and energy-independent. The isotropy of the
cross-section at low energies is typical for the scattering at short range
potentials. That we have already realized at the end of Sect. 9.2.3.

Total cross-section:

σ(1) ≈ 4π R2
0

1

9

(
2mV0R

2
0

�2

)2

.

3.
∣∣∣∣∣∣

∞∫

0

dr V (r)
(
e2ikr − 1

)
∣∣∣∣∣∣
= V0

∣∣∣∣
1

2i k

(
e2i k R0 − 1

)−R0

∣∣∣∣

=
V0

2k
|(cos 2k R0 − 1) + i(sin 2kR0 − 2kR0)|

=
V0

2k

√(
cos 2kR0 − 1

)2
+ (sin 2kR0 − 2kR0

)2

=
V0

2k

√
2
(
1− cos 2kR0

)
+ 4kR0

(
k R0 − sin 2k R0

) !� �
2k

m
.
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kR0 � 1

We develop the radicand in powers of k R0:
√
2(1− cos 2k R0) + 4kR0(k R0 − sin 2kR0)

=

[
2

(
1

2
(2k R0)

2 − 1

4!
(2k R0)

4

)

+4kR0

(
k R0 − 2kR0 +

1

3!
(2k R0)

3

)
+O(

(k R0)
6
)]1/2

=
√
4(kR0)4 + 0

[
(k R0)6

] ≈ 2(k R0)
2 .

The criterion then reads:

V0 R
2
0 � �

2

m
(see discussion after (9.96)) .

kR0 � 1
√
2(1− cos 2kR0) + 4kR0 (k R0 − sin 2kR0) ≈ 2k R0 .

Criterion:

V0 R0 � �
2k

m
(see discussion after (9.95)).

4. Condition for the bound state (6.138):

V0 >
π2

�
2

8mR2
0

=⇒ mV0 R
2
0

�2
>

π2

8
≈ 1.23

=⇒ criterion not fulfilled, Born approximation fails.

Solution 9.3.4

1. Let the scattering hydrogen atom be at the origin of coordinates. The
probability density to find the orbital electron of the H-atom at the posi-
tion r is given by

|ψ100(r)|2 .

for the incident electron, the orbital electron creates the following poten-
tial at the position r0:

Vf (r0) =
e2

4π ε0

∫
d3r

|ψ100(r)|2
|r− r0| .

In addition there is the nuclear potential:

VN (r0) = − e2

4π ε0 r0
.
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The incident electron sees therefore the scattering potential:

V (r0) =
e2

4π ε0

{∫
d3r

|ψ100(r)|2
|r− r0| − 1

r0

}
.

According to (6.60) and (5.108):

ψ100(r) =
1√
π a3B

e−r/aB .

We calculate therewith (r0: polar axis):

∫
d3r

|ψ100(r)|2
|r− r0| =

2π

π a3B

∞∫

0

dr r2 e−2r/aB I ,

I ≡
+1∫

−1

dx√
r2 + r20 − 2r r0 x

= − 1

r r0

√
r2 + r20 − 2r r0 x

∣∣∣∣
+1

−1

= − 1

r r0

[|r − r0| − (r + r0)
]

=

{
2
r , if r ≥ r0 ,
2
r0

, if r ≤ r0

=⇒ Vf(r0) =
e2

4π ε0

2

a3B

⎛

⎝ 2

r0

r0∫

0

dr r2 e−2r/aB + 2

∞∫

r0

dr r e−2r/aB

⎞

⎠ .

This we evaluate with the given formulas:

Vf(r0) =
e2

π ε0 a
3
B

[
1

r0

2

(2/aB)3

(
1− e

− 2r0
aB

(
1 +

2r0
aB

+
2r20
a2B

))

+
1

(2/aB)2
e−2r0/aB

(
1 +

2r0
aB

)]

=
e2

π ε0 a
3
B

[
a3B
4r0

+ e−2r0/aB

(
a2B
4

+
aB r0
2

− a3B
4r0

− a2B
2

− aB r0
2

)]

=
e2

4π ε0 aB

[
aB
r0

− e−2r0/aB

(
1 +

aB
r0

)]
.

=⇒ scattering potential (r0 → r):

V (r) = − e2

4π ε0
e−2r/aB

(
1

aB
+

1

r

)
.
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2. Scattering amplitude in first Born approximation:

me2

4πε0 �2
=

1

aB
6.32 ; K = 2k sin

ϑ

2

(formula (9.93)) ,

f (1)(ϑ) =
2

aBK

⎡

⎣ 1

aB

∞∫

0

dr r
1

2i

(
e−(2/aB − iK)r − e−(2/aB + iK)r

)

+

∞∫

0

dr
1

2i

(
e−(2/aB − iK)r − e−(2/aB + iK)r

)
⎤

⎦

=
1

i aBK

⎡

⎣
(
− 1

aB

d

d(2/aB − iK)
+ 1

) ∞∫

0

dr e−(2/aB − iK)r

−
(
− 1

aB

d

d (2/aB + iK)
+ 1

) ∞∫

0

dr e−(2/aB + iK)r

⎤

⎦

=
1

i aBK

[
1

2/aB − iK
+

1

aB

1

(2/aB − iK)2
− 1

2/aB + iK

− 1

aB

1

(2/aB + iK)
2

]

=
1

i aBK

[
2iK

4/a2B +K2
+

1

aB

8iK/aB
(4/a2B +K2)2

]

=⇒ f (1)(ϑ) =
2aB

(
8 + a2BK2

)
(
4 + a2BK2

)2 .

3. Differential cross-section:

K2 = 4k2 sin2
ϑ

2
= 2k2(1− cosϑ) ,

dσ(1)

dϑ
=

∣∣∣f (1)(ϑ)
∣∣∣
2

=
a2B

[
4 + a2Bk

2(1− cosϑ)
]2

[2 + a2Bk
2 (1− cosϑ)]

4 .

4. Total cross-section:

σ(1) = 2π

+1∫

−1

d cosϑ
dσ(1)

dΩ
.

The angle-dependence is hidden in K:

x ≡ a2BK2 =⇒ dx = −2k2 a2B d cosϑ,
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Abbreviation: y = k aB. It then remains to be calculated::

σ(1) = − π

y2
4a2B

0∫

4y2

dx
(8 + x)2

(4 + x)4

=
4a2B π

y2

4y2∫

0

dx

[
1

(4 + x)2
+

8

(4 + x)3
+

16

(4 + x)4

]

=
4π a2B
y2

[
− 1

4 + x
− 4

(4 + x)2
− 16/3

(4 + x)3

]4y2

0

=
4π a2B
y2

[
−1 + 2y2 + y4 + 1 + y2 + 1

3

4(1 + y2)3
+

7

12

]

=
π a2B
y2

(7/3) + 7y2 + 7y4 + (7/3) y6 − (7/3)− 3y2 − y4

(1 + y2)3
.

This leads to:

σ(1) = π a2B
4 + 6k2 a2B + (7/3) k4 a4B(

1 + k2 a2B
)3 .

Low particle energies: k aB � 1

=⇒ σ(1) ≈ 4π a2B (see hard sphere).

5. Criterion of validity (9.94):
∣∣∣∣∣∣

∞∫

0

dr

(
1

aB
+

1

r

)
e−2r/aB

(
e2ikr − 1

)
∣∣∣∣∣∣

!� �
2k

m

4π ε0
e2

= k aB .

We need for the evaluation an integral of the type:

f(t) =

∞∫

0

dr
1

r

(
e−(t− i α)r − e−tr

)
with f(t → ∞) = 0

=⇒ df

dt
=

∞∫

0

dr
(
e−tr − e−(t− i α)r

)
=

1

t
− 1

t− i α
.

This yields with the correct boundary condition for t → ∞:

f(t) = ln
t

t− i α
.

This we use with t = 2/aB, α = 2k for the calculation of the integral in
the criterion of validity:

| . . . | =
∣∣∣∣
1

aB

(
1

2/aB − 2i k
− 1

2/aB

)
+ ln

1

1− i k aB

∣∣∣∣ .
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The requirement for the validity of the Born approximation therefore
reads: ∣∣∣∣

1

2

i k aB
1− i k aB

− ln
(
1− i k aB

)∣∣∣∣
!� k aB .

We discuss the limiting cases:

k aB � 1
∣∣∣∣
1

2
i k aB + i k aB

∣∣∣∣
!� k aB ⇐⇒ 3

2

!� 1 .

The condition cannot be fulfilled. For low particle energies the Born
approximation is obviously not useful!

k aB � 1
∣∣∣∣−

1

2
− ln(−i k aB)

∣∣∣∣ =
∣∣∣∣
1

2
+ ln

(
k aB e−iπ/2

)∣∣∣∣

=

∣∣∣∣
1

2
− i

π

2
+ ln(k aB)

∣∣∣∣ ≈ |ln(k aB)|
!� k aB .

This condition is satisfiable. The Born approximation may be applicable
for high particle energies.

Solution 9.3.5

ϑ′, ϕ′ : polar angle of the vector r′,
ϑ, ϕ : polar angle of the unit vector er .

We begin with the expression for f (1)(ϑ) and use the formulas (6.152) and
(6.153):

eik r′·ez e−ik r′·er =
∑

l

il
√
4π(2l+ 1) jl(k r

′)Yl0 (ϑ
′, ϕ′)

·
∑

l′m′
(−i)l

′
4π jl′ (k r

′) Yl′m′(ϑ′, ϕ′)Y ∗
l′m′ (ϑ, ϕ)︸ ︷︷ ︸

5.104 (−1)2m′ Y ∗
l′ − m′ (ϑ′, ϕ′)Yl′ −m′ (ϑ, ϕ)

.

Integration over the angles, as required in (9.91), yields together with the orthog-
onality relation (5.102) of the spherical harmonics:

∫
dΩ′e−ik(er − ez)·r′

=
∑

ll′m′
il(−i)l

′√
4π(2l + 1) 4π jl (k r

′) jl′ (k r′)Yl′−m′ (ϑ, ϕ) δll′ δ−m′0

= 4π
∑

l

√
4π(2l+ 1) [jl (k r

′)]2 Yl0 (ϑ, ϕ)

(5.103)
= 4π

∑

l

(2l + 1)
[
jl (k r

′)
]2

Pl(cosϑ) .
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It follows therewith for the scattering amplitude according to (9.91):

f (1)(ϑ, ϕ) = −2m

�2

∑

l

(2l + 1)Pl (cosϑ)

∞∫

0

dr′ r′2 V (r′)
[
jl (k r

′)
]2

.

We compare this with the exact expression (9.23):

1

k
eiδl sin δl ≈ −2m

�2

1

k2

∞∫

0

dr′ V (r′) [k r′ jl(k r′)]
2
.

Because of eiδl sin δl ≈ δl it results from that the Born approximation (9.76) for
the scattering phase:

δl ≈ −2m

�2

1

k

∞∫

0

dr′ V (r′) [k r′ jl (k r′)]
2
.

Section 9.4.5

Solution 9.4.1
It holds:

1 =
(
E(0)

n −H ± i0+
) 1

E
(0)
n −H ± i0+

=
(
E(0)

n −H0 −H1 ± i0+
) 1

E
(0)
n −H ± i0+

=
E

(0)
n −H0 ± i0+

E
(0)
n −H ± i0+

−H1
1

E
(0)
n −H ± ii0+

.

This means:

1

E
(0)
n −H0 ± i0+

=
1

E
(0)
n −H ± i0+

− 1

E
(0)
n −H0 ± i0+

H1
1

E
(0)
n −H ± i0+

⇔ R(±)
n = G(±)

n −R(±)
n H1 G

(±)
n

⇔ G(±)
n = R(±)

n +R(±)
n H1 G

(±)
n .

That was to be shown.

Solution 9.4.2
We insert (9.128) into (9.126) and demonstrate the identity:

∣∣∣E(0)
n

〉
+G(±)

n H1

∣∣∣E(0)
n

〉
!
=

∣∣∣E(0)
n

〉
+R(±)

n H1

( ∣∣∣E(0)
n

〉
+G(±)

n H1

∣∣∣E(0)
n

〉)

⇔ G(±)
n H1

∣∣∣E(0)
n

〉
!
=

(
R(±)

n H1 +R(±)
n H1 G

(±)
n H1

) ∣∣∣E(0)
n

〉
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Solution 9.4.3

[S, H0]− = M+
−M+H0 −H0M

+
−M+

(9.161),(9.162)
= M+

−HM+ −M+
−HM+

= 0 .

Solution 9.4.4

1.

ŜŜ+ = M+M
+
−M−M+

+

(9.156)
= M+M

+
+

(9.157)
= PS

Ŝ+Ŝ = M−M+
+M+M

+
−

(9.156)
= M−M+

−
(9.157)
= PS .

2.

[Ŝ, H ]− = M+M
+
−H −HM+M

+
−

(9.161),(9.162)
= M+H0M

+
− −M+H0M

+
−

= 0 .

3. With (9.156) and (9.170) it follows:

Ŝ
∣∣∣E(−)

n

〉
= M+M

+
−
∣∣∣E(−)

n

〉

= M+M
+
−M−

∣∣∣E(0)
n

〉

= M+

∣∣∣E(0)
n

〉

=
∣∣∣E(+)

n

〉
.
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